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Abstract

Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of
chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are
needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of
the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the
detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same
tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin
Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn’t find substantial differences. A second goal was to assess
the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional
set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected
aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods,
that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this
technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in
the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still
advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the
genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single
cells, even if it focuses on few genomic regions.
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Introduction

Bladder cancer is the seventh most common cancer worldwide

[1] and the fourth most common cancer diagnosed in men in the

USA and European countries [2]. Transitional Cell Carcinoma

(TCC) comprises the majority of bladder cancers accounting for

more than 90%. At presentation, the majority (,70%) are

superficial, exophytic, papillary tumors that are well-differentiated

(low-grade, LG) and do not penetrate the epithelial basement

membrane (stage Ta) [1,3]; the remaining are muscle invasive

(T2–T4) or microinvasive tumors (T1), that have penetrated the

lamina propria but are not invading the muscle. In this minority,

the tumor epithelium is poorly differentiated (high-grade, HG) and

often associated with carcinoma in situ (CIS), which despite its

superficiality is composed of poorly differentiated epithelium. This

is thought to be representative of a precursor lesion [1]. Prognosis

for LG Ta tumors is generally good because such tumors rarely

progress, but monitoring is necessary given the significant risk of

recurrence (up to 70%) [4]; this is necessary also for HG Ta

(TaG3) and T1 tumors that represent a high risk of progression to

muscle invasion. For patients with muscle invasive tumors ($T2),

metastasis is a major clinical problem and cystectomies are usually

indicated. Prognosis is relatively poor with only 50% survival at 5

years since diagnosis [4].

The biological differences among these groups probably reflects

the underlying genetic heterogeneity which leads to specific

pathways of tumor development and progression. Innumerable

studies have traced the status of known oncogenes and tumor

suppressor genes and have revealed several recurring chromo-

somal changes associated with the pathologic stage and/or

outcome of the tumor [5,6]. Moreover, based on the well known

genetic alterations of bladder cancer, a multi-target fluorescence in
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situ hybridization (FISH) assay has been developed [7]. The

UroVysion FISH detection system, approved by the U.S. Food

and Drug Administration, is based on three centromeric probes for

chromosomes 3, 7 and 17 and a fourth probe to the 9p21 region,

for the detection of chromosomal aneusomy and/or deletion of

9p21 locus, which are common genetic alterations in TCCs [8,9].

UroVysion has been initially used in the last decade only for the

surveillance, but recently also as a bladder cancer screening tool in

patients with hematuria [10–12]. However, other methods have

been applied to detect copy number changes associated with

tumor development and progression of TCC. Conventional

comparative genomic hybridization (CGH) studies have provided

a great deal of information, including the identification of a

number of genomic regions of DNA amplification containing

known or candidate oncogenes [13–15]. On the other hand, the

location of tumor suppressor genes in TCC have largely been

identified by loss of heterozygosity (LOH) analysis [16]. With the

use of the high-resolution mapping of array-based CGH, novel

copy number alterations (CNAs) were identified in many small

genomic regions that were not detected in previous studies [17–

19]. The data collected so far, in addition to the identification of at

least two cytogenetic pathways for tumor development, i.e. the loss

of chromosome 9 and the gain of chromosome 7 [20–22], may be

helpful in designing new individualized therapies. However

confirmation studies are needed since many aspects of this model

remain unclear, in particular on the chronological order of the

aberrations during the disease progression. For a sensible

identification of the genes underlying the chromosomal abnor-

malities, it becomes crucial to use reliable techniques and to go

through the data validation process. This issue was recently

addressed for prostate and breast cancer, gliomas and multiple

myeloma [23–27], but not for bladder cancer. Although Formalin

Fixed Paraffin Embedded (FFPE) specimens has several advan-

tages, such as the certainty of histological diagnosis and allow

retrospective studies of a large number of samples, fresh tissues are

considered the most reliable for molecular genetic analysis; they

provide a comprehensive analysis of the biopsy, although the

material does not have a histological diagnosis.

The first goal of this study was to evaluate the performance of a

targeted test in two different types of material derived from the same

tumor. In the first step we compared the results of UroVysion test

performed on Freshly Isolated interphasic Nuclei (FIN) and on

FFPE tissues from 22 TCCs (Figure 1). Furthermore, a second goal

was to assess the concordance between array-CGH profiles and the

targeted chromosomal profiles, in order to evaluate whether

UroVysion is an adequately sensitive method for the identification

of selected aneuploidies and nonrandom CNAs in TCCs. The

second step of comparison was applied on an additional set of 10

TCCs, between data derived from either array-CGH on FIN and

from UroVysion analysis on FFPE tissues (Figure 1).

