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Abstract

Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a
wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in
the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of
mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and
machine learning techniques to predict a highly accurate ‘‘top 5’’ list of ts mutations given the structure of a protein of
interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins
accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived
features with sequence-based features results in accurate temperature-sensitive mutation predictions.
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Introduction

The study of essential genes – those genes that result in

inviability of the organism or cell when nonfunctional – poses a

unique challenge to the in vivo study of gene function. In model

organisms such as D. melanogaster, C. elegans and S. cerevisiae the use

of conditionally inactivated alleles has proved a fruitful method for

the study of essential gene function within the context of the

organism. The ability to control the inactivation of an essential

gene enables studies of the consequence of functional inactivation

of essential genes and the identification of genetic interactions by

means of genetic suppression studies. These studies are frequently

informative of the pathways and complexes in which the gene

product participates. A critical requirement is that a functional and

nonfunctional state is possible for the same allele and that these

states can be experimentally controlled. Although a variety of

methods exist for the regulated inactivation of essential genes

including the use of gene expression induction/repression systems,

the workhorse of essential gene studies has long been temperature

sensitive (ts) alleles. Typically, these alleles produce a functional

gene product at one temperature (the permissive temperature) but

are rendered non-functional at a higher – or occasionally lower –

temperature (the restrictive temperature).

The main challenge in the use of ts mutations is the difficulty of

discovering or generating them. Methods for generating ts

mutations fall into three general categories: random methods,

procedure-based methods, and predictive methods. Random

methods, such as mutation with ethyl methanesulfonate or PCR

mutagenesis, make many random mutations to the genome or to a

specific gene of an organism. Random mutation is necessarily

followed by extensive screening to isolate the small number of

resulting ts mutations, if any. Procedure-based methods rely on

specific techniques, such as the fusion of a temperature-sensitive

N-degron [1] to a protein, that induce a ts phenotype. We also

place ‘‘naı̈ve’’ non-random techniques such as alanine scanning

[2] in this group. Procedure-based methods remove the need for

extensive screening imposed by random methods, but are limited

in other ways: N-degron fusion and similar techniques provide no

recourse should that specific technique fail, and may also

introduce side effects by making a larger-scale perturbation to

the protein instead of a simple amino acid substitution, while

alanine scanning generally produces surface mutations that tend to

disrupt particular interactions rather than overall protein function.

Accurate predictive techniques promise the advantages of both

random and procedure-based techniques. By predicting a small

number of high-likelihood substitutions, they avoid the need for

screening thousands of mutants. The mutations are produced by

making straightforward single-amino acid substitutions, and if the

initial predictions fail to produce a ts phenotype, one can move

farther down the ranked list of predictions, though obviously at the

cost of more screening. Previous work in predicting temperature-

sensitive mutations has been limited to prediction based on

sequence [3–5]. These techniques focus on predicting amino acid

burial (where buried amino acids are those below a threshold for

solvent-accessible surface area) from sequence since mutations to

buried amino acids are more likely to produce a ts phenotype.

Once putative buried amino acids have been identified, substitu-

tions are made at these sites and the resulting mutants are screened

for a ts phenotype. Here we present a method that explicitly uses

protein structure in the prediction process.
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Predicting temperature-sensitive mutations presents a number

of challenges. The first is that a ts phenotype may manifest itself in

many ways. A ts protein may exhibit a reduction in stability or

solubility; it may acquire resistance to proteolysis, or be cleared

more quickly because of partial unfolding; it may show reduced

function; or it may not accumulate in sufficient quantity because of

poor expression, failure to fold, or aggregation. From this list of

potential causes, we chose to focus on reduced stability, because

reducing stability affects a protein’s function generally instead of

interfering with single interactions. In addition, reduced stability is

more tractable for computational modeling: a reduction in stability

will be reflected as a lowering of DG, the free energy of unfolding

of the protein, which will be reflected in the energy function of

protein modeling software such as Rosetta [6,7]. We restrict our

search to buried sites because mutations at buried sites a) are

correlated with both reduced stability and a ts phenotype [8], and

b) are more likely to perturb the entire function of a protein rather

than a single interaction. For proteins of known function a more

directed design approach could be adopted, but we choose to focus

on a method of general utility in the study of poorly understood

proteins.

Quantifying the effects of mutations on protein structure

presents its own challenges. Proteins vary tremendously in

structure and function, variations that are reflected in their wide

range of native stabilities. While small reductions in stability (a

decrease in DG or a negative DDG) may be tolerated and large

changes will most likely result in a loss of function phenotype, ts

mutations occupy a middle ground between toleration and loss

of function. Although changes in the score calculated by

Rosetta’s energy function due to single amino acid substitutions

have been shown to correlate well with experimentally measured

DDG values [9], DDG alone is not sufficient to predict whether a

mutation will result in a ts phenotype. Therefore, instead of

directly comparing energies of native and mutated structures, we

accommodate the natural variation in structure and function by

1) generating a distribution of component Rosetta score terms

(Table 1) across multiple candidate structures for each mutation,

and 2) comparing mutant structure and native structure

distributions rather than comparing energy function terms

directly. We then use these distribution comparisons as inputs

to a machine learning algorithm, allowing us to pinpoint the

intermediate range of destabilization that is most likely to yield a

ts phenotype.

Methods

Our method takes a protein structure and produces as output a

list of proposed amino acid substitutions, ranked by their predicted

probability of producing a ts phenotype. The ‘‘top 5’’ list of

predicted ts mutations is simply the five highest-ranking mutations

from the list of predictions. Our prediction pipeline is as follows:

1. Start with the known structure of a protein of interest, or a

high-quality homology model (as defined below).

2. Find the buried sites in the protein of interest, and create

models for mutations to all other amino acids at those sites

(where buried sites are defined as sites with less than 10 percent

solvent-accessible surface area).

