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Abstract

We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid
sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be
potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer’s disease, major depression,
radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the
presence of 10 mM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups
with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and
weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of
various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski’s Rule-of-Five than compounds without
effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the
present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary
classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally
inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans.
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Introduction

Acid sphingomyelinase (ASM, EC 3.1.4.12) is a lysosomal

glycoprotein that catalyses the hydrolysis of sphingomyelin into

ceramide and phosphorylcholine. Fusion of secretory lysosomes

with the cell surface and translocation of lysosomal ASM onto the

outer leaflet of the cell membrane plays an important role during

stress response [1]. CD95 ligands and cytokines such as tumor

necrosis factor-a, interleukin-1 and interferon-c but also other

stimuli including oxidative stress, reactive oxygen and nitrogen

species, ionizing radiation, UV-C radiation, heat shock and other

agents of stress, injury or infections by HIV or bacteria have been

shown to stimulate ceramide production [2–7], assumed to be in

part due to increased ASM activity. Ceramide, in turn, leads to

membrane reorganization and downstream signalling that results

in cell activation, very often cell stress or apoptosis. In addition to

ASM, at least three other sphingomyelinases have been described

in mammalian cells that vary in their pH optimum and cofactor

dependency. Although these enzymes and an existing de novo

synthesis pathway are alternative mechanisms for ceramide

generation, activation of ASM itself has been proven to be critical

for some cellular responses, such as apoptosis induced by reactive

oxygen and nitrogen species [3], chemotherapy drugs such as

cisplatin [8], bacteria [5], radiation [9] and CD95 [10].

Furthermore, in contrast to other sphingomyelinases, ASM

activity is tightly regulated [11].

Ceramide is further metabolized to sphingosine and sphingo-

sine-1-phosphate by acid ceramidase (AC, EC 3.5.1.23) and

sphingosine kinases. While the biological function of sphingosine is

largely unknown, sphingosine-1-phosphate has been shown to be

involved in cellular differentiation, proliferation and cell migration

[12–16]. This dynamic balance between ceramide and sphingo-

sine-1-phosphate is referred to as the ‘‘ceramide/sphingosine-1-

phosphate rheostat’’ [17–19], maintaining the balance between

growth and cell death.

ASM is best known for its involvement in Niemann-Pick disease,

a lysosomal storage disease due to an inherited enzyme deficiency

[20]. Pathological reduction of ASM activity may be caused by

mutations in the ASM gene itself. The severity of Niemann-Pick

disease correlates with the decrease of ASM activity [21].

However, studies using cells derived from Niemann-Pick disease

patients or from ASM knock-out mice revealed that the deficiency

of this enzyme might also have beneficial consequences, including

anti-apoptotic and cytoprotective effcts. In fact, there is increasing
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evidence that ASM activation and ceramide accumulation play a

central role in the development of common human diseases

(reviewed in Smith & Schuchman [22]). Reports have been

published of aberrant activation of ASM and/or altered levels of

ceramide, for instance, for several psychiatric and neurological

disorders such as major depression [23–25], morphine antinoci-

ceptive tolerance [26], Alzheimer’s disease [27–29], spinal cord

injury [30] and seizure disorder [31].

Therefore, ASM inhibitors hold promise for a number of new

clinical therapies and might be used to prevent apoptosis and other

negative effects occurring in different disease states such as in

ischemia, stroke, Alzheimer’s dementia, Parkinson’s disease,

Huntington’s chorea, and of certain infections, in endotoxemia,

and in atherosclerosis, and for the therapy of major depressive

disorder [23,32–39]. Currently, only few examples of inhibitors

directly interacting with ASM are known. These substances

include physiological inhibitors of ASM such as phosphatidyl-myo-

inositol-3,4,5-trisphosphate [40], L-a-phosphatidyl-D-myo-inositol-

3,5-bisphosphate [41] and non-natural direct inhibitors of ASM,

such as SMA-7 [42] and AD2765 [43]. A high throughput

screening for direct ASM inhibitors was unsuccessful in finding

lead structures [44]. The rational development of compounds that

block ASM by direct interaction with the enzyme is difficult, since

the crystal structure of the enzyme is not yet available. On the

other hand, it has been known since the 1970s that some weak

organic bases have the potential to reduce the activity of ASM

[23,45–47]. It has been suggested that ASM is bound to intra-

lysosomal membranes, and thereby protected against its own

proteolytic inactivation. Weak bases, such as desipramine 168 (for

numbering of compounds see Table S1), strongly accumulate in

acidic intracellular compartments like lysosomes [48,49], a

phenomenon called ‘acid trapping’ and in the case of lysosomes

‘lysosomotropism’. This accumulation of desipramine 168 results

in detachment of the ASM from the inner lysosomal membrane

[50] and its subsequent inactivation, probably by proteolytic

degradation [51]. Weak bases, therefore, do not directly inhibit

ASM, but result in a functional inhibition of ASM. We have thus

proposed the acronym FIASMA for Functional Inhibitor of Acid

SphingoMyelinAse [39]. According to this model, functional

inhibition of ASM requires high lysosomal concentrations of a

weak basic drug.

Previously, we have shown that functional inhibition of ASM is

related to high pKa- and high logP-values and have characterized

several new FIASMAs, including the antidepressant drugs

doxepine 63, fluoxetine 104, maprotilin 109, nortriptyline 114,

paroxetine 118 and sertraline 124 [52]. The aims of the present

study were (1) to identify more FIASMAs, (2) to further improve

the in silico prediction of functional ASM inhibition by developing

compact and easily-interpretable models with high internal

consistency, (3) to investigate the relationship between permeation

of the blood-brain barrier and functional inhibition of ASM and

(4) to study the distribution of FIASMAs across different classes of

drugs licensed for medical use in humans.

Using the present knowledge about lysosomal accumulation and

drug-membrane interaction as prerequisite to functional inhibition

of ASM, we developed the following hypotheses: FIASMAs (1)

have shared structural and physicochemical properties allowing

high lysosomal drug concentrations, compatible with partitioning

into the inner surface of the lysosomal membrane and alteration of

electrostatic membrane properties. We hypothesize that FIASMAs

(2) will be found in different therapeutic drug classes and (3) belong

to diverse structural drug classes. To reach the lysosome, functional

inhibition of ASM requires penetration of drugs through biological

membranes, comparable to substances crossing the blood-brain

barrier (BBB). We therefore hypothesize (4) that FIASMAs also

penetrate the BBB and (5) are therefore overrepresented in drugs

active in the central nervous system (CNS).