Results

First Step of analysis: comparison between UroVysion
data from FIN and FFPE

TCC can be distinguished in high or low grade (HG or LG) and

in muscle invasive or not (IN or NI). In the first step of analysis 22

TCCs (9 LGNI, 1 LGIN, 3 HGNI, 9 HGIN) were analyzed by

UroVysion test applied in duplicate from the same biopsy on

FFPE and FIN samples (Figure 1).

In the analysis based on the multinomial model, FIN data were

generally comparable to those extracted from FFPE counterpart in

LGNI group, in terms of percentages of loss, disomy and gain

(Table 1; for a detailed list see Table S2). By contrast, in HGNI

group the two types of analysis generated concordant results only

for CEP 3 (Chromosome Enumeration Probe 3). Indeed in CEP 7

and CEP17, FIN tended to detect a lower percentage of both loss

(1,7 vs 10 for CEP 7; 6 vs 11,3 for CEP17) and disomy (42,7 vs

Figure 1. Methodological approach of this study. The two step strategy of analysis applied in this study.
doi:10.1371/journal.pone.0024237.g001
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62,3 for CEP7; 48,3 vs 60,7 for CEP17); consequently a higher

percentage of gain was reported (55,7 vs 27,7 for CEP7; 45,7 vs 28

for CEP 17). Finally, for Locus Specific Identifier (LSI) 9p21 FIN

tended to detect a higher percentage of both disomy (58,3 vs 20,0)

and gain (10,3 vs 8,7) but a lower percentage of loss (31,3 vs 71,3).

On the other hand, in HGIN group the two types of analysis

generated discordant results only for CEP 3: FIN tended to detect

a higher percentage of loss (14,9 vs 2,2) and a lower percentage of

gain (48,1 vs 62,5) than FFPE.

These results were confirmed in the more refined analysis by a

Poisson model (Figure 2). In LGNI group, the average number of

signals for CEP3, CEP7, CEP17 and for the 9p21 region was 2.3,

1.8, 2.0, 0.5 (in FIN samples) and 2.4, 2.1, 2.2, 0.9 (in FFPE) with

no significant difference between the two types of test (Figure 2, A).

On the other hand, in HGNI group the average number of signals

for CEP3, CEP7, CEP17 and for the 9p21 region was 2.5, 2.9, 2.7,

1.8 (in FIN samples) and 2.3, 2.3, 2.3, 1.2 (in FFPE) with

statistically significant differences between the two tests except for

CEP3 (Figure 2, B). Conversely, in HGIN group, the average

number of signals for CEP3, CEP7, CEP17 and for the 9p21

region was 2.5, 2.7, 2.3, 1.2 (in FIN) and 3.0, 2.7, 2.7, 1.2 (in FFPE

samples), with significant difference for CEP3 (Figure 2, C).

Genomic copy number alterations (CNAs) in freshly
isolated nuclei (FIN) by array-CGH

In the second step of our analysis we first performed array-CGH

on an additional set of 10 TCCs (6 HGIN, 1 HGNI, 3 LGNI), in

order to detect CNAs between tumor and reference DNA. The most

frequent CNAs are summarized in Table 2 (detailed form in Table

S3). We classified the samples into two categories: infiltrating tumors

(IN-TCCs: 70CR09, 81CR09, 04CR10, 09CR10, 10CR10,

26CR10) and non infiltrating tumors (NI-TCCs: 28CR09,

75CR09, 80CR09, 82CR09) (Figure 3). In general, as expected,

IN-TCCs have many more CNAs than NI-TCCs. 20q gain was

shared by 4/6 IN-TCC tumors, while 2/4 NI-TCCs; 3p25.2 and

17q21 gains by 4/6 IN-TCC tumors and 1/4 NI-TCCs; 5p and 20p

gain by 3/6 IN-TCC and 2/4 NI-TCCs; 6p22.3 and 11q13 was

shared only by IN-TCC (3/6 and 2/6 respectively); finally 3q and 8q

were in 1/6 IN-TCCs and 1/4 NI-TCCs. For the losses: 9p and

9p21 were in 4/6 and 3/6 IN-TCCs while in 2/4 and 3/4 NI-TCCs;

Table 1. Percentages of loss, disomy, gain by type of tumor, probe analyzed and test applied.