3. For each model generated in step 2, run the Rosetta relax

protocol multiple times to simulate accommodation of the

mutation by the protein. Run the relax protocol on the starting

‘‘wild-typ’’ (wt) structure as well. This results in an ensemble of

putative structures for each mutation and for the wild-type

structure (Fig. 1).

4. Compare the Rosetta scores of each mutation ensemble to the

scores of the wt ensemble to create a set of features that

quantify the effect of each mutation on the protein structure

(Fig. 2.) At each position, add features such as solvent

accessibility and conservation of the native amino acid.

5. Use the features from step 4 to train a classifier to classify the

mutations as temperature-sensitive or non-temperature sensi-

tive using a support vector machine (SVM) [10] trained on

known ts and non-ts mutations (Fig. 3). Validate this classifier

on a leave-out test set.

Solvent Accessibility and Stability
Solvent-accessible surface area (usually abbreviated ACC or

ASA) refers to the surface area of a molecule that is accessible to a

solvent [11]. In our case, accessibility is calculated for each amino

acid in a protein, and expressed as the fraction or percent of the

side chain that is accessible. We restrict our method to sites that

are buried, i.e., those residue positions which are 10% accessible or

less in the native structure, because a) mutations at buried sites are

correlated with reduced stability (decreased DG) and a ts

phenotype, and b) surface mutations might be at an interface,

and therefore cause a ts phenotype by perturbing a specific

interaction of the target protein with another protein.

Training Set Curation
We mined available literature to generate a training set of

known ts and non-ts examples (or ‘‘samples’’ in the parlance of

machine learning). We gathered a set of mutations to worm (C.

elegans), yeast (S. cerevisiae) and fly (D. melanogaster) proteins using a

combination of database and literature searches. Worm mutants

were culled from WormBase [12] v200 and WorTS; yeast mutants

were derived from the Saccharomyces Genome Database,

Textpresso [13] searches, and the Histone Systematic Mutation

Database; and fly mutants were collected from FlyBase [14].

Collecting the training set presented significant challenges:

database annotations for a temperature-sensitive phenotype are

generally not well standardized, and explicit annotations of ‘‘not

temperature-sensitive’’ are essentially non-existent. However, by

screening out lower confidence ts examples and using conservative

heuristics for finding non-ts examples (e.g., selecting mutations not

annotated as temperature-sensitive from papers describing ts

mutations), we compiled a set of roughly 1300 ts and non-ts

mutations. After selecting for samples that a) had known structures

or homology models with at least 70% identity, and b) were at least

90% buried, we arrived at a final training set with 205 samples

(75 ts, 130 non-ts) (Fig. 4). This set of mutations has only one pair

of homologous proteins (worm and yeast actin), with a single TS

site in common between them. Removing this single homologous

site does not significantly effect test-set or training-set performance

by any metric used in this work.

Generating Starting Structures/Homology Modeling
The first formal step in the prediction process is to find a

structure for the protein of interest. The protocol described here

requires an experimental structure or a high quality homology

model as described below. We used MODELLER [15] to make

homology models for the frequent training set cases for which we

had no experimentally determined structure, keeping models with

an identity of 70% or better in the domain of the mutation. After

determining a starting structure of the domain of interest – either

an experimentally established or a homology modeled structure –

we found buried sites (10% or less side chain accessibility) using

Probe [16]. For a typical protein, 30–50% of its sites will meet this

Temperature-Sensitive Protein Design
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cutoff. At each of these buried sites, we generated in silico models

for each of 19 possible mutations. This provides a specific

advantage over most methods for exploring random mutations by

experimental screening, which generate mutations to amino acids

whose codons differ by only one nucleotide from the native amino

acid.

Model Relaxation
The models of mutated proteins generated above are not

physically accurate without further refinement: they may contain

steric clashes or other issues after substitution of one residue for

another in the structure. Each mutated model must be allowed to

accommodate the mutation before being evaluated as a potential

temperature-sensitive mutation. The heart of our method is the

use of Rosetta to simulate accommodation of mutations by

allowing small backbone and side chain moves prior to evaluating

results via the Rosetta energy function. Rosetta is a collection of

protocols for predicting and manipulating protein structures: there

are protocols for de novo structure prediction from sequence,

protein design, and protein-protein docking, among others. Each

of these protocols relies on Rosetta’s energy function, which

evaluates structures by calculating different component energy

terms (see Table 1) that are then combined as a weighted sum into

a final overall score. Some of these terms are based on models of

physical properties such as van der Waals forces (energy terms

fa_atr, fa_rep, and fa_intra_rep) or solvation (energy term fa_sol);

others are derived from the statistics of known proteins, such as the

w and y bond angles and amino acid identity at a given site

(energy terms rama, p_aa_pp). Our method uses the ‘‘fast relax’’

protocol: given a starting structure, it searches for a lower-energy

conformation of the structure, allowing energetically unfavorable

features such as steric clashes to be resolved. Fast relax modifies

Table 1. Rosetta score terms and derived features.