Results and Discussion

Identification of novel FIASMAs
We have previously reported functional inhibition of ASM in

cell culture for a wide range of compounds at a concentration of

10 mM for 30 min incubation time [52], based on initial

experiments with fluoxetine 104. Using a cell-based simulation

model, we have meanwhile realized that very high logP- or pKa-

values or the presence of two basic nitrogen atoms leads to slow

accumulation kinetics [49]. Therefore, we have also tested longer

incubation times for such compounds (Table S1) and found lower

residual activities of ASM than previously reported for alverine 40,

astemizole 43, bepridile 46, camylofine 50, cloperastine 56,

dicyclomine 98, drofenine 64, mebeverine 110, mibefradile 74,

pimozide 81 and thioridazine 32 (see Table S1). Several of these

substances that were measured [52] as not functionally inhibiting

ASM (residual activity of ASM above 50% of control value) are

actually FIASMAs when prolonged incubation times are used

(alverine 40, dicyclomine 98, mebeverine 110, mibefradile 74,

pimozide 81). Our results demonstrate that it is important to

consider slow lysosomal accumulation kinetics in compounds with

very high pKa- and/or very high logP-values and in compounds

with two basic nitrogen atoms. In addition to identifying five more

of the previously-tested 101 compounds [52] as FIASMAs taking

their slower lysosomal accumulation into account (see Table S1:

alverine 40, dicyclomine 98, mebeverine 110, mibefradile 74,

pimozide 81), we have identified 22 other previously unknown

FIASMAs out of our new set of 175 small drug-like compounds

(residual activity of ASM of #50%: aprindine 141, biperidene

149, carvedilol 160, cepharantine 161, clemastine 170, clofazi-

mine 172, conessine 175, desloratadine 182, dimebon 189,

emetine 196, flupenthixol 208, fluphenazine 209, fluvoxamine

210, hydroxyzin 219, loperamide 227, mebhydroline 229,

perphenazine 249, profenamine 258, sertindole 277, solasodine

278, tomatidine 291, zolantidine 276). Four of them (dimebon

189: residual ASM activity 44.1%; fluvoxamine 192: residual

ASM activity 37.4%; hydroxyzin 219: residual ASM activity

43.0%; mebhydroline 207: residual ASM activity 41.9%) were

classified as FIASMAs albeit with less reliability due to

experimental error. To the best of our knowledge, functional

inhibition of ASM has not previously been described for any of the

compounds presented here. Looking at the whole group of

FIASMAs which we experimentally investigated (n = 72, Kornhu-

ber et al. 2008 [52] and Table 1), we noticed some general

characteristics. These compounds had moderate to high logP-

values (ACD10; mean 6 SD: 5.4561.13; range: 2.03–8.89) and

possessed at least one basic nitrogen atom responsible for

moderate to high pKa-values (ACD10; mean 6 SD: 9.0461.18;

range: 4.81–11.20). This qualifies all FIASMAs as cationic

amphiphilic drugs. Most FIASMAs had a molecular weight below

500 (ACD10; mean 6 SD: 366.3685.1; range: 263.4–645.3).

Functional inhibition of ASM is bimodally distributed
Analysis of the whole set of compounds (n = 276), reveals a

bimodal distribution of drugs with respect to functional inhibition

of ASM (Figure 1) and a significant deviation from the normal

distribution (Kolmogoroff-Smirnov: p,0.001), with the lowest

occurrence of FIASMAs at a residual activity between 50 and

60%. Both subpeaks of the bimodal distribution did not

significantly deviate from a normal distribution. The reason for

Novel FIASMAs

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23852



the bimodal distribution may be the inevitable presence of

physicochemical properties that are non-linearly related to

lysosomal drug accumulation and that work in a synergistic way.

Since our experimentally-tested compounds were not randomly

chosen, a selection bias might also contribute to the bimodal

distribution.

Random forest learners provide a good binary prediction
of functional inhibition of ASM

We divided the dataset into two groups – active compounds

(#50% residual ASM activity, class 1, n = 72) and inactive

compounds (.50% residual ASM activity, class 0, n = 204).

Usually, dichotomizing continuous variables results in a number of

statistical problems, including a loss of statistical power to detect a

relation between a variable and outcome [53–55]. In our data,

dichotomization is justified by the pronounced bimodal distribu-

tion. We performed a qualitative prediction of functional inhibition of

ASM using the whole set and random forest learners. The

prediction accuracy in the set increased with the number of

attributes used. A high precision of prediction was reached with

n = 4 attributes, which is only marginally improved by adding a

fifth descriptor (Table 2). The successful 4-descriptor combination

included logPACD10_logWeight, pKa1_plus_pKa2ACD10mod,

pKaMA_ACD10 and si_Weight_vsa_pol. These four descriptors

were only moderately correlated to each other (Spearman rank

correlation r2 between 20.598 and 0.314, n = 276) and thus

provide complementary information. The descriptors logP and

pKa have been discussed most frequently in the context of

lysosomal accumulation [48,49]. Intermediate to high logP values

have previously been identified as an important precondition for

lysosomal accumulation. However, logPACD10_logWeight

( = logPACD102K logMW) is more closely related to the

diffusion of small molecules through lipid phases than logP itself

and has been used to predict BBB permeation [56,57]. The

descriptor pKa1_plus_pKa2ACD10mod represents the sum of the

pKa-values of the most basic and the second-most basic nitrogen

atoms and thus takes into account the impact of a second basic

functional group. The descriptor pKaMA_ACD10 represents the

pKa-value of the most acidic group and thus guarantees that acids

are correctly classified as being inactive. vsa_pol is an approxi-

mation to the sum of van-der-Waals surface areas of polar atoms

and has been described to predict BBB permeability [58]. For this

descriptor, both hydrogen bond donors and acceptors count as

polar atoms. The size-intensive form of the descriptor was chosen

here. The four molecular descriptors thus represent electrostatic

(pKa1_plus_pKa2ACD10mod, pKaMA_ACD10), hydrophobic

(logPACD10_logWeight), polar (vsa_pol) and steric (weight)

properties of the molecules. No further steric descriptors were

chosen into the model. The reason for this is probably the low

variance of steric descriptors as all of the compounds investigated

here are small drug-like molecules. The 4-descriptor model

presented here is simple, easy to interpret, has high internal

consistency and is meaningful in the context of lysosomal

accumulation (Table 2). None of the 276 compounds was

incorrectly predicted by the 4-descriptor model.