LG NI

Probe Test % loss (95% CI) % diso (95% CI) % gain (95% CI) p-value

CEP 3 FIN 13,2 (6,7 ; 24,3) 57,9 (32,2 ; 79,9) 28,9 (23,5 ; 35,0) 0,520

FFPE 10,0 (4,2 ; 22,1) 55,0 (35,2 ; 73,3) 35,0 (30,5 ; 39,7)

CEP 7 FIN 28,0 (14,6 ; 47,0) 57,8 (35,6 ; 77,2) 14,2 (13,1 ; 15,4) 0,134

FFPE 10,4 (5,0 ; 20,6) 70,2 (57,2 ; 80,6) 19,3 (17,6 ; 21,1)

CEP 17 FIN 14,4 (9,2 ; 21,7) 71,3 (56,7 ; 82,5) 14,4 (12,7 ; 16,1) 0,133

FFPE 9,1 (5,1 ; 15,7) 68,9 (50,9 ; 82,5) 22,0 (18,9 ; 25,5)

LSI 9p21 FIN 84,9 (53,6 ; 96,5) 14,5 (3,2 ; 46,6) 0,6 (0,6 ; 0,6) 0,323

FFPE 73,2 (55,1 ; 85,9) 24,0 (10,9 ; 45,0) 2,8 (2,7 ; 2,8)

HG NI

Probe Test % loss (95% CI) % diso (95% CI) % gain (95% CI) p-value

CEP 3 FIN 5,3 (1,2 ; 20,7) 48,0 (16,6 ; 81,0) 46,7 (32,9 ; 61,0) 0,307

FFPE 11,7 (5,5 ; 23,0) 56,3 (33,3 ; 77,0) 32,0 (27,3 ; 37,1)

CEP 7 FIN 1,7 (0,5 ; 5,2) 42,7 (16,5 ; 73,8) 55,7 (38,6 ; 71,5) ,0.001*

FFPE 10,0 (4,9 ; 19,4) 62,3 (31,6 ; 85,6) 27,7 (21,7 ; 34,6)

CEP 17 FIN 6,0 (3,0 ; 11,5) 48,3 (13,7 ; 84,7) 45,7 (28,3 ; 64,2) 0,020*

FFPE 11,3 (5,8 ; 21,1) 60,7 (24,3 ; 88,1) 28,0 (20,3 ; 37,3)

LSI 9p21 FIN 31,3 (18,0 ; 48,7) 58,3 (30,1 ; 82,0) 10,3 (8,7 ; 12,2) ,0.001*

FFPE 71,3 (56,3 ; 82,8) 20,0 (6,8 ; 46,2) 8,7 (8,0 ; 9,4)

HG IN

Probe Test % loss (95% CI) % diso (95% CI) % gain (95% CI) p-value

CEP 3 FIN 14,9 (7,2 ; 28,4) 36,9 (22,0 ; 54,9) 48,1 (44,2 ; 52,1) 0,038*

FFPE 2,2 (0,7 ; 6,9) 35,3 (24,0 ; 48,5) 62,5 (55,0 ; 9,4)

CEP 7 FIN 8,9 (5,0 ; 15,6) 50,9 (29,6 ; 72,0) 40,1 (32,7 ; 48,1) 0,741

FFPE 3,6 (1,5 ; 8,5) 54,0 (36,7 ; 70,4) 42,4 (35,7 ; 49,3)

CEP 17 FIN 18,5 (9,0 ; 34,3) 49,9 (23,4 ; 76,4) 31,6 (25,4 ; 38,5) 0,244

FFPE 6,9 (2,7 ; 16,8) 47,5 (27,0 ; 69,0) 45,5 (37,6 ; 53,7)

LSI 9p21 FIN 63,3 (40,2 ; 81,6) 20,9 (2,5 ; 73,3) 15,7 (13,1 ; 18,8) 0,934

FFPE 64,5 (39,2 ; 83,6) 20,0 (2,4 ; 71,5) 15,5 (13,5 ; 17,8)

p-values refer to the comparison between the two type of analysis obtained by a multinomial model with 95% confidence interval.
doi:10.1371/journal.pone.0024237.t001
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9q32-q34 were in 3/6 IN-TCCs and 2/4 of NI-TCCs; 2q loss were

in 3/6 IN-TCCs and 1/4 NI-TCCs; 8p loss only in 2/6 IN-TCCs.