Feature Description

score overall score: weighted sum of other score terms

fa_atr1 Lennard-Jones attractive component

fa_rep Lennard-Jones repulsive component

fa_sol1 Lazaridis-Karplus solvation energy

fa_intra_rep1 LJ repulsive between same-residue atoms

pro_close proline ring closure energy

fa_pair pair term, statistics-based: electrostatics, disulfides

hbond_sr_bb H-bonds: backbone-to-backbone, close in sequence

hbond_lr_bb H-bonds: backbone-to-backbone, distant in sequence

hbond_bb_sc H-bonds: backbone-to-side chain

hbond_sc H-bonds: side chain-to-side chain

dslf_ss_dst disulfide bond S-S distance score

dslf_cs_ang disulfide bond Cb-S-S angles score

dslf_ss_dih disulfide bond S-S dihedral score

dslf_ca_dih disulfide bond Ca-Cb-S-S dihedrals score

rama probability of w, y angles given amino acid identity and secondary structure

omega deviation of v bond dihedral angle from ideal of 180 degrees

fa_dun rotamer self-energy from Dunbrack library

p_aa_pp probability of amino acid given w, y

ref reference state (unfolded) energy

Repack_average_score average of overall score across 3 relax iterations

Repack_stdev_score stdev of overall score across 3 relax iterations

gdtmm1_1 maxsub fraction: maxsub term/# residues, using maxsub rms thresh = 1.0 and distance thresh = 1.0

gdtmm2_2 maxsub fraction: rms thresh = 2.0, distance thresh = 2.0

gdtmm3_3 maxsub fraction: rms thresh = 3.0, distance thresh = 3.0

gdtmm4_3 maxsub fraction: rms thresh = 4.0, distance thresh = 3.0

gdtmm7_4 maxsub fraction: rms thresh = 7.0, distance thresh = 4.0

irms2 RMS from input structure

maxsub1 size of Ca atom subset that a) can be aligned to native within rms threshold = 4.0, and b) are within distance threshold = 7.0 [24]

maxsub2.0 maxsub w/rms thresh = 2.0 and distance thresh = 3.5

rms1 RMS from native

1Removed due to high correlation with other feature(s).
2Always zero.
Rosetta score terms and descriptions. Three features were derived from each Rosetta score term, denoted by suffix Q1, Q2, or Q3, based on mutant distribution quartiles
1–3 as described in Methods and Fig. 5. Superscripts denote feature groups removed from the final training set.
doi:10.1371/journal.pone.0023947.t001
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backbone and side chain angles to find low-energy conformations

using an optimized form of gradient descent (Rosetta minimization

type ‘‘dfpmin_armijo_nonmonotone’’). During one fast relax

protocol run, candidate low-energy conformations are generated

during three iterations of the following algorithm: gradient descent

is performed six times on the current ‘‘best’’ structure while

ramping up the weight of the van der Waals repulsive term. The

‘‘best’’ structure is tracked by a Monte Carlo object that retains

lower-energy structures and accepts higher-energy ones according

to the Metropolis criterion. The best structure from one iteration

of the ramping process becomes the starting structure for the next

set, and the lowest-energy structure seen during the entire protocol

run is returned as the final result.

The relax protocol does not find a single ‘‘best’’ global low-

energy conformation; rather, it reports the lowest-energy confor-

mation seen during the Monte Carlo sampling process, which may

or may not represent the actual global minimum. Therefore we

perform multiple runs of the fast relax protocol to produce an

‘‘ensemble’’ of 50 low-energy conformations derived from the

same starting structure. We then compare the distributions of the

score terms of the native structure ensemble to those of the

mutated structure ensemble, and begin to quantify the effects of

different mutations on protein structure. For example, p_aa_pp

and two of the gdtmm terms are important for correct

classification, while the impact of the ref term is negligible (see

Results for further details).

Training Data Generation
The score terms and score term distributions derived from the

relax runs, while useful in themselves, undergo two transforma-

tions before they can be used in the machine learning algorithm

that ultimately predicts which mutations will result in a ts

phenotype. We applied a metric for comparing wild-type and

mutant score term distributions, and we converted these

measurements into features that are used to train our classifier.

We also added several non-Rosetta features to our training data.

These steps are described below.

Comparing quartiles of score distributions. Comparing

native and mutant distributions of terms derived from Rosetta

relax runs in a way that is applicable across all proteins is

challenging for reasons mentioned earlier: the tremendous range

of protein structure, function, and starting energies, and the

protein-dependent change in DG that may result in a ts

phenotype. To correct for these differences we employ a

quartile-based method of comparing mutant relax score

ensembles to native relax score ensembles, effectively

normalizing for differences in starting structure energy terms.

We chose a quartile-based approach that allows us to compare

distributions without making assumptions about the underlying

distribution of the data (Fig. 5). The procedure calculates quartiles

1–3 in the mutant ensemble, then expresses those values as

percentiles within the native ensemble. Specifically, for a given

mutation ensemble E and set of values S for a single score

component of E, we found the first, second, and third quartiles

(Q1, Q2, and Q3) of S (that is, we sorted the S values from low to

high, then found the values at positions 0.25*| S|, 0.5*| S|, and

0.75*| S|). We then found the percentiles of those Q1, Q2, and

Q3 values within the set of values SWT of the same score term in

the wt ensemble. Percentiles were represented as fractions between

Figure 1. Typical ensembles of structures produced by Rosetta
relax runs for calmodulin. Shown here are structures generated by
Rosetta relax runs that allow protein structures to ‘‘relax’’ to a lower
energy state. The starting structure – one domain of yeast calmodulin –
is shown in green, and the generated structures are shown in gray, with
runs starting from the native structure on the left and runs from a
mutation (F89I) on the right. The mutated site is shown in red in the
mutant structure. The wt ensemble shows less variation in both
difference from the starting structure and difference within the
ensemble than the mutation ensemble. The differences between
wild-type and mutation ensembles are quantified by comparing
distributions of Rosetta score terms.
doi:10.1371/journal.pone.0023947.g001

Figure 2. Effects of a single amino acid mutation. Shown here is a
Rosetta-generated structure for one mutation (F89I) to yeast calmod-
ulin. The relaxed starting structure is shown in transparent gray, the
mutant structure in pink, the native phenylalanine at position 89 in
transparent blue, and the mutation to isoleucine in solid red. The
mutated structure has accommodated the F89I mutation by small
backbone movements, such as the shift in helix position at residue 89,
and reconfiguration of nearby side chains.
doi:10.1371/journal.pone.0023947.g002
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0 and 1, and values lying outside those ranges were clamped to 0

or 1 as appropriate.