Based on a smaller set of experimentally investigated com-

pounds (n = 101) and a decision tree learner we had previously

suggested a 3-descriptor model (logPACD10, pKa1ACD10, k) for

qualitative prediction of functional inhibition of ASM [52].

Applying this 3-descriptor model on the large experimental

dataset available in the present study (n = 276) still results in a

reasonable good prediction of functional inhibition of ASM (mean

bootstrap-validated Youden-index: 0.57560.085, mean bootstrap-

validated accuracy 0.83160.033, Youden-index without boot-

strap-validation 1.0, accuracy without bootstrap-validation 1.0).

However, the descriptor-combinations presented here (Table 2)

outperform the previous prediction system. The previously

suggested model [52] was now improved in several ways by using

advanced molecular descriptors (e.g. logPACD102K logMW

instead of logPACD10; pKa1ACD10+pKa2ACD10 instead of

pKa1ACD10), by using four instead of three molecular descrip-

tors, by using a random forest learner instead of a simple decision

tree learner and by using rigorous model validation. This led to a

much more precise prediction system.

Whenever a structure-property-activity relationship (SPAR)

model is built, there is a probability that the best model is chance

correlation. We therefore performed a response permutation test

(also known as Y-scrambling [59–61]). If a strong correlation

remains between the selected descriptors and the randomly

permutated response, the significance of the proposed model is

suspect. The 4-descriptor model (logPACD10_logWeight, pKa1_

plus_pKa2ACD10mod, pKaMA_ACD10, si_Weight_vsa_pol)

was recalculated for a randomly reordered response. This

procedure was performed 1000 times using different random

seeds for permutation, resulting in a mean bootstrapping validated

Youden-index of 0.00160.034 and a mean bootstrapping

Table 1. Newly-identified FIASMAs.

Generic name or
substance code CID ATC code FDA status [70]

Alverine 40 3678 A03AX08 Not listed

Mibefradile 74 60663 C08CX01 Not listed

Pimozide 81 16362 N05AG02 Prescription drug

Dicyclomine 98 3042 A03AA07 Prescription drug

Mebeverine 110 4031 A03AA04 Not listed

Aprindine 141 2218 C01BB04 Not listed

Biperidene 149 2381 N04AA02 Prescription drug

Carvedilol 160 2585 C07AG02 Prescription drug

Cepharantine 161 360849 Not listed Not listed

Clemastine 170 26987 D04AA14 Prescription drug

Clofazimine 172 2794 J04BA01 Prescription drug

Conessine 175 441082 Not listed Not listed

Desloratadine 182 124087 R06AX27 Prescription drug

Dimebon 189 197033 Not listed Not listed

Emetine 196 10219 P01AX02 Not listed

Flupenthixol 208 5281881 N05AF01 Not listed

Fluphenazine 209 3372 N05AB02 Prescription drug

Fluvoxamine 210 5324346 N06AB08 Prescription drug

Hydroxyzin 219 3658 N05BB01 Prescription drug

Loperamide 227 3955 A07DA03 Prescription drug

Mebhydroline 229 22530 R06AX15 Not listed

Perphenazine 249 4748 N05AB03 Prescription drug

Profenamine 258 3290 N04AA05 Discontinued drug

Sertindole 277 60149 N05AE03 Not listed

Solasodine 278 442985 Not listed Not listed

Tomatidine 291 65576 Not listed Not listed

Zolantidine 306 91769 Not listed Not listed

See Table S1 for further details and numbering of compounds.
CID = PubChem Compound ID.
doi:10.1371/journal.pone.0023852.t001

Novel FIASMAs
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validated accuracy of 0.67560.014 for the whole experimental set

(n = 276). The performance of the 4-descriptor model applied to

the original dataset is therefore more than 15 standard deviations

above random (mean accuracy in the whole experimental

set = 0.884) indicating a large distance between a random response

model and a true response model. The whole set comprised 276

compounds, 204 of them in class 0 (inactive) and 72 in class 1

(active). A model assuming all compounds would belong to class 0

(zero rule model) would have an accuracy of 0.739. The accuracy

of the chosen model applied to the original dataset is significantly

higher than the zero rule model, whereas the model applied to

randomly reordered response values has a performance which is

even lower than the zero rule model.

The whole process from data pre-processing to model

generation and interpretation was in accordance with the

OECD/IOMC guidelines for quantitative structure-activity rela-

tionship development [62]. This means that our study had (1) a

defined endpoint, (2) an unambiguous algorithm, (3) a defined

domain of applicability, (4) appropriate measures of goodness-of-

fit, robustness and predictivity and (5) a mechanistic interpretation.

Additive effect of FIASMAs
Co-application of structurally diverse FIASMAs results in an

additive functional inhibition of ASM, suggesting that these

compounds share the same mechanism of inhibition. This is

exemplified here by the additive effect of amitriptyline 6 and

fluoxetine 104 (Figure 2).

FIASMAs tend to cross the blood-brain barrier
The blood-brain barrier (BBB) is a selective barrier formed by

the endothelial cells that line cerebral microvessels [63]. Tight

junctions between adjacent endothelial cells force most molecular

Figure 1. Analyzed compounds show a bimodal distribution with respect to functional inhibition of ASM. The histogram includes
results of 276 experimentally investigated compounds (see Table S1). The line represents a Gaussian fit to the two peaks.
doi:10.1371/journal.pone.0023852.g001

Table 2. Descriptor combinations were selected by a 200-fold bootstrap-validated Youden-index based on a binary random forest
learner using the whole experimental set.

Mean 200fold bootstrap-validation Final model without validation

n Descriptors
Youden-index
Mean ± SD

Accuracy
Mean ± SD Youden-index Accuracy

1 logPACD10_logWeight 0.29460.107 0.73660.038 0.850 0.949

2 logPACD10_logWeight, pKa1_plus_pKa2ACD10mod 0.56760.090 0.82960.031 0.967 0.989

3 logPACD10_logWeight, pKa1_plus_pKa2ACD10mod,
pKaMA_ACD10

0.62660.087 0.85260.031 0.990 0.993

4 logPACD10_logWeight, pKa1_plus_pKa2ACD10mod,
pKaMA_ACD10, si_Weight_vsa_pol

0.680±0.087 0.884±0.030 1.000 1.000

5 logPACD10_logWeight, pKa1_plus_pKa2ACD10mod,
pKaMA_ACD10, si_Weight_vsa_pol, si_Weight_prot_n_PI

0.71460.086 0.89760.027 1.000 1.000

A 4-descriptor combination provided high internal consistency, which is only marginally improved by addition of a fifth descriptor. Bootstrap-validated performance
measures are given as mean 6 SD values.
doi:10.1371/journal.pone.0023852.t002

Novel FIASMAs
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traffic across the BBB to take the transcellular route [64]. Small

lipophilic agents can diffuse freely through the lipid membranes.

