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Abstract

There is still limited understanding of the processes underlying benthic species dynamics in marine coastal habitats, which
are of disproportionate importance in terms of productivity and biodiversity. The life-history traits of long-lived benthic
species in these habitats are particularly poorly documented. In this study, we assessed decadal patterns of population
dynamics for ten sponge and anthozoan species that play key structural roles in coralligenous outcrops (,25 m depth) in
two areas of the NW Mediterranean Sea. This study was based on examination of a unique long-term photographic series,
which allowed analysis of population dynamics over extensive spatial and time spans for the very first time. Specifically, 671
individuals were censused annually over periods of 25-, 15-, and 5-years. This long-term study quantitatively revealed a
common life-history pattern among the ten studied species, despite the fact they present different growth forms. Low
mortality rates (3.4% yr21 for all species combined) and infrequent recruitment events (mean value of 3.160.5 SE recruits
yr21) provided only a very small fraction of the new colonies required to maintain population sizes. Overall, annual mortality
and recruitment rates did not differ significantly among years; however, some species displayed important mortality events
and recruitment pulses, indicating variability among species. Based on the growth rates of these 10 species, we projected
their longevity and, obtained a mean estimated age of 25–200 years. Finally, the low to moderate turnover rates (mean
value 0.80% yr21) observed among the coralligenous species were in agreement with their low dynamics and persistence.
These results offer solid baseline data and reveal that these habitats are among the most vulnerable to the current increases
of anthropogenic disturbances.
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Introduction

Ecosystems worldwide are changing as a result of a number of

natural drivers and the effects of myriad anthropogenic activities

[1], [2], [3]. The increases in the impacts of these activities (e.g.

overexploitation, habitat modification, effects of climate change)

raise concerns about the capacity of ecosystems to absorb multiple

disturbances occurring over short time periods [4], [5], [6]. An

important goal of ecology and conservation research is to obtain a

precise quantitative understanding of community dynamics by

quantifying rates of change and evaluating the ecological

mechanisms behind the observed changes, which will ultimately

allow us to develop our capacity to predict longer-term and larger-

scale shifts.

Coastal marine systems are a main focus of attention because

they harbor high biological diversity, are among the most

productive systems in the world, and present high anthropogenic

interaction levels [7], [3]. Biodiversity losses in coastal marine

ecosystems are increasingly impairing the ocean’s capacity to

provide ecosystem services, such as food supplies, maintaining

water quality, recreation and tourism [8], [9], [10]. In the

Mediterranean Sea, coralligenous outcrops are of special concern,

as they represent one of the most important hotspot for species

diversity in the Mediterranean Sea (harboring around 20% of

Mediterranean species), are of great structural complexity and are

dominated by long-lived species [11], [12–13]. Coralligenous

outcrops are increasingly suffering impacts of a range of

anthropogenic disturbances (e.g., fishing activities, pollution,

increases of sedimentation, introduction of invasive species,

climate change) [14], [15], [16], [17], [18]

A key factor for understanding and predicting responses of

marine benthic species to variations is measurement of their vital

rates e.g. reproduction, recruitment, growth, and mortality [19],

[20]. In long-lived benthic organisms, detailed long-term studies

following the fate of species can be considered the only reliable

way to uncover general patterns. First, populations of slow-

growing, long-lived sessile species do not often undergo marked

declines, and populations with little or no regeneration capacity

are projected to survive for decades or even centuries [21], [22],

[23]. Second, crucial events occur rarely (e.g. severe disturbances
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or exceptional recruitment), and thus, detecting their effects on

populations requires long-term records [24], [25], [26]. In contrast

to terrestrial plant systems, such data are scarce for marine benthic

assemblages, and little empirical work has been done on the

population dynamics of long-lived marine sessile species.

The decadal trajectory of vital rates of species dwelling in

coralligenous Mediterranean outcrops remains poorly understood,

mainly due to the lack of available data from long-term datasets.

Even basic parameters, such as survivorship, growth, age at first

reproduction, and longevity, are unknown for the majority of

coralligenous species. Therefore, a detailed understanding of the

life cycle of such species and the long-term temporal variation in

their vital rates is crucial, not only to comprehend the mechanisms

underlying their dynamics but also for the effective management

and conservation of these ecosystems.