As an example, the analysis shown in Fig. 5 of the omega score

term, which measures the deviation of the v bond angle from its

ideal of 1800 (see Table 1) proceeds as follows. The omega score

term values from the mutant ensemble are analyzed, and found to

have values (Q1, Q2, Q3) = (31.35, 34.48, 36.55). These three

values are then located within the wt ensemble, and each is given a

number corresponding to its percentile with respect to the omega

term distribution in the wt ensemble. The result is a set of feature

values (omegaQ1, omegaQ2, omegaQ3) = (0.150, 0.499, 0.672), so

that the omega scores from the individual runs in the ensemble are

now represented by these three percentile values. These values

indicate that the means of the mutant and native distributions are

the same but the first and third quartiles of the mutant are shifted

downward relative to native. Applying the quartile method yielded

three input features for each Rosetta score term in the mutant

ensemble, for a total of 93 features from 31 score terms.

Additional features used in predicting ts mutations. The

final score file contains three types of features: Rosetta score-based

features (Table 1), additional structure-based features (Table 2),

and sequence-based features (Table 3). The Rosetta score term-

based features were described above. The additional structure-

based features include the raw ACC value (percent side chain

accessible, feature ACCP) and three features denoting whether the

native residue participates in an a-helix, a b-sheet, or a loop region

(features ss_H, ss_S, and ss_L).

Sequence-based features were derived using only amino acid

sequences. We first created two categorizations of amino acids into

groups (large hydrophobic, polar, charged, etc.), one with four

categories and another with seven (features aminochange,

aminochange2). From these we derived two features, one for each

group, denoting whether the amino acid at the site in question

remained the same (no mutation; native), was mutated to a residue

in the same category (e.g., one polar residue to another), or

changed categories completely (e.g., polar to charged or small

hydrophobic to large hydrophobic). Finally, we calculated a set of

features using BLAST [17] and PSI-BLAST [18]. For each

protein, we ran one iteration of BLAST on the NCBI non-

redundant protein sequences (nr) database [19], then performed

one iteration of PSI-BLAST to generate the position-specific

scoring matrix (PSSM) for the protein. From the PSSM and other

PSI-BLAST statistics, we derived seven features based on

information content and native and mutated residue log odds

and frequencies (features info_cont, pssm_mut, pssm_nat,

pssm_diff, freq_mut, freq_nat, freq_diff).

The resulting training file contains 109 features: the class label

(ts or non-ts, not used as a predictor or feature) and the 108

numeric features described above. We found significant correla-

tion among some of the features in this set, and pruned them to a

minimal informative set as described below.

Training and Validation
The data generation steps above produce an input file with one

line per run ensemble, where each line has values for each of the

Rosetta score term-based, additional structure-based, and se-

quence-based features described above (conceptually this is

equivalent to a matrix where each row represents a run ensemble

and each column represents one input feature). This file provides

the input for training our machine learning algorithms.

We used the Weka [20] suite of machine learning tools and the

libSVM package for our classifier training and testing. Weka is a

Java-based program that provides command-line and GUI access

to multiple data formats, supervised and unsupervised classifiers,

filters, evaulation metrics, and pre- and post-processing tools.

libSVM is a support vector machine library that provides access to

different SVM implementations in several programming languages

and can be used directly from programs such as Weka and Matlab.

Using Weka and libSVM, we evaluated several different types of

classifiers, concentrating on SVMs and variations of the C4.5 [21]

tree-based classifier before choosing the support vector machine as

the most accurate and stable for this task.

Support vector machines describe a family of methods for

performing statistical inference from data, generally regression or

classification [22,23]. A two-class SVM classifier assigns labels

based on the sign of the decision function

f (�xx)~
X

i

aiyiK �xxi,�xxð Þzb ð1Þ

where �xx is the sample to be classified, �xxi are the training samples,

yi[f{1,1g are the class labels for each xi, ai are weights assigned

to each sample during training, K is the kernel function, and b is a

bias term. For a linear SVM, the kernel function is the dot product

K �uu,�vvð Þ~�uu:�vv, and the decision function can be written as

f (�xx)~�ww:�xxzb, �ww~
X

i

aiyi�xxi ð2Þ

Figure 3. Sites of predicted temperature-sensitive mutations.
The crystal structure of one domain of yeast calmodulin is shown in
cartoon representation in green. Residues in the hydrophobic core are
shown as green sticks, and hydrophobic core residues with predicted ts
mutations are shown in purple. Of the top 20 predictions on
calmodulin, 10 each from SVM-LIN and SVM-RBF, 15 mutations occur
at these six sites.
doi:10.1371/journal.pone.0023947.g003
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If the training data are 2-dimensional vectors (i.e., points in the

plane), �ww and b are the normal vector and intercept describing the

line that separates the positive and negative training samples with

the largest possible margin between the two classes (a maximum

margin hyperplane). �ww is formed by a weighted sum of the training

samples; since most of the ai are set to zero during training, this

sum is over a small subset of samples referred to as the support

vectors of the classifier. Data that are not linearly separable in the

input space are accommodated in two ways: First, per-sample

‘‘slack’’ terms are introduced that penalize samples that fall on the

wrong side of the decision boundary; a user-specified ‘‘complexity’’

parameter C controls the trade-off between penalizing incorrect

classifications and maximizing the margin between classes.

Second, kernel functions other than the linear kernel can be used

to map the training samples into a higher-dimensional space in

which they may be linearly separable. An explicit mapping w :ð Þ
corresponds to a kernel function of the form K �uu,�vvð Þ~w �uuð Þ:w �vvð Þ.
However, kernels that satisfy Mercer’s condition can compute this

quantity directly from vectors �xx and �xxi in the original input space

without explicitly computing the transform w :ð Þ, allowing efficient

calculation of mappings to higher-dimensional (or even infinite-

dimensional) spaces. Common kernels are the homogeneous

polynomial kernel K �uu,�vvð Þ~ �uu:�vvð Þd and the radial basis function

(RBF) kernel K �uu,�vvð Þ~e{cE�uu{�vvE2
. In this work, we employ linear

and RBF kernels.