Most CNS-active drugs use this transcellular lipophilic pathway.

Compounds entering the brain have to cross two membrane

barriers (both luminal and abluminal plasma membrane) and the

cytoplasm of the endothelial cells in brain capillaries. FIASMAs

have to go a similar way through the cell to reach the lysosome:

they cross two membrane barriers (plasma membrane of the cell,

lysosomal membrane) and the cytoplasm. Therefore an analogy

between the BBB and the blood-lysosomal barrier can be assumed.

For 64 of the 276 compounds investigated here, we found

experimental logBB values (logarithmic ratio between the

concentration of a compound in brain and blood) in the literature.

When residual ASM activity is plotted against logBB values

(Figure 3), it is apparent that functional inhibition of ASM

(residual activity #50%) is found only for compounds that

efficiently cross the BBB (logBB$0).

FIASMAs violate Lipinski’s Rule-of-Five more often than
compounds without effect on ASM

We investigated whether or not our experimentally tested

compounds (n = 276, Table S1) are in agreement with Lipinski’s

Rule-of-Five [65]. While 59 of 204 (28.9%) of compounds lacking

a significant effect on ASM activity violated the Lipinski’s Rule-of-

Five, violation occurred in 37 of 72 (51.4%) of FIASMAs (chi-

square test, p = 0.001, Table 3). In most of the FIASMAs violation

of the Rule-of-Five was due to high lipophilicity. Nevertheless,

FIASMAs are orally active and most of them are probably also

CNS-active drugs.

Virtual screening shows that FIASMAs are enriched in
groups of drugs acting at excitable cells but are rare
among natural products

Most of the clinically approved compounds have been

developed without specific goals regarding logP- and pKa-values.

Therefore, there should be no remarkable differences in these

physicochemical properties between groups of drugs approved for

medical use. To get a complete picture of the distribution of

functional inhibition of ASM within approved drugs, we used the

Anatomical Therapeutic Chemical (ATC) drug classification

system recommended by the World Health Organization

(WHO). Based on the random forest model described above, we

analyzed a total of 2440 compounds distributed across 86 third-

level drug groups of the ATC codes (with several substances

occurring more than once; 2028 different compounds) by a virtual

screening approach and found physicochemical characteristics

indicative of functional inhibition of ASM in 157 of the 2440

ATC-listed compounds (6.43%). Since some of the drugs in the

ATC system are chemically identical, but have a unique ATC-

code because of their different clinical indications, a total of 135 of

2028 unique compounds (6.66%) was predicted to functionally

inhibit ASM. The distribution of the 157 functional ASM

inhibitors across the 86 pharmacologically relevant therapeutic

groups significantly deviated from the expected values (Fisher’s

exact test, p,0.001), but clustered clearly in a few groups. The

multiple test correction on Fisher p-values revealed a significant

overrepresentation of FIASMAs in only a few therapeutic groups,

namely A03 (drugs for functional gastrointestinal disorders), A15

(appetite stimulants), C08 (calcium channel blockers), D04

(antipruritics), N04 (anti-parkinson drugs), N05 (psycholeptics),

N06 (psychoanaleptics) and R06 (antihistamines for systemic use).

Since group size of the ATC second level drug groups varies

strongly, the p-value has a limited explanatory power. From a

biological point of view, groups with a high fraction of FIASMAs

may be still of interest, even if the p-value is not significant owing

to the small size of the group, such as A04 (antiemetics and

antinauseants). One common feature of these ATC subgroups

with a significant overrepresentation of FIASMAs is the pharma-

codynamic involvement of excitable cells where many FIASMAs

appear to act primarily. Furthermore, it is evident, that several of

the second-level ATC subgroups with a significant number of

FIASMAs belong to the CNS active groups (N04, N05, N06).

In contrast to approved drugs for medical use, we found by

virtual screening that FIASMAs are rare in natural products. The

molecular descriptors necessary for application of the model were

calculable in 787 of the 800 ‘‘Pure Natural Products’’ [66]. Two

compounds with quaternary nitrogen atoms were excluded. Then

we removed 17 duplicates. In six of the remaining 768 compounds

(0.78%) the model indicated functional inhibition of ASM. Five of

these predicted compounds were also part of the experimental set

(Table S1): cepharanthine 161, conessine 175, emetine 196,

solasodine 278 and tomatidine 291 and did indeed show

functional inhibition of ASM. The rate of predicted FIASMAs

in natural products is much lower than the rate of predicted

FIASMAs observed in drugs licensed for medical use in humans

(6.66%). The applicability domain of our prediction model is small

drug-like molecules. The set of Pure Natural Products differs in

chemical space from the small drug-like molecules, meaning that

these results have to be interpreted with caution.

FIASMAs are structurally heterogeneous
Chemical space and structural diversity are important when

comparing different sets of compounds. It is not valid to extend

results obtained in one set of compounds to other compound

collections without taking into account structural diversity. In

order to compare the degree of structural diversity between sets of

compounds, we have developed a new and simple measure termed

‘‘relative structural diversity’’ (divrel). This simple measure uses a

hierarchical clustering of Tanimoto-coefficients [67] based on 2D-

fingerprints (see experimental section) and may be used in addition

to more complicated indicators of structural diversity [68]. The

divrel of the FIASMAs (n = 72, divrel = 0.667) is somewhat lower but

Figure 2. FIASMAs work in an additive way: The combination
of a subthreshold-concentration of amitriptyline 6 and fluox-
etine 104 (2.5 mM) results in functional inhibition of ASM. This
effect is also evident at higher concentrations. Mean values 6 SD from 3
experiments are given.
doi:10.1371/journal.pone.0023852.g002

Novel FIASMAs

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23852



still high compared to the divrel of the whole experimental set

(n = 276, divrel = 0.711). For comparison, divrel is similar in the set

of ATC compounds investigated (n = 2028, divrel = 0.709) as well

as in the set of natural products (n = 768, divrel = 0.747) (Table 4).