The present study addresses the population dynamics over

decades of ten structural sessile species (sponges and anthozoans)

dwelling on coralligenous outcrops (,25 m depth) in two areas in

the NW Mediterranean Sea: the Riou Archipelago (Provence

coast, SE France) and the Medes Islands (Catalan coast, NE

Spain). This study is unique due to its resolution, as it was based on

the fates of annual censuses of identified specimens over periods of

25-, 15-, and 5- years. The photographic long-term records (see

Fig. 1) from this study provide an exceptional opportunity to

characterize the demographic traits of these marine temperate

species over time. First, we provide demographic data (mortality,

recruitment, growth, and turnover rates) for ten benthic species

over a long period to document their natural variation and to

identify certain relevant events (e.g. peaks of mortality, pulses of

recruitment) in these populations. Second, based on our growth

data we extend our demographic approach to project the longevity

of these species. Finally, we synthesize the results obtained in this

study by comparing the 10 species and relating their life-history

traits to better understand the dynamics of coralligenous outcrops.

Materials and Methods

Study sites and species
The study was carried out in two main areas of the NW

Mediterranean Sea: the Riou Archipelago (43u109400N,

5u239500E, SE France) and the Medes Island Marine Protected

Area (42u39N, 3u139E, NE Spain) (Fig. S1). In these two areas

(400 km apart), 4 study sites harboring coralligenous outcrops

were selected. These communities are found in dim light

conditions. Specifically, we studied 3 open submarine caves in

the Riou Archipelago and one north-facing sublittoral wall in the

Medes Islands. No specific permits were required for the described

field studies. No specific permits were required for the described

field studies. The two study areas: the Riou Archipelago and the

Medes Islands do not require any specific permission. The

locations are not privately-owned. This study did not involve

endangered or protected species. Moreover, we did not perform

any disturbance to species during our fieldwork. Our data was

based on the analysis of images and this approach is a non

destructive technique to study marine benthic communities.

We chose ten species for this study: 6 sponges (Aplysina cavernicola,

Chondrosia reniformis, Haliclona fulva, Scalarispongia (Cacospongia)

scalaris, Petrosia ficiformis, and Spirastrella cunctatrix) and 4 anthozoans

(Alcyonium acaule, Caryophyllia inornata, Corallium rubrum, and

Leptopsammia pruvoti). See Table 1 for general characteristics of

the ten species. These species were selected according to fourth

distinct criteria. First, they contribute greatly to the benthic

seascape in coralligenous outcrops of the NW Mediterranean Sea,

over a wide depth range (from 10 to 60 m depth). Second, they are

macroscopic and relatively easy to identify. Third, they exhibit

different growth forms, such as encrusting, cup, tree, and massive

forms, which present different ecological strategies in occupying

space on rocky benthic habitats [27], [28]. Finally, they are

representative of a community structured by long-lived compo-

nents for which population ecology is poorly understood.

Photographic series over 25-, 15-, and 5- years
At each surveyed site, permanent plots were photographically

monitored annually over 25- (from 1981 to 2006), 15- (from 1993

to 2008), and 5- years (from 2001 to 2006). The 25- year

photographic series was obtained at the Riou Archipelago (Riou

Sud cave). This series corresponded to photographs of ten

experimental panels (20*20 cm each), made of local limestone,

at a depth of 27 m on the eastern lateral wall of a submarine cave

20 m from the entrance. This experiment began in 1969 as part of

a project aimed at studying the colonization of sublittoral hard

substrates under natural conditions [29]. The 15- year photo-

graphic series was obtained at one site in the Medes Island area,

where 10 permanent plots set on a vertical wall at 18–20 m depths

were surveyed. Finally, the 5- year photographic series was

obtained at three sites from the Riou Archipelago area. At each

site, ten permanent plots were set up at depths between 20–24 m

on the walls of three caves. For the 15- and 5- year series, the

permanent plots were installed haphazardly with in an area of

30 m2 in the sampling areas. All images were taken with Nikonos

cameras (Nikon, Tokyo, Japan) equipped with UW 28 mm and

close-up lenses from 1981 to 2005. From 2006 onward, a Nikon

D70S digital SLR camera fitted with a Nikkor 20 mm DX lens

(3000 * 2000 pixel resolution), and Subal D70S housing was used.

Lighting was provided by two electronic strobes (Nikonos SB 105

and Sea & Sea strobes). Each 35-mm frame recorded an area of

310 cm2 in size, and each digital frame recorded an area of

575 cm2. We restricted our analyses to the 310 cm2 initial area,

despite the larger area covered by the digital camera to ensure the

same measurements over time. Approximately 900 photographs

were analyzed. For all of the photographic series analyzed, the

photograph frames were treated as statistical replicates in a

repeated measures design testing for differences over time.