To identify possible enrichment of functional groups in the

genes within regions with gain and loss of HGIN and LGNI

tumors, a gene ontology annotation analysis was performed using

the GOstat software. For HGIN emerged a statistically significant

under-representation (p,0.05) of genes involved in cell differen-

tiation, in cell cycle and in positive regulation of apoptosis and

programmed cell death; in addition a statistically significant over-

representation of genes involved in cell proliferation and in

regulation of apoptosis. On the other hand the analysis evidenced

for LGNI tumors a statistically significant under-representation of

genes involved in induction of apoptosis and programmed cell

death (Table S4).

Second Step of analysis: comparison between array-CGH
profiles on FIN and UroVysion data on FFPE

We next performed FISH analysis by means of Urovysion test

on the additional set of 10 TCCs analyzed by array-CGH; when

possible, two tumoral areas of the same section were scored in

order to increase the number of cell analyzed and to have data as

representative as possible, given the well-known heterogeneity in

this type of cancer. For each probe a statistical analysis was

performed to verify that the signal counts on 100 cells were

different considering the two areas separately or mixing them

together. Concordant results between the two tumoral areas were

reported in two HGIN cases (070CR09 and 081CR09) (Figure 4,

A); conversely, statistically significant contrasting results (p, 0.05)

were reported in two HGIN cases (009CR10 and 026CR10)

(Figure 4, B); in the remaining six cases statistically significant

differences between the two tumoral areas were evidenced for one

(010CR10), two (028CR09 and 080CR09) or three probes

(004CR10) (see also Table S5). These data stressed the overall

high intra-tumor heterogeneity of these samples.

Then, we made an attempt to compare the UroVysion data on

FFPE just reported with the array-CGH profiles from the 10

TCCs, described above. For this purpose for each sample we

extrapolated the results for array-CGH analysis corresponding to

the four UroVysion targeted chromosomes and compared them

with FISH data (Table 3). Full concordance was found only for

Figure 2. Statistical analysis by a Poisson model. Estimated count of signals observed in each probe (with 95% confidence interval) obtained in
each type of tumor, accounting for clustering. The reported p-values refer to the comparison between FFPE and FIN methods. Panel A = LGNI (9 pts);
panel B = HGNI (3 pts); panel C = HGIN (9 pts).
doi:10.1371/journal.pone.0024237.g002
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Table 2. The most frequent CNAs evidenced by array-CGH in this study and comparison with data from literature.

LGNI HGNI HGIN

GAIN ref 75CR09 80CR09 82CR09 28CR09 04CR10 09CR10 10CR10 26CR10 70CR09 81CR09

3p25 18 + + + + +

3q 18,19 + +

5p 18,19 + + + + +

6p22.3 18,19 + + +

8q 18,19 + +

11q13 18 + +

17q21 18 + + + + +

20p 18,19 + + + + +

20q 18,19 + + + + + +

LOSS ref 75CR09 80CR09 82CR09 28CR09 04CR10 09CR10 10CR10 26CR10 70CR09 81CR09

2q 18,19 + + + +

8p 18,19 + +

9p 19 + + + + + +

9p21 18 + + + + + +

9q32-q34 19 + + + + +

doi:10.1371/journal.pone.0024237.t002

Figure 3. CNA collection evidenced by array-CGH. CNAs of 10 TCCs samples: 6 infiltrating tumors (IN-TCCs: 70CR09, 81CR09, 04CR10, 09CR10,
10CR10, 26CR10) on the left, and 4 non- infiltrating tumors (NI-TCCs: 28CR09, 75CR09, 80CR09, 82CR09) on the right. Each dot/bar corresponds to one
sample. Losses are evidenced in green while gains in red.
doi:10.1371/journal.pone.0024237.g003
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28CR09 (HGNI) and 09CR10 (HGIN) (gray areas in Table 3).

However, for the other tumors, a fairly good correlation has

been observed between the two techniques; ie for tumors

010CR10 and 070CR09 (both HGIN) the concordance was

evidenced for 3/4 targeted chromosomes. See Fig 5 for two

examples of more concordant (D) and less concordant (E) data.