Thus, the molecular structure of FIASMAs varies widely, as

indicated by the high number of clusters. This is supported by the

fact that FIASMAs represent different therapeutic classes and

different structural classes as evidenced by their ATC-codes (see

Table 1). Our results prove that functional inhibition of ASM does

not depend on a specific molecular drug class. Instead of specific

structural prerequisites, functional inhibition of ASM requires

specific physicochemical characteristics of compounds, resulting in

high intra-lysosomal concentrations and partitioning of the drug

into the inner leaf of the lysosomal membrane.

In the current study we used several different compound

collections. The experimental set investigated here is showing

comparable divrel values to the ATC set. It is therefore appropriate

to apply conclusions from the experimental set onto the larger

ATC collection. The set of 72 FIASMAs is a subset of the

experimental set, which in turn is largely a subset of the ATC drug

library. Therefore, these three sets occupy a comparable region of

the chemical space, as all these sets are mainly composed of small

drug like molecules. The Pure Natural Products cannot easily be

compared to the drug-like molecules as their chemicals space

differs.

Clinical implications of the findings presented here
Most of the newly defined FIASMAs described here are

included in the WHO drug list of approved and essential

medicines [69] and about half of them appear in the US Food

and Drug Administration (FDA)-approved drug list [70] (Table 1).

These substances not only possess a low toxicity but also a record

of a long-term clinical experience – some have been in use for the

last five decades. FIASMAs have a number of favourable

properties in the context of clinical application [39], suggesting

the potential for rapid advancement into preclinical and/or

clinical trials. The therapeutic consequences of functional

Figure 3. Functional inhibition of ASM appears to be associated with good passive diffusion across the blood-brain barrier.
Experimental logBB values were compiled from the literature, with values greater than 0 indicating good blood-brain barrier permeability. Functional
inhibition of ASM was experimentally determined in cell culture; residual ASM activity below 50% relative to control cells indicates active compounds.
See also results in Table S1.
doi:10.1371/journal.pone.0023852.g003

Table 3. FIASMAs frequently violate Lipinski’s Rule-of-Five.

Experimentally-determined ASM inhibitory activity

FIASMA Not acting as FIASMA

Rule-of-Five = 0 35 145

Rule-of-Five.0 37 59

Chi-square-test, p = 0.001.
Violation was assumed when there was a contradiction to any of the four rules.
Violation of Lipinski’s Rule-of-Five was calculated by ACD10 for all compounds
with experimentally-determined ASM activity (n = 276).
doi:10.1371/journal.pone.0023852.t003

Table 4. Comparison of the relative structural diversity of the
compound sets investigated here.

n divrel

FIASMAs 72 0.667

Whole experimental set 276 0.711

ATC-set 2028 0.709

Pure Natural Products 768 0.747

Structural diversity was estimated by a new measure called relative structural
diversity (divrel, see experimental section). The set of FIASMAs is a subset of the
whole experimental set investigated here.
doi:10.1371/journal.pone.0023852.t004
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inhibition of ASM are yet poorly understood, however they may

induce a number of clinically desired effects. Ceramide and its

metabolite sphingosine-1-phosphate have been shown to antago-

nistically regulate apoptosis, cellular differentiation, proliferation

and cell migration. Inhibition of ASM results in anti-apoptotic,

proliferative and anti-inflammatory effects. Furthermore, ASM

could play a key role in the pathophysiology of depression and in

the action of antidepressant drugs [23]. Inhibitors of ASM

therefore hold promise for a number of new clinical therapies.

Several examples are given here: Induction of stroke by

experimental ischemia of the brain was shown to correlate with

an activation of the ASM and a release of ceramide [71,72].

Importantly, ASM-deficient mice were protected from tissue

damage caused by focal cerebral ischemia. Furthermore, the

ethanol-induced neuronal cell death is mediated, at least in part,

by activation of ASM and generation of ceramide [73]. In

addition, the lethal gastrointestinal syndrome, which limits the

efficacy of radiation and chemotherapy, apparently results from

apoptotic damage of the endothelial cells of the microvasculature

of the small intestine. Genetic inactivation of ASM prevents this

toxicity [74]. Infection induced by the human immunodeficiency

virus type I (HIV-1) serves as a further example. HIV-1 induces a

dramatic depletion of CD4+ T cells in infected individuals, finally

leading to AIDS (acquired immunodeficiency syndrome). The

massive loss of CD4 T-lymphocytes is assumed to result from

apoptosis, probably due to enhanced sphingomyelin breakdown

and accumulation of intracellular ceramide [75]. Interestingly,

HIV-1 infected long-term nonprogressors have less elevated

lymphocyte-associated ceramide than subjects with evolving AIDS

[76], which is paralleled by a lower frequency of apoptotic CD4

and CD8 cells in long-term nonprogressors compared to patients

with AIDS [77]. The endotoxic shock syndrome, which is

characterized by systemic inflammation, multiple organ damage,

circulatory collapse and death, is caused by disseminated

endothelial apoptosis sequentially mediated by TNF and ceramide

generation [78]. Blocking of this cascade by ASM inhibitors should

be preventive and/or therapeutic against the endotoxic shock

syndrome. Finally, an imbalance between ASM and acid

ceramidase followed by ceramide accumulation has been demon-

strated in the hereditary disease cystic fibrosis [79]. In experi-

mental animals, FIASMAs normalize pulmonary ceramide and

inflammation [80]. In a clinical pilot study, amitriptyline 6 led to

an improved respiratory function in affected patients [81]. Further

examples include the treatment of e.g. Alzheimer’s disease, major

depression, inflammatory bowel disease [42], liver cell death and

anaemia occurring in Wilson disease, and pulmonary edema in

acute lung injury [82]. Recently, it has been shown that gilenya

(FTY720), a drug licensed for treatment of multiple sclerosis, acts

as a FIASMA [83]. This novel mechanism of action may explain

at least in part the beneficial effects of gilenya in multiple sclerosis.

AC is a lysosomal enzyme degrading ceramide to sphingosine.

Cationic amphiphilic agents like desipramine, chlorpromazine and

chloroquine have been shown to result in both, a reduced level of

AC protein and in an increased level of cellular ceramide [84,85].