Classifier Selection and Evaluation. We tested two types

of support vector machine: SVM-LIN, a straightforward SVM

using a linear kernel, and SVM-RBF, which uses a (non-linear)

radial basis function kernel. Here we describe results from SVM-

LIN, SVM-RBF, and an SVM-RBF variant called SVM-seq.

SVM-LIN is simpler, using a linear kernel in the original input

space, and allows straightforward determination from a trained

classifier of the features most important for classification. SVM-

RBF uses an RBF kernel that results in non-linear decision

boundaries that more exactly find the intermediate ts range

between wt and lethal mutation; this makes it more accurate but

less robust to small changes in the training set. SVM-seq uses the

same type of radial basis function as SVM-RBF, but is given a

distinct name because it uses a subset of the full input set that

excludes all structure-based features. The testing of both linear and

non-linear classifiers here is intended to provide a mix of

complexity, interpretability, and accuracy.

We used a variant of cross-validation (CV) to evaluate the

accuracy of our SVM-LIN, SMV-RBF, and SVM-seq classifiers.

Cross-validation allows the use of a single set of samples as both

training and test set by making multiple partitions of the starting

set into training and testing sets. For example, 10-fold CV makes

10 splits of the starting set into 90% training, 10% testing, in such

a way that the ten 10% splits are disjoint and their union is the

entire data set. It then trains and tests on each 90/10 split in turn

and reports the aggregate statistics over all 10 splits. In this way it

uses the entire starting set for training and testing without ever

testing on a sample that was also used for training. Performing 10-

fold CV 10 times (10610-fold CV) with different random seeds is

more robust: since the overall set of samples is partitioned into

different sets of 90/10 splits each time, the results will vary

allowing the calculation of a mean and variance on the aggregate

statistics. Finding optimal SVM hyper-parameter values (see

below) requires a more stringent procedure: we make five 80/20

splits of the starting set, ensuring again that the 20% splits are

disjoint and cover the entire data set. We then set each 20% split

aside as a ‘‘leave-out’’ set, perform 10-fold 106CV on the 80% to

evaluate hyper-parameter values, then report results on the leave-

Figure 4. Training set statistics. Counts are shown for the total number of proteins (#prot), positions (#pos), and non-ts and ts samples,
separated by species. The training set comprises a total of 205 mutations (75 ts, 130 non-ts) to 177 sites in 66 proteins. Yeast has the largest number
of samples, and the most balanced distribution of ts and non-ts samples; worm has only 5 ts samples, and fly lacks non-ts samples. The difference
between the number of proteins and the number of positions for yeast is due to the presence of the histone complex data, which comprise many
mutations to different positions within the same structure.
doi:10.1371/journal.pone.0023947.g004
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out set. This ensures that accuracy is never calculated on samples

that were used for finding hyper-parameters. We refer to this as

‘‘56 leave-out CV’’.

Parameter and Feature Selection. Given the above means

of training and evaluating our classifiers, we took several steps to

improve their performance. Both SVM implementations have

hyper-parameters that can be tuned to achieve optimal predictive

accuracy. SVM-LIN and SVM-RBF have a complexity parameter

C that specifies the penalty for non-separable samples. Higher

values of C cause the training process to better fit the training

samples: for linear SVM-LIN, this increases the weight on the

samples closest to the decision boundary between the classes; for

SVM-RBF, this results in a more complex decision boundary

between ts and non-ts classes. C must be high enough to

distinguish between the two classes, but not so high that the

classifier learns the noise and outliers in the training set and

therefore does not generalize well to novel samples. SVM-RBF

also has a c parameter that affects the area of influence of the

radial basis functions. As with the complexity parameter, higher

values lead to more convoluted decision boundaries by making

basis function influence more local.

We performed a simple search in parameter space, using 56
leave-out CV to evaluate different hyper-parameter values at set

intervals in log-transformed parameter space (e.g.,

log2C[f2:0,2:5,3:0, . . .g). This gave a distribution of hyper-

parameter values across the leave-out CV sets. What we found

was that the choice of samples in the training and testing sets made

much more of a difference than the parameter values, and that

there was generally a wide range of parameter values with roughly

equivalent performance (Fig. 6). Our final parameter values were

the median values across the five leave-out CV sets. This same

method also yielded our final precision figures as described in

Results.

We removed features that were either confounding or

redundant from the training set to improve both performance

and interpretablity. We examined all strongly correlated ( rj jw0:5)

feature pairs, and tested the effect of removing each of these

features one at a time with five variants of our SVM classifiers

using 10610-fold CV. Features derived from a common Rosetta

score term (e.g., omegaQ1, omegaQ2, and omegaQ3) were

included or removed as a group. We identified three sets of

Figure 5. Quartile method for comparing distributions of Rosetta score terms. Mutant ensemble quartiles 1–3 were calculated for the
mutant ensemble distribution (top) of the omega score term, which measures deviation of the v bond angle from its ideal of 1800. Q1–Q3 are
indicated by red lines, with the corresponding values above and percentiles below. The mutant Q1–Q3 values were then mapped to locations in the
wild type (wt) ensemble distribution (bottom). Q1–Q3 of the mutant distribution are again indicated by red lines, with their percentiles relative to the
wt distribution shown below. Wild type ensemble Q1–Q3 are shown in blue for reference.
doi:10.1371/journal.pone.0023947.g005

Table 2. Non-Rosetta structure-based features.