The greater concordance was seen for chromosome 3 (7/10),

while the other targeted chromosomes showed a reasonable

correlation (6/10). For example, in 082CR09 (LGNI) and in

04CR10 (HGIN), 9p21 losses were evidenced only by FISH

analysis; on the other hand the amplification at locus 3p25 for

028CR09 (HGNI) and for 070CR09 (HGIN) emerged only from

array-CGH data. In order to validate array-CGH data and to

distinguish a polysomy of chromosome 3 from a true amplifi-

cation, FISH analysis was performed with both Urovysion test

assay and the dual-color split probe PPARc (3p25), on two

consecutive FFPE sections of 028CR09 (Figure 5, C). A statistical

analysis of signal counts on 100 nuclei assessed the true

amplification at 3p25 respect to a polysomy of chromosome 3

(t test: p,0.01).

Discussion

Despite the extensive research into genetic alterations of bladder

cancer and detailed models which link such changes to tumor

initiation and progression [20–22], there are few reliable markers

to distinguish tumors with aggressive characteristics at the time of

early diagnosis and we are still looking for the method of election

to detect them. In this regard, a recent prospective study has even

suggested that cystoscopy alone remains the most cost-effective

strategy for detecting recurrence of bladder cancer not invading

the muscle [28]. However, in contrast to what previously reported

by others [29], several authors claimed the same conclusion [30],

and the role of Urovysion in suspicious urine specimens remained

questionable, especially in view of its high cost.

The development of array-CGH led to the possibility to analyze

the whole genome in a single experiment, suggesting its possible

application in screening/surveillance programs of cancer patients.

In the case of bladder cancer, array-CGH would give the

possibility to analyze the DNA from a biopsy of the tumor, while

by Urovysion urine specimens are usually analyzed.

Figure 4. Examples of concordant and non-concordant results of Urovysion test. Comparison between results on two selected tumoral
areas of the same section of FFPE: (A): the two most concordant tumors (070CR09 and 081CR09); (B): the two most discordant tumors (009CR10 and
026CR10).
doi:10.1371/journal.pone.0024237.g004
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Table 3. Comparison between results of Urovysion FISH (in two selected tumoral areas of the same FFPE section) and array-CGH.

SAMPLE UROVYSION AREA 1 UROVYSION AREA 2 Array-CGH

LOSS% GAIN% LOSS% GAIN% LOSS% GAIN%

075CR09
LG NI

CR3* 12 29 na na - -

CR7** 2 24 na na - -

CR17* 25 12 na na - -

9p21** 46 5 na na mosaic 48% -

080CR09
LG NI

CR3** 4 27 4 16 - 3q25.2, 1.2 Mb, amplification 3q26.1,
1.8 Mb, non mosaic

CR7 7 8 4 12 - -

CR17** 25 3 10 8 17p13.3, 0.07 Mb, mosaic 87% -

9p21 100 0 100 0 non mosaic -

082CR09
LG NI

CR3* 1 29 na na - -

CR7** 0 14 na na - -

CR17** 7 7 na na - -

9p21* 93 1 na na - -

028CR09
HG NI

CR3 1 56 0 53 - 3p25.2-p25.1, 2 Mb, amplification
3p21.31, 3 Mb, mosaic 62% 3q11.2-q29,
99.5 Mb, mosaic 51%

CR7 3 57 0 33 7p22.3, 0.1 Mb, non mosaic 7p22.2-p22.1, 2 Mb, mosaic 80% 7p15.3,
0.3 Mb, mosaic 62% 7p14.2, 0.28 Mb, non
mosaic 7q11.21-q11.23, 1.2 Mb, mos 77%
7q21.3-q22.2, 7.6 Mb, mosaic 62%
7q32.1-q32.2, 1 Mb, mosaic 85% 7q33.34,
2.9 Mb, mosaic 77% 7q36.1, 0.7 Mb, non
mosaic

CR17 0 53 1 39 - 17q11.1-q25.3, 56 Mb, mosaic 85%

9p21 55 4 78 1 non mosaic -

004CR10
HG IN

CR3** 20 18 14 28 - 3q25.32-q26.1, 2.2 Mb, mos 51%

CR7* 8 12 4 24 - 7p21.1, 3.6 Mb, mos 68%

CR17* 28 4 18 21 - 17p11.2, 0.4 Mb, mosaic 48% 17q11.2,
2.9 Mb, mosaic 45% 17q12-q25.3, 49 Mb,
mosaic 39%