Despite its potential importance, the influence of medically used

drugs on AC has not yet been systematically studied. In a cell

culture-based pilot study on more than 100 small drug-like

compounds (CM, unpublished), FIASMAs had a significantly

stronger AC inhibitory effect than non-FIASMAs. However, the

effect on AC was less pronounced compared to their effect on

ASM as none of the compounds reduced AC activity to levels

below 50%. Moreover, because of the considerably lower enzyme

activity of the AC compared to ASM (about 25 fold in cell lysates

using fluorescently labelled substrates; CM unpublished), the

absolute net effect of potentially inhibitory drugs is expected to be

dominated by their influence on ASM. The observation of

reduced ceramide levels in the mouse hippocampus after

application of amitriptyline or fluoxetine (EG, unpublished results)

is in agreement with this hypothesis. Nevertheless, the potential

dual effect of small drug-like compounds on ASM as well as AC

deserves further research with the aim to identify compounds with

specific inhibitory activity for therapeutic use.

Strengths and limitations of the study
Strength: We identified 27 novel FIASMAs, many of them

FDA-approved for clinical use in humans. Model construction was

based on a large number of experimentally investigated com-

pounds, and used standard Molecular Operating Environment

(MOE) descriptors as well as a multitude of novel hypothesis-

driven molecular descriptors, like k, n_pdN, CSA and calculated

lysosomal drug concentration (Table 5). We did not use 3D-

descriptors, which depend on stereoisomers, preprocessing and

energy minimization. Furthermore, we made use of size-intensive

descriptors. Remarkably, none of the descriptors of the final model

was a standard MOE-descriptor. We applied machine learning

algorithms with a low proneness to overfitting (random forest) and

performed a rigorous model validation (bootstrap). Our perfor-

mance measure was well suited for dysbalanced bimodal data

(Youden-index). We thus developed a simple model with high

internal consistency, high external predictivity (mean bootstrapped

accuracy of about 87% in the experimental set), and with a

mechanistic interpretation. Finally, we introduce a new measure

for comparison of structural heterogeneity between sets of

compounds (divrel).

Limitations: The chemoinformatic model presented here is valid

for small drug-like molecules only. The model allows the

qualitative prediction only. The effect of a substance on ASM

activity under therapeutic conditions in vivo depends on the

interplay between compound-, treatment- (such as dose and

application route) and organism-related variables. Future studies

should clarify whether or not functional inhibition of ASM occurs

at therapeutic concentrations of the drugs investigated here.

Conclusions
Functional inhibitors of ASM (FIASMAs) are an important class

of drugs with newly emerging broad clinical applications. In the

present study we have identified 27 novel FIASMAs. Based on a

large set of experimental data, we have developed a chemoinfor-

matic model for the accurate prediction of functional inhibition of

ASM. Furthermore, we describe important properties of FIAS-

MAs, such as BBB permeability.

Materials and Methods

Set of compounds
In addition to the set of 101 compounds previously experimen-

tally investigated with regard to functional inhibition of ASM [52],

we selected 175 small organic, drug-like compounds or natural

products. The selection aimed at obtaining compounds with high

structural diversity, with diversity regarding strength and number

of acidic and basic functional groups, and diversity regarding logP

values. Basic lipophilic compounds were overrepresented in order

to obtain a sufficient number of FIASMAs and in order to avoid a

greatly unbalanced class distribution for classification tasks. Of the

total set of 276 compounds (Table S1) with a mean molecular

weight of 359.9 (88.2–847.0), 23 were acids with a most acidic

pKa-value as estimated by ACD10 [86] below 10 and no relevant

basic group (‘‘acid’’) and 155 were weak bases with a most basic
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pKa-value$3 and neither another relevant basic nor any relevant

acidic group (‘‘monobase’’). Further 22 compounds possessed both

a basic nitrogen atom with a pKa-value$3 and an acidic group

with a pKa-value below 10 (‘‘zwitter’’). Additional 45 compounds

contained two basic nitrogen atoms both with pKa-values$3 and

no relevant acidic group (‘‘bibase’’). The remaining 31 compounds

either had no ionisable functional group at all (n = 9) or had pKa-

values outside the biologically relevant range (n = 22).

Structure entry
Molecular structures were obtained from the PubChem-Project

page [87,88] (Table S1).

Chemicals
Aclacinomycin-A 133, acrivastine 134, amorolfine 139,

clonidine 173, lynestrenol 228, montelukast 239 and rolipram

271 were purchased from Biotrend Chemikalien (Köln,

Germany); phenylmethylsulfonyl fluoride 253 and S-methyli-

sothiourea 274 from Calbiochem (Merck, Darmstadt, Ger-

many); allylestrenol 135, atovaquone 142, barnidipine 146,

butenafine 155, cepharanthine 161, chlorquinaldol 166,

clemastine 170, dienestrol 187, dutasteride 195, nelfinavir

243, solasodine 278 and vinblastine 299 from Chemos

(Regenstauf, Germany) and dimebon 189 from Aurora

Feinchemie (Graz, Austria). Apomorphin 140, doxorubicin

193, phenserine 251, pranlukast 257, raloxifene 266 and

zolantidine (SKB41) 306 were obtained from Tocris (Bristol,

UK) and aprindine 141, biperidene 149, buclicine 152,

buspiron 154, diosmin 190, emetine 196, encainide 197,

fosinopril 211, hydroxyzin 219, ropinirole 272, thiocarlide 287,

tiagabine 288 and zafirlukast 305 from VWR (Darmstadt,

Germany). Quetiapine 264 was a gift of AstraZeneca (Wedel,

Germany). All other substances investigated experimentally

were obtained from Sigma-Aldrich (Munich, Germany). All

compounds were used in the highest purity available.

Table 5. List of programmed and calculated descriptors that were used in addition to the standard MOE-descriptors.