Feature Description

ACCP solvent-accessible surface area (ACC)

ss_H3 secondary structure: a-helix

ss_S3 secondary structure: b-sheet

ss_L3 secondary structure: loop region

3Worsened performance.
Structure-based features not based on Rosetta score terms. Superscripts denote
features removed from the final training set.
doi:10.1371/journal.pone.0023947.t002
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redundant Rosetta-derived features, listed by Rosetta term:

{ fa_dun, fa_atr, fa_sol, fa_intra_rep }, { gdtmm7_4, maxsub },

and { gdtmm2_2, rms }. After testing as described above, we kept

the features from the first term listed in each group and removed

the rest. We also identified four pairs of correlated sequence-based

features: { aminochange2, aminochange }, { pssm_mut, freq_mut },

{ pssm_nat, freq_nat }, { pssm_diff, freq_diff }. We then tested all

remaining non-Rosetta derived features to evaluate how their

inclusion affected performance using the same procedure as above.

We found that the following features actually degraded perfor-

mance, and removed them: ss_H, ss_S, and ss_L. Finally, we

removed the irms set of features, as irms term values were always

zero. In all, 26 features were removed, giving a final training set

consisting of 86 features.

Detailed Protocol
The following step-by-step instructions will reproduce our ts

prediction protocol on any computer with a UNIX command line.

These instructions follow the protocol capture, which is available

as part of the Rosetta 3.3 protein modeling suite available at

http://www.rosettacommons.org. The following must be installed:

Rosetta release 3.0, Weka 3.6 or better, libSVM 2.8.9 or better,

Probe 2.12 or better, Python 2.6, PyMOL 1.2 or better, NCBI

BLAST+ tools 2.2.22 or better with the ‘‘nr’’ database, sed, and

awk. We also assume there is a starting model in Protein Databank

format. In the following example, the protein is YBR109C (yeast

calmodulin), and the file is YBR109C.pdb, a homology model

based on 1LKJ (NMR structure of yeast apo calmodulin). All

commands should be executed in the top-level directory of the

protocol capture archive. All scripts referenced reside in the

scripts/subdirectory of the capture.

The ts prediction protocol is split into three stages: generating

scripts for the Rosetta runs, performing the Rosetta runs, and

making predictions based on the run output. This separation is

made because these runs are typically performed on clusters:

commands for submitting jobs to clusters vary depending on the

cluster software and configuration, and runs may be submitted

from a different machine than that used for the generation and

prediction stages. We will address each of these three stages in

turn.

Scripts are generated using the generate-scripts.sh

command as shown below. The -protein argument specifies

the name of the protein, and must be the same as the name of the

starting structure file without the .pdb extension. -species is

used in larger ts prediction runs that involve Rosetta runs over

many proteins, such as cross-validation on the training set, and will

show up in the prediction results. -cutoff gives the threshold for

selecting positions to mutate in the starting structure (typically this

is 10, but we use 0 to reduce the number of run scripts generated

in this example). mini_bin and mini_db give the full paths of the

Rosetta binary and database directories, respectively, on the

machine where the Rosetta runs will be executed.

scripts/generate-scripts.sh -protein YBR109C -spe-

cies Scer -cutoff 0 -mini_bin

,/rosetta-3.0/bin -mini_db /rosetta-3.0/roset-

ta3_database

The output of generate-scripts.sh is a collection of scripts

to perform Rosetta relax runs: one script for the native structure,

and one for each mutation at each position. The command above,

with an ACC cutoff of 0, finds four sites meeting the ACC

Table 3. Sequence-based features.

aminochange1 four-category change in amino acid: 0 = same amino acid, 1 = different amino acid in same category, 2 = different category

aminochange2 seven-category change in amino acid

pssm_mut log-likelihood of mutated amino acid from position-sensitive scoring matrix

pssm_nat log-likelihood of native amino acid from position-sensitive scoring matrix

pssm_diff difference in log-likelihood of mutated and native amino acid

freq_mut1 frequency of mutated amino acid in multiple sequence alignment

freq_nat1 frequency of native amino acid in multiple sequence alignment

freq_diff1 difference in frequency of mutated and native amino acid

info_cont position information content from PSI-BLAST

1Removed due to high correlation with other feature(s).
2Worsened performance.
Sequence-based features from BLAST, PSI-BLAST, or other analysis. Superscripts denote features removed from the final training set.
doi:10.1371/journal.pone.0023947.t003

Figure 6. SVM-RBF parameter space. SVM-RBF precision on the ts
class is shown as a function of C and c parameters. Values shown are
the mean across the five leave-out CV runs, and range from 0.5822 to
0.788. Blue circles indicate the parameter values yielding the highest ts
precision for each of the five leave-out CV runs. The final median C and
c values are indicated by the black cross. While the optimum parameter
values across the five leave-out CV runs differ, they are all located along
the ‘‘valley’’ of high precision that is visible running from upper right to
lower left, indicating that multiple combinations of C and c values lead
to classifiers having similarly good performance.
doi:10.1371/journal.pone.0023947.g006
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threshold, and generates 77 scripts: one for the native structure

and one for each of the 19 mutations at each of the four sites. The

native structure script will be called YBR109C-WT.sh, and the

mutatued structure scripts follow the convention YBR109C-

aNNNb.sh, where a is the native residue identity, NNN is the

residue position, and b is the mutated residue identity. When

executed, these scripts will perform the relax runs and create the

score files required to generate the input files for classification.

These runs will typically be performed on a cluster. Commands for

submitting jobs on clusters vary depending on the cluster

management software installed; the following command line is

appropriate submitting from a Bash shell to a cluster running

TORQUE:

for a in *.sh; do qsub -d $(pwd) $a; done

Each run calls two different Rosetta protocols, relax and score.