9p21** 70 0 28 13 - -

009CR10
HG IN

CR3 0 52 0 38 - 3p26.3-p11.1, 90 Mb, mosaic 75% 3q11.2-
q29, 104.2 Mb, mosaic 60%

CR7 0 56 0 44 - 7p22.3-p11.2, 56.2 Mb, mosaic 39%
7q11.21-q36.3, 96.3 Mb, mosaic 66%

CR17 0 49 0 38 17p13.3-p11.2, 21.8 Mb, mosaic 33% 17q11.1-q25.3, 55.8 Mb, mosaic 28%

9p21 76 1 96 0 mosaic 33% -

010CR10
HG IN

CR3 3 31 2 49 3p21.31-p12.1, 35.1 Mb, mosaic 28% 3p16.3-p24.3, 6.6 Mb, mosaic 68%

CR7** 0 33 1 31 7p21.1, 0.3 Mb, mosaic 91% -

CR17 10 25 9 25 - 17q11.1-q25.3, 55.7 Mb, mosaic 30%

9p21 91 1 99 0 non mosaic -

026CR10
HG IN

CR3** 0 38 0 39 3p21.31-p21.1, 4.2 Mb, mosaic 27% -

CR7* 1 15 0 34 - -

CR17* 7 19 0 25 - -

9p21 32 30 97 0 mosaic 68% -

070CR09
HG IN

CR3 0 52 0 38 - 3p25.2-p25.1, 0.7 Mb, amplification

Chromosomal Aberrations in Bladder Cancer
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The main drawbacks of this technique are that, even if it is

specific and sensitive, it is invasive and still expensive.

Furthermore, to date there are no sufficient data to support the

use of array-CGH in this kind of programs, but it could be

interesting to apply this technique for patients’ categories with

high cancer risk.

The multitarget Urovysion assay has been developed for the

detection of TCC in urine specimens [7]. The optimal FISH probe

set was determined by testing different probes for TCC detection

in urine from patients with bladder cancer and selecting those that

were either the most sensitive individually or that complemented

other probes to enhance the overall sensitivity of the test. The CEP

probes and LSI 9p21 were complementary because the CEP

probes detect hyperdiploidy, common in carcinoma in situ and

invasive TCC, while the LSI 9p21 probe detects deletions of the

9p21 band, common in non-invasive TCC [7]. It has been

previously suggested that a false-negative FISH result represents

mostly low-grade TCC that do not shed tumor cells into the urine

or do not exhibit the chromosomal alterations that are detected by

the assay [11]. Another limit, and another possible explanation for

false-negative FISH results, might be attributed to the low number

of neoplastic cells present in the specimens [30].

In the first step of this study we compared the performance of

this multitarget assay for the detection of bladder tumor cells both

in FIN, without histological diagnosis and even with a low number

of neoplastic cells, and in FFPE tissue. Our analysis evidenced a

good correspondence of Urovysion FISH data between FIN and

FFPE for LGNI and HGIN tumors; in particular, in the former

group, FIN tended to detect a smaller number of signal respect to

FFPE, while in the latter group an opposite tendency was

appreciated. For HGNI TCCs, significant differences emerged

for three targeted probes, but it could be due to the low number of

samples of this group. The performance of this targeted test is

therefore sufficiently acceptable also on FIN samples; furthermore

the same CNAs were faithfully reflected by the analysis on FFPE.

It remains to investigate whether it is an efficient method to detect

the most representative and effective CNAs of TCCs. For this

purpose, in the second step of this study, array-CGH was

performed on 10 additional TCCs to dissect the spectrum of

alterations in bladder cancer and to identify recurrent aberrations

that may contain cancer-related genes.

We detected numerous genetic changes by array-CGH: the

most frequent loss involved chromosome 9p-arm while the most

frequent gain involved chromosome 20q-arm, as previously

reported by others [5,6,14,18,19]. Surprisingly, we didn’t find a

high percentage of tumors with gain of 6p22.3 and 8q reported in

other studies [14,18,19]. LOH and under-representation of

chromosome 9 is the most frequently described genetic alteration

in TCC (.50%). The common loss of an entire copy of

chromosome 9 indicates the presence of tumor suppressor genes

both on 9p and 9q, and candidate genes have been identified in

several regions including 9p21 (CDKN2A), 9q12-13 (PTCH), 9q32-

33 (DBC1) and 9q34 (TSC1). In this study, we observed complete

or partial loss of 9p and/or 9q in 7/10 tumors, in both HG and

LG. Moreover, in some HG we observed a gain for this locus, even

if this could be due to chromosome 9 polyploidy (as the sign of

chromosomal instability). The most frequent gain is 20q (6

tumors), in accordance with data previously reported in many

other cancers, including bladder, colon, ovarian and breast [31].