Demographic analysis
Demographic parameters were quantified using digital images,

which were obtained for the color slides, by scanning the originals

images (300 dpi, 163261080 pixel resolution). All individuals of

the 10 target species were individually labeled in Adobe Photoshop

7.0 (� Adobe) and censused annually until death was confirmed in

successive censuses. Three of the species (S. scalaris, C. inornata, and

C. rubrum) have been studied since 1981 (25-year of data); four

species (C. reniformis, P. ficiformis, and S. cunctatrix and A. acaule) since

1993 (15-year of data) and three species (A.cavernicola, H. fulva and

L. pruvoti) since 2001 (5-year of data). A total of 180, 148, and 343

individuals present at the beginning of the three series were

individually identified and followed over 25-, 15- and 5- years,

respectively, to record their fates: mortality, recruitment via larvae,

growth, and longevity. These analyses generated more than 8,000

observations.

Mortality
Population dynamics were quantified by recording whether the

specimens present at the initiation of the censuses were alive or

dead at the end of the census period. We considered whole

mortality to occur in the year when the entire specimen had

completely disappeared from the analyzed plot. We calculated the

annual relative mortality rate as follows:

Temporal Dynamics of Mediterranean Coralligenous Outcrops
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Ln Ntz1{Ln Ntð Þ= ttz1{ttð Þ ð1Þ

where N refers to the number, and tt and tt+1 (with units in years),

are the initial and final census dates, respectively [30], [31]. The

time interval in equation (1) is one year.

Recruitment
We estimated larval recruitment annually by monitoring the

development of new specimens that were clearly not created by

asexual events (e.g. clonal fragmentation) within the surveyed areas.

As larval recruits were not easily identified at early stages, we scored

new recruits via larvae only if they reached a minimal size

Figure 1. Example of the frames analyzed from the three photographic series over 25-, 15- and 5- years. A) The 25- year series at Riou
Archipelago; dates A1: 23/01/1981, A2: 31/10/1986, A3: 25/11/1991, A4: 23/05/1996, A5: 06/03/2001, A6: 01/11/2006. B) The 15- year series at Pota de
Llop; dates B1: 07/11/1993; B2: 30/07/1998; B3: 28/07/2003; B4: 30/06/2008. C) The 5- year series at Riou Archipelago; dates C1: 20/06/2001; C2 05/01/
2006.
doi:10.1371/journal.pone.0023744.g001
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(approximately 1 mm2) and survived for more than one year. This

approach gave a conservative estimation of recruitment for the ten

species analyzed. Newly established individuals were individually

labeled and censused as long as they remained alive. Recruitment

was standardized to the initial adult population size for each species.

Growth rate and estimated longevity
The growth rate for each colony was calculated as follows:

Dtz1{Dtð Þ= ttz1{ttð Þ ð2Þ

where D refers to the diameter and tt+1 and tt are the initial and final

census dates, respectively. The time interval considered for growth

measurements was 5 years. The diameter of sponge and scleractinian

colonies was calculated using the program CPCe 3.4 [32]. Growth of

A. acaule and C. rubrum, which exhibit a tree-like form, was measured as

any change in the development of branching. Growth measurements

were performed only for the specimens (187 individuals) that were alive

during the entire study period (25-, 15-, and 5-years).

To estimate longevity, four annual growth rate estimates were

generated for each species based on the mean, upper quartile, upper

decile, and maximum of long-term average values observed in the

Table 1. The ten species under long-term study in Mediterranean coralligenous communities.

Species * **
Morphological
description Reproduction type Geographic area and depths

Photographic
Series Half-life (year)

Aplysina cavernicola S M Yellow-massive sponge,
with irregular disposed
digitate extensions

Gonochoric, oviparous,
unknown larvae1

Mediterranean Sea.
Dimly lit habitats3

5 yr not reached yet

Chondrosia reniformis S M Spoted sponge with dark-
brown and white spots,
lobate with firm consistency

Gonochoric, oviparous,
unknown larvae1

Mediterranean & Atlantic.
Dimly lit habitats. Depth
range: up to 60 m3

15 yr not reached yet

Haliclona fulva S E Orange encrusting sponge,
oscula at the end of short
oscular chimeneys

Hermaphroditic,
viviparous, swimming
larvae1

Mediterranean & Atlantic
coast (Guinea & Canary
Islands). Dimly lit habitats3

5 yr not reached yet

Petrosia ficiformis S M From ficiform shaped to
irregularly globular forms,
with fused globes, red color
due to cyanobacteria

Gonochoric, oviparous,
swimming larvae1

Mediterranean Sea & Atlantic
(Azores, Canary Islands, Cape Verd).
Sublittoral vertical walls, caves, and
crevices. Depth range: 10–40 m3

15 yr not reached yet

Scalarispongia
(Cacospongia) scalaris

S M Light to medium grey,
massive sponge, with an
unarmoured and conulose
surface.