Sample command lines for the mutation F140A (mutating PHE at

position 140 to ALA) are shown below. The first command

generates an ensemble of 50 relax runs, and the second re-scores

the structures to generate additional score terms (such as the

gdtmm series of terms):

,/rosetta-3.0/bin/relax.linuxgccrelease -data-

base /rosetta-3.0/rosetta3_database

-s YBR109C-F140A.pdb -native YBR109C.pdb -nstruct

50 -relax:fast

-out:file:scorefile YBR109C-F140A.sc -out:pdb_gz

,/rosetta-3.0/bin/score.linuxgccrelease -data-

base /rosetta-3.0/rosetta3_database

-s YBR109C-F140A_????.pdb.gz -in:file:native

YBR109C.pdb -in:file:fullatom

-out:file:scorefile YBR109C-F140Arescore.sc

The rosetta3_database directory is part of the Rosetta 3.0

install. The relax run input file YBR109C-F140A.pdb is generated

along with the Rosetta run scripts, and follows the same naming

convention for mutated residues. The relax run output file

YBR109C-F140A.sc and the score run output file YBR109C-

F140Arescore.sc are the inputs for the final prediction stage.

Once the runs are complete, predict-ts.sh is used to analyze

the output and predict which mutations will have a temperature-

sensitive phenotype. This script merges information from the relax

and score run output files, produces an input file for the classifiers,

and performs classification on the input samples. Again, the -

protein argument is used to specify the protein name:

scripts/predict-ts.sh -protein YBR109C

The output of the prediction step will be two text files: for this

example, these files are named YBR109C-svmlin.txt and

YBR109C-svmrbf.txt. These files show the predictions made

by SVM-LIN and SVM-RBF, respectively, with each line giving

the absolute rank, confidence, and mutation. The mutation field

shows the protein name, the native residue identity (1-character

code) and position, the mutation made (3-character code), and the

species abbreviation. Below are the top five predictions made by

SVM-LIN on YBR109C:

rank conf id

1 0.839 YBR109C-F140_GLY_Scer

2 0.831 YBR109C-F140_ASP_Scer

3 0.783 YBR109C-F140_CYS_Scer

4 0.776 YBR109C-F140_PRO_Scer

5 0.769 YBR109C-F140_THR_Scer

Results

Our primary means of evaluating our method was examining

the ts predictions from our 56 leave-out CV runs. We evaluated

all methods according to four metrics: precision, significance,

correlation, and area under the ROC curve (AUROC).

Our 56 leave-out CV method, in addition to finding optimal

SVM hyper-parameters, yielded a conservative estimate for ts

prediction precision. By tallying the number of correct and

incorrect predictions on each leave-out set, we calculated precision

across the entire set. Precision for both classifiers is significantly

better than random, with SVM-RBF slightly outperforming SVM-

LIN (precision of 0.795 and 0.745, respectively).

We also looked at per-species and multi-species effects. Breaking

down the above results by species showed lower precision for C.

elegans, where we only had 5 ts samples, and perfect prediction for

D. melanogaster, which entirely lacks non-ts samples. Accuracy for

both C. elegans and S. cerevisiae was significantly lower when training

only on that species’ samples as opposed to the full multi-species

training set, with C. elegans precision dropping to nearly zero using

single-species training. While some of the improvement from

multi-species training is certainly due to the increase in training set

size in the multi-species setting, the marked improvement in C.

elegans performance strongly suggests that our technique is also

extracting species-independent rules. Mixed-species training

appears to significantly increase the range of proteins for which

we can make accurate predictions.

To further quantify our method’s performance, we developed a

heuristic to estimate p-values for each method and species. Again,

C. elegans had the weakest results, due again to the small number

of ts samples; and fly predictions alone were not significant as

there were no non-ts samples. However, yeast prediction was

significantly better than random, and overall prediction was at

pv10{6.

An additional measure of our improvement over random is

given by classifier performance curves: the receiver operating

characteristic (ROC) curve and the precision-recall (PR) curve, as

well as the area under each (AUC and AUPR, respectively) (Fig. 7).

The ROC curve is a standard method in machine learning to

visualize the performance of a classifier that relies on the

confidence or estimated probability that both SVM-LIN and

SVM-RBF assign to each prediction. PR curves are similar to

ROC curves, but impose a higher penalty for highly-ranked

incorrect predictions. The ROC curve shows the relationship

between the rate of correct predictions and the rate of incorrect

predictions, and the area under the curve is equivalent to the

probability that a randomly chosen ts sample will be ranked higher

that a randomly chosen non-ts sample. The steep portion at the

lower left of the ROC curve shows that our top-ranked predictions

are particularly accurate, which is ideal since our goal is to use the

top few (generally 5) predictions in our ranked list. While SVM-seq

performance in the top few predictions is similar to that of SVM-

LIN and SVM-RBF, SVM-seq performance degrades rapidly for

both ROC and PR curves, as reflected by the areas under the

curves.

We also analyzed the accuracy of our rankings by using the

point-biserial correlation to calculate how well the classifier

confidence scores correlated with actual correctness of prediction.

If X is a vector representing the correctness of each prediction

(0 = incorrect, 1 = correct), Y is the corresponding equal-length

vector of confidences (predicted probability of ts) for each

prediction, and MS is the mean value of Y for incorrect (S~0)

and correct (S~1) predictions, then the point-biserial correlation

is defined as rXY ~
M1{M0

sY

sX . Both methods show reasonable

correlation, indicating that correct predictions are more likely to

be ranked higher, increasing the likelihood of finding correct

predictions at the top of the list. SVM-RBF, despite having higher
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precision, has lower correlation, which may indicate some over-

fitting.