Name of the descriptor Description

AA Length of the amphiphilic axis [95]

CSA Cross-sectional area [95]

NOOM Number of atoms outside the amphiphilic axis [95]

Li Longest distance from an ionized atom to another atom [95]

Mpc Longest distance from the atom with the highest partial charge [95]

n_qN Number of quaternary nitrogen atoms

n_COOH Number of carboxylic acid functions [133]

n_OpN Sum of nitrogen and oxygen atoms [134]

n_hal Number of halogen atoms (based on: Norinder and Haeberlein [134])

n_XpC Sum of halogen and carbon atoms (based on: Norinder and Haeberlein [134])

n_ion Number of ionized atoms (based on: Lanevskij et al. [56])

n_PI Number of positive ionizable groups (based on: Lanevskij et al. [56])

n_pdN Number of protonized delocalized nitrogen atoms in the N-C = N motif

n_pH Number of polar hydrogen atoms [135]

n_pol Number of polar atoms [135]

n_amines Number of amines

n_pN number of protonated nitrogen atoms at pH 7

I3 +1 for amines, 21 for acids, otherwise 0 [136]

QMAXneg Highest negative partial charge [133]

QMAXpos Highest positive partial charge [133]

QMEANN Average partial charge in nitrogen atoms

QSUMH Sum of all partial charges on hydrogen atoms

QSUMO Sum of all partial charges on oxygen atoms [133]

QMINN Lowest partial charge on nitrogen atoms

QSUMN Sum of all partial charges on nitrogen atoms

Qamines Average partial charge on amines

CLys Calculated lysosomal concentration [49]

LA Lipoaffinity [137]

logPACD10_minus_O_N LogP – number of oxygen and nitrogen atoms [134]

logPACD10_logWeight logPACD102K*logWeight [56,57]

pKa1_plus_pKa2ACD10 pKa1ACD10+pKa2ACD10

pKa1_plus_pKa2ACD10mod if pKa2ACD10.0: pKa1ACD10 + pKa2ACD10, else: pKa1ACD10

si_Weight-Descriptors Size-intensive descriptors [96] using molecular weight as divisor

doi:10.1371/journal.pone.0023852.t005
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Cell culture
Human brain neuroglioma H4-cells were purchased from

Promochem (Wesel, Germany). H4-cells were cultured as

described previously [52]. Only cells tested negative for myco-

plasma infection were used in the experiments.

Kinetics of lysosomal accumulation
Usually, 30 min of incubation of H4-cells with the test drug was

sufficient to induce functional inhibition of ASM. Due to slow

accumulaion kinetics some compounds required a longer incuba-

tion time. However, prolonged incubation with some compounds

(astemizole 43, mibefradil 74, penfluridol 79, fluoxetine 104,

sertindole 249, thioridazine 32) resulted in cell death. We

therefore aimed at a minimal but still sufficient incubation time

for all compounds, which was estimated using a previously

developed numerical single cell model [49]: Accumulation of

molecules in the cell by diffusion from the external solution into

the cytosol, lysosome and mitochondria was calculated with the

Fick-Nernst-Planck-equation. The cell model considers the

diffusion of neutral and ionic molecules across biological

membranes, dissociation into mono- or bivalent ions, adsorption

to lipids, and electrical attraction or repulsion. We used the

parameters of the standard model [49] as well as the logP-, most

basic and most acidic pKa-values as calculated by ACD10 [86]

(Table S1). Four different models (‘‘monoacid’’, ‘‘monobase’’,

‘‘bibase’’ and ‘‘zwitter’’) implemented in Excel sheets were used for

kinetic calculations (model version: July 2009). There was no

amphoteric compound in our dataset. In the absence of pKa-

values in the relevant regions, the monoacid model was used with

a pKa-value of 15.

Experimental determination of ASM activity
The activity of ASM was determined in whole cell lysates, as

previously described [89]. We aimed to develop a qualitative

(binary) SPAR model. Therefore, we did not determine IC50

values, but we determined whether or not a compound acts as

functional inhibitor of ASM. Thus, we used a single high

concentration of a compound and a sufficient incubation time,

which depends on the pharmacokinetic properties of the

compound. After the substance was added to the growth medium

at a final concentration of 10 mM, cells were kept at 37uC in a

humidified atmosphere at 8.5% CO2 for 30 minutes (DMEM:

pH 7.5). Compounds with predicted slow lysosomal accumulation

kinetics [49] were also investigated at longer incubation times

(Table S1). Results are given as residual ASM activity (%)

normalized to control cells treated with the solvent alone and

represent mean values of three independent experiments, each

with a standard deviation of approx. 16%. Because of the bimodal

distribution of functional inhibition of ASM (see below), a residual

ASM activity #50.0% in H4-cells was rated as positive.

Statistical analysis
Deviation from normal distribution (two-sided Kolmogoroff-

Smirnov) and chi-square statistics were computed using PASW

(Version 18, Chicago, Illinois). One-sided Fisher’s exact probabil-

ity test with Benjamini-Hochberg [90] correction for multiple

testing was computed using R software (version version 2.7.0) [91].

Computation of molecular descriptors
Molecular descriptors were calculated by the ACD/LogD Suite,

version 10 [86] (the two most basic pKa-values, the most acidic

pKa-value, logP-value), by visual inspection of the molecules

[number of heavy atoms at the most basic nitrogen atom (k [52])]

and by MOE 2009.10 [92]. The lysosomal concentration of each

drug was calculated by a previously developed numerical single

cell model [49] (see above) and was also used as a molecular

descriptor (CLys). It has previously been suggested that the lowest

cross-sectional area of a molecule perpendicular to the amphiphilic

axis determines the insertion of a molecule into a biomembrane

and thereby its passive diffusion across the BBB [93,94]. The

lowest cross-sectional area (CSA, Table 5) of the molecules

perpendicular to the amphiphilic axis in the membrane bound

conformation and related molecular descriptors were calculated as

previously described [95]. A simple division of molecular

descriptors by chemical sample size creates size-intensive descrip-

tors which were shown to result in more compact and more stable

models [96]. We used molecular weight (MW) to calculate a size-

intensive form of every molecular descriptor. Furthermore, we

used an MW-based correction of logP-values (logP2K*logWeight

[56,57]). Further information on these descriptors is available in

Table 5 and in the literature [59,97].

Data pre-processing
Data pre-processing was performed using RapidMiner 5.1 [98].

Features with very low variance were eliminated. Missing values

for the most basic pKa-values were substituted by 0, missing most

acidic pKa-values were substituted by 15, missing values for k were

substituted by 12. Otherwise, we used only molecular descriptors

that were available for all compounds and thereby obtained a total

of 708 molecular descriptors. The presence of irrelevant and

redundant attributes may reduce the performance of learners such

as decision tree and random forest [99]. Therefore, before

applying random forest learners we reduced the dimensionality

of the data by applying feature selection methods. We used both a

hypothesis-driven and a hypothesis-free feature selection approach

[100,101] to select descriptors with potential relevance. For the

hypothesis-free selection, attributes were chosen by at least one of

the following methods: wrapper [102], relief [103,104], correlation

based weighting, information gain weighting, standard deviation

based weighting, support vector machine based weighting and rule

based weighting. We thus ended up with about 100 molecular

descriptors used for random forest learners.