Association of 5p and 20q gains, found in 3 HG tumors, reported

by Bruch [32], could be associated with progression. Finally, gain

of 17q21 is identified only in HG tumors, suggesting a possible role

in tumor progression.

The most interesting point of this study is the comparison of

array-CGH data and Urovysion FISH data. Indeed, we

evidenced not only a high intra and inter-tumor heterogeneity

in FFPE material, as emerged from the analysis of two different

tumoral areas of the same tumor; we also found some

discrepancies in the two techniques that could be partially

ascribed to a possible masking effect from normal cells or to a

compensatory effect derived from the great tumor heterogeneity.

This heterogeneity has already been described by our group in

bladder cancer stem-like cells that are genetically different [33].

We can suggest that this diversity generates viable and clonally

related subpopulations that become heterogeneous in the same

tumor.

The overall array-CGH data stressed once again on the

presence of frequent alterations (i.e. 20p and 5p gains) that cannot

be detected by Urovysion assay. A further advantage of using an

integrated technical approach emerged for 028CR09 sample: the

amplification of 3p evidenced by array-CGH was studied by FISH

with Urovysion assay and a LSI 3p probe. Through the

SAMPLE UROVYSION AREA 1 UROVYSION AREA 2 Array-CGH

LOSS% GAIN% LOSS% GAIN% LOSS% GAIN%

CR7 0 44 0 58 - 7p22.3-q36.3, 158 Mb, mosaic 66%

CR17 10 50 6 44 17q11.2-q12, 1 Mb, mosaic 48% 17q21.31-q25.3, 40 Mb, mosaic 46%

9p21** 18 32 4 46 - -

081CR09
HG IN

CR3 0 58 0 41 - 3p25.2, 0.06 Mb, mosaic 62%

CR7** 0 52 2 25 - -

CR17** 1 47 12 25 - -

9p21** 11 42 13 33 - -

LOSS: number of signals: 0 and 1; DISOMY: number of signals even (2, 4, 6, 8, 10, 12); GAIN number of signals odd (3, 5, 7, 9, 11).
Gray: CNA detected by both techniques and by both tumoral FISH areas.
**: CNA detected by both techniques but by only one tumoral FISH area; or by both tumoral FISH area but not by array-CGH.
*: CNA detected by only array-CGH, or by only one tumoral FISH area.
Positive FISH if at least 25% of cells detected the CNA.
Na: not available.
doi:10.1371/journal.pone.0024237.t003

Table 3. Cont.
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integration of multiple methods, we were able to discriminate the

true amplification from a chromosome 3 polysomy. This locus

includes the peroxisome proliferator-activated receptor gamma

(PPARG), a ligand activated transcription factor implicated in the

regulation of proliferation and differentiation of urothelium

[34,35].

In conclusion, considerable effort is still required to define the

genes underlying the chromosomal abnormalities to a better

understand of the genetic mechanisms in order to develop new

therapeutic strategies. Our results confirmed the importance of

global genomic screening methods, that is array based CGH, to

comprehensively determine the genomic profiles of large series of

TCCs tumors. However, this technique has yet some limitations,

such as not being able to detect low level mosaicism, or not

detecting any change in the number of copies for a kind of

compensatory effect due to the presence of high cellular

heterogeneity. Thus, it is still advisable to use complementary

techniques such array-CGH and FISH, as the former is able to

detect alterations at the genome level not excluding any

chromosome, but the latter is able to maintain the individual

data at the level of single cells, even if it focuses on few genomic

regions.

Figure 5. Examples of FISH analysis. Urovysion test applied to: (A): FIN sample 032CR07 (HG NI); (B): FFPE sample 080CR09 (LG NI). (C) FISH with
PPARc probe on 028CR09 (HGNI). Urovysion versus array-CGH data: example of concordant data (D), (sample 080CR09); and non-concordant data (E),
(sample 004CR10).
doi:10.1371/journal.pone.0024237.g005
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Materials and Methods

A detailed form can be found in Materials and Methods S1.