We next examined the highest-weighted features of SVM-LIN –

in other words, those that were most important in determining the

label assigned to each sample. For each of the five cross-validation

leave-out sets, we examined the weights assigned to the input

features, and examined the top features ranked by absolute weight

value. Top features varied somewhat across the CV leave-out sets;

averaging rankings of features across leave-out sets gave to

following ordered list of top five features: aminochange2,

Repack_stdev_scoreQ2, gdtmm4_3Q2, p_aa_ppQ3, and

gdtmm7_4 (see Tables 1 and 3). The Qn at the end of the feature

name denotes the feature derived from the nth quartile

comparison, except for aminochange2 which is not derived from

a Rosetta score term and gdtmm7_4 where Q2 and Q3 appeared

alternately. Feature aminochange2, which abstracts the actual

change in amino acid to a change in amino acid class (e.g.,

hydrophobic to polar; see Table 3), was first in all splits.

Repack_stdev_scoreQ2 is always in the top five: the Rosetta term

Repack_stdev_score tracks how much a structure varies through-

out the relax run, and Q2 denotes the second quartile comparison

feature generated from that term. p_aa_ppQ3, which gives the

probability of an amino acid given its observed phi and psi angles,

appeared the top five in four splits, and the gdtmm7_4Q2 and

gdtmm7_4Q3 features, which track overall movement of protein

atoms from the positions in the starting structure, appeared the top

five in multiple splits. The signs of the weights are the same in all

cases, meaning that each feature listed above always favors the

same label (ts or non-ts). We can use these top-ranked features and

their weights to describe the area of intermediate destabilization

between neutral and loss-of-function mutations that is implicit in

SVM-LIN: changes in amino acid class are strongly favored, and

some movement of atoms from their native position and an

increase in overall energy are also favored. However, structures

that do not settle on a stable conformation during the relax process

and structures with unlikely local structure (p_aa_pp) are strongly

disfavored, and structures with significant movement of atoms

from native are less strongly unfavorable.

Previous predictive methods have predicted ts mutations from

sequence alone. Since we added structure-based features at some

computational expense, we wanted to quantify the improvement

achieved by adding these features. We compared the performance

of our SVM-LIN and SVM-RBF methods to a method we call

SVM-seq, which is a variant of SVM-RBF that has been trained

(including tuning of hyper-parameters) without any structure-

based features. While precision and correlation compare favor-

ably, the SVM-seq predictions lack significance. This is caused by

a high false negative rate: many ts samples are incorrectly labeled

non-ts, and few samples are predicted to be ts (roughly 20% of the

number predicted as ts by SVM-LIN and SVM-RBF). In addition

to the reduced significance caused by the small number of ts

predictions, SVM-seq is also considerably less stable in the

predictions that it makes: precision varies considerably among

the five CV leave-out sets, from 0% to 100%, with one leave-out

set producing no ts predictions at all. This poor behavior on the

test sets across the CV leave-out sets may reflect consistent over-

fitting of the training data by SVM-seq.

Discussion

We have developed and tested a computational method for

predicting temperature-sensitive mutations from protein structure,

presenting results using the two support vector machine classifiers

SVM-LIN and SVM-RBF. While both classifiers perform well,

SVM-LIN may be better for the particular task of predicting a

very small number of highly accurate mutations. This opinion is

based primarily on examination of the point-biserial correlations:

while SVM-RBF is slightly more accurate overall, its lower point-

biserial correlation suggests possible over-fitting of the training

data. Though SVM-RBF performs better than SVM-LIN at the

very top of the prediction list, both are strong, and SVM-LIN is

more likely to generalize in a stable fashion to new proteins or

organisms. Overall, this suggests that SVM-LIN is more

appropriate for the ‘‘top 5’’ predictive task described here, though

SVM-RBF may have a higher yield when making a larger number

of predictions. The interpretability of SVM-LIN in terms of

features important for classification is also quite attractive. SVM-

RBF may become superior in the long run as training data become

more plentiful and reliable.

As described in Methods, our pipeline uses the Rosetta ‘‘fast

relax’’ protocol for structure prediction after amino acid

substitution. This protocol can be slow, as it involves Monte

Carlo search of the entire space of backbone and side chain angles.

A recent investigation of the correlation of experimentally

determined and Rosetta-generated DDG values after single-residue

substitutions [9] tested 20 different combinations of strategies for

searching conformational space and resolution of the Rosetta

energy function. Each of these protocols was assessed using its

correlation to the experimentally determined values and the effect

of the mutation (stabilizing, neutral, or destabilizing). Many

strategies that are considerably less time-consuming than the full

Monte Carlo ensemble generation had equally good correlation,

such as simple all-residue repacking with a soft repulsive van der

Waals term. In the near future we plan to evaluate some of these

protocols in place of the current ‘‘fast relax’’ protocol in our

method to see if equivalent results can be generated using

significantly less computing time.

We also plan to make our ts prediction pipeline available as a

public web resource. Our ts prediction resource will make it

possible for users to upload the structure of a protein of interest

(obtained experimentally or via homology modeling) and choose

several evaluation options such as solvent-accessible surface area

Figure 7. Classifier Performance. The Receiver-operating charac-
teristic (ROC) curve is shown for SVM-LIN, SVM-RBF, and SVM-seq (RBF
classifier trained only on sequence data). ROC curves for each classifier
showing false positive rate (fpr) and true positive rate (tpr), with the
reference line for random classification is shown in gray. The difference
between each classifier and the reference line shows the improvement
over random of our method. The steep slope at the lower left of the
classifier curves indicates that the highest-ranked predictions are most
likely to be accurate for all three classifiers. Area under curve: SVM-
LIN = 0.713, SVM-RBF = 0.734, SVM-seq = 0.563.
doi:10.1371/journal.pone.0023947.g007
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cutoff. Prediction jobs will be sent to a small cluster for

asynchronous evaluation. On completion of a job, the user will

be notified, and results will be made available in the form of a

ranked list of ts predictions. Our hope is that the availability of

such a resource will contribute significantly to the discovery of ts

mutations, as well as adding size and stability to our ts prediction

training set.
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