Model construction
Models were generated using machine learning algorithms

[105,106] provided by RapidMiner 5.1 [98]. The whole

experimental set was used, since examples are too precious to

waste during model generation [107]. A modified beam-search

[108] served to identify high-performing single attributes or

attribute combinations. Models were validated by bootstrapping

(n = 200). Because of the unbalanced class distribution, the

Youden-Index [109–111] (sensitivity + specificity21) was chosen

as primary performance measure evaluating models based on two-

class learners. We used a random forest learner [112] for binary

classification. In contrast to a simple decision tree learner, random

forest learners are more resistant against overfitting and result in

more stable models, meaning that small changes in the training set

do not lead to completely different models [113,114], and lead to

better predictivity on unknown compounds. The parameters used

were: ntree = 51 (number of trees to build), nodesize = 1 (size of the

terminal node of the trees in a random forest), mtry = log(m)+1

(number of attributes randomly selected at each node, where

m = number of attributes available), allowed maximal depth of the

trees = 8.

Whenever a structure activity relations (SAR) model is built,

there is a probability that the best model is chance correlation. We

Novel FIASMAs

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23852



used the response permutation test, also known as Y-scrambling

[59–61,115] to detect random effects.

Relative structural diversity of the set of compounds
used

In order to estimate the structural diversity of our investigated

sets of compounds, we performed a hierarchical clustering based

on Tanimoto coefficients [67] for fingerprints based on tagged

graph triangles (TGT) [116,117]. We calculated the number of

clusters at 0.85 similarity measured by Tanimoto coefficients and

divided it by the total number of compounds in the test set. We

term this measure ‘‘relative structural diversity’’ (divrel).

divrel~
ncluster

ntotal

Higher values for divrel indicate higher structural diversity. The

values for divrel can vary from just above zero (when there is only

one cluster) to 1 (when each compound defines a separate cluster).

For our analysis, we have used the structural TGT keys [116,117]

consisting of 2D pharmacophore features with atom types and

distances.

Violation of Lipinski’s Rule-of-Five
Lipinski’s Rule-of-Five [65] identifies compounds with proper-

ties that would likely make them an orally active drug in humans.

The set of four rules describes molecular properties important for a

drug’s pharmacokinetic properties in the human organism,

including its absorption, distribution, metabolism, excretion and

toxicity (ADME/Tox). Violation of Lipinski’s Rule-of-Five was

calculated by ACD10 logD Suite. Violation was assumed when

there was a contradiction to any of the four rules.

Data on passive diffusion across the blood-brain barrier
The most common value describing permeability across the

blood-brain barrier (BBB) is the logBB. It is defined as the

logarithmic ratio between the concentration of a compound in

brain and blood. LogBB values below zero indicate poor

penetration of the BBB. LogBB values were compiled from a

number of published papers [58,118–128].

Distribution of FIASMAs across the therapeutic and
structural classes of the ATC system

The five-level ATC drug classification system [69,129,130] was

developed in the early 1970s and provides a comprehensive and

logical classification system for categorizing pharmaceutical

ingredients approved for medical use in humans. While the first

level indicates the main anatomical target of the compound, the

second level codes for the pharmacologically-relevant therapeutic

main group. The third level indicates the pharmacological

subgroup and the fourth the chemical subgroup. The fifth level

represents the chemical substance, namely the actual drug entity.

On the first level, the code comprises 14 anatomical regions

ranging from A (Alimentary tract and metabolism) to V (Various).

On the second level, the code consists of 86 pharmacologically-

relevant therapeutic groups. Molecular structures of the drugs in

their corresponding free base/acid forms were obtained from the

SuperDrug database [131]. Export was performed in May 2007,

based on the 2005 version of the ATC system. Since we analyzed

molecular descriptors of defined molecules, our approach

excluded drugs which are entire plants, extracts, drug mixtures,

colloids, biopolymers, resins, large peptides and inorganic

substances like metals and simple salts. Furthermore, we excluded

compounds with a quaternary nitrogen atom, as they do not cross

biological membranes via passive diffusion [56]. All compounds

were analyzed by their appearance in the ATC system, i.e.

substances with multiple effects and different therapeutic indica-

tions or different enantiomeric forms were found more than once

within the system. In order to determine the distribution of drugs

across the ATC system, we used the second level of the 2005

version. Uneven distribution of FIASMAs was tested by a

contingency table and one-sided Fisher test. Within this contin-

gency table, the multiple test correction (Benjamini-Hochberg

[90]) identified therapeutic groups with a significantly enriched

fraction of FIASMAs [132].

Distribution of FIASMAs across natural products
Molecular structures of ‘‘Pure Natural Products’’ were down-

loaded from MicroSourceDiscovery [66] and analysed using the

random forest model based on the whole experimental set. This set

of ‘‘Pure Natural Products’’ consisted of 800 alkaloids, flavonoids,

sterols/triterpenes, diterpenes/sesquiterpenes, benophenones/

chalcones/stilbenes, limonoids/quassinoids and chomones/cour-

marines, benzofurans/benzopyrans, rotenoids/xanthones, carbo-

hydrates and benztropolones/depsides/depsidones. Compounds

with a quaternary nitrogen atom and duplicates were again

excluded from this analysis.

Supporting Information

Table S1 Compounds investigated in this study.

(DOC)

Acknowledgments

We thank Andrea Leicht, Michaela Schäfer and Alice Konrad for excellent
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5. Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, et al. (2003) Host

defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts.

Nat Med 9: 322–330.

6. Gulbins E, Bissonnette R, Mahboubi A, Martin S, Nishioka W, et al. (1995)

FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling

pathway. Immunity 2: 341–351.

7. Chung HS, Park SR, Choi EK, Park HJ, Griffin RJ, et al. (2003) Role of

sphingomyelin-MAPKs pathway in heat-induced apoptosis. Exp Mol Med 35:

181–188.

8. Rebillard A, Rioux-Leclercq N, Muller C, Bellaud P, Jouan F, et al. (2008) Acid

sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal

damage. Oncogene 27: 6590–6595.

9. Santana P, Peña LA, Haimovitz-Friedman A, Martin S, Green D, et al. (1996)

Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in

radiation-induced apoptosis. Cell 86: 189–199.

10. Kirschnek S, Paris F, Weller M, Grassmé H, Ferlinz K, et al. (2000) CD95-
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79. Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, et al. (2008)

Ceramide accumulation mediates inflammation, cell death and infection

susceptibility in cystic fibrosis. Nat Med 14: 382–391.
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