This study was approved and founded by Direzione Generale

Sanità Regione Lombardia and presented by General Director

and ethic commitment of ICP Hospital Bassini. Written informed

consent was obtained from the study participants before tissue

collection.

Patients and samples
A total of 32 tumor samples (28 men and 4 women) were

obtained by transurethral resection in a consecutive series of

patients newly diagnosed with TCCs at a single center (Table S1).

Informed consent was obtained before tissue collection. Staging

and grading were done according to the World Health

Organization Consensus Classification [1]. They were distin-

guished in high or low grade (HG or LG) and in muscle invasive or

not (IN or NI).

Fluorescence in situ hybridization
For FIN, biopsies were cut up and cultured in RPMI-1640

(Euroclone Spa) supplemented with 20% FCS for 24 hours. Pieces

were subjected to hypotonic treatment and fixed with 3:1

methanol:acetic acid. Single cells isolated from biopsies with

acetic acid 60%, were spotted on slides and let dry. For FFPE,

tissue were fixed according to standard procedures.

Pretreatment and FISH analysis were performed on both nuclei

isolated from FIN and FFPE samples using UroVysion bladder

cancer kit (Vysis, Wiesbaden, Germany), according to the

manufacturer’s instructions.

After hybridization the unbound probes were removed by a

series of washes and the nuclei were counterstained with 49,6-

diamidino-2-phenylindole (DAPI).

At least 100 cells for each preparation were scored and the

signals were divided according to loss (number of signals/cell ,2),

disomy (number of signals/cell = 2) and gain (number of signals/

cell .2).

For locus 3p25 FISH analysis on FFPE was performed using

PoseidonTM Repeat FreeTM PPARc (3p25) Break probe (Kreatech

Diagnostics, Amsterdam, Netherlands). The statistical significance of

differences between chromosome 3 polisomy and 3p25 amplification

was evaluated by Student’s t test on separate counts of 100 nuclei.

Differences were considered as statistically significant with p,0.01.

All digital images were captured using a Leitz microscope (Leica

DM 5000B) equipped with a charge coupled device (CCD) camera

and analyzed by means of Chromowin software (Tesi Imaging,

Milan, Italy).

Array-CGH
For array-CGH analysis, genomic DNA was extracted from fresh

biopsies after enzymatic digestion with collagenase H (Roche,

Mannheim, Germany) and proteinase K (Roche, Mannheim,

Germany) and purified using phenol/chloroform (Carlo Erba,

Milan, Italy). Sample preparation, slide hybridization, and analysis

were performed using SurePrint G3 Human CGH Microarray

8x60K (Agilent, Santa Clara, CA) according to the manufacturer’s

instructions. Sex-matched commercial DNA samples (Promega)

were used as reference DNA during array-CGH. The arrays were

scanned at 2-mm resolution using Agilent microarray scanner and

analyzed using Feature Extraction v10.7 and Agilent Genomic

Workbench v5.0 softwares. The Aberration Detection Method 2

(ADM2) algorithm prompted by Genomic Workbench software was

used to compute and assist the identification of aberrations for a

given sample (threshold = 5; log2 ratio = 0.3). To calculate the

estimated percentage of mosaicism we used the formula determined

by Cheung SW et al. [36].

Gene ontology analysis
To analyze which ontology classes were over- and under-

represented among the genes delineated within gain and loss

regions detected by array-CGH, the GOstat software (available at

http://gostat.wehi.edu.au/) was used [37] based on AmiGO (the

Gene Ontology database) version 1.8.

Statistical analysis
Cases were described by calculating the proportions of loss,

disomy and gain on the total of at least 100 cells, specifically for

type of analysis (FFPE and FIN), and probe of UroVysion test.

A multinomial model accounting for the presence of clustering

was used to estimate for each type of tumor and type of analysis,

the overall proportion of loss, disomy and gain with 95%

confidence intervals. This model was also used to compare the

overall proportions of loss, disomy and gain detected by the two

types of analysis.

A Poisson model based on logarithmic transformation of counts

in the presence of clustering was used to estimate the number of

signals detected by each type of analysis with 95% confidence

intervals. This model enabled also to compare the number of

signals across the two types of analysis (FFPE and FIN).
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