Unknown, viviparous,
swimming larvae1

Mediterranean Sea & Atlantic
(Portugal, Azores, Canary Islands).
Dimly lit habitats (sublittoral vertical
walls, caves, and crevices).
Depth range: up to 60 m depth3

25 yr not reached yet

Spirastrella cunctatrix S E Soft-orange encrusting
sponge, with vein-like
surface canals

Supposedly gonochoric,
oviparous, supposedly
creeping larvae1

Mediterranean Sea.
Dimly lit habitats3

15 yr not reached yet

Alcyonium acaule A T Red colonial alcyonacean
with a massive treelike
growth form

Gonochoric, surface
brooder, planula larvae,
limited dispersal
capacity2

NW Mediterranean Sea.
Dimly lit habitats (vertical and
horizontal rocky bottoms).
Depth range: 10–45 m2,4

15 yr 10 yr

Caryophyllia inornata A C Solitary, azooxanthellate
cup- coral

- Mediterranean Sea and Atlantic
(Manche, Azores, Canary Islands).
Dimly lit habitats (vertical or
overhanging rockfaces and sea caves).
Depth range: from surface to 100 m8

25 yr 10 yr

Corallium rubrum A T Red colonial
octocorallian with
arborecent growth form

Gonochoric, brooder,
planula larvae, limited
dispersal capacity5

Mostly W Mediterranean Sea but
also occurs E Mediterranean and
African Atlantic coast. Dimly lit
habitats (caves, vertical cliffs and
overhangs). Depth range: 10–800 m6

25 yr not reached yet

Leptopsammia pruvoti A C Solitary, azooxanthellate
scleractinian coral

Gonochoric, brooder,
planula larvae7

Mediterranean Sea and along Atlantic
coast from Portugal to southern
England. Dimly lit habitats (under
overhands and sea caves). Depth
range: from surface to 70 m depth8

5 yr 16 yr

1A. Ereskovsky 1 (pers. comm.);
2N. Teixidó (unpubl. data);
3MJ. Uriz (pers. comm.),
4Gili et al. (1984),
5Vighi (1972),
6Zibrowius et al. (1984),
7Goffredo et al. (2006),
8Zibrowius (1980).
Species are ordered as a function of their group.
*Group: S: sponges; A: anthozoans.
**Growth forms: E encrusting; T tree; C cup: M mound.
doi:10.1371/journal.pone.0023744.t001

Temporal Dynamics of Mediterranean Coralligenous Outcrops

PLoS ONE | www.plosone.org 4 August 2011 | Volume 6 | Issue 8 | e23744



population. For C. rubrum, we used published growth data based on

skeletal growth rings to estimate longevity due to the high precision

of this technique [33], [34]. Four separate estimates of longevity

were generated by dividing the diameter of the largest benthic

species encountered (in the literature or in this study) by the mean,

upper quartile, upper decile, and maximum growth rates obtained

in this study. Our use of four descriptors (mean, upper quartile and

decile, and maximum growth rates) to estimate the longevity of each

species reflects a general consensus regarding the difficulty of

performing demographic analyses in clonal organisms due to the

fact that they exhibit the potential for indeterminate growth and the

capacity to undergo both fusion and fission and to recover from

partial mortality [27], [35], [36]. Longevity data for A. acaule are not

presented in this study because of the very slow growth patterns of

this species, causing it to exhibit extreme ages.

Turnover rate calculations
We followed standard procedures applied in forest communities

to calculate population change [37], [38], [39]. We consider this

calculus a good approximation to calculate instantaneous

measures of change per unit of the marine benthic species

population. Let the census interval be t, and population size at

time t and time t+1 be nt and nt+1. The number of survivors at time

t+1 is St+1, so the number of recruits is nt+12St+1.

Net change was calculated as follows:

Ln Nt{Ln Stz1½ �=t{ Ln Ntz1{Ln Stz1½ �=t ð3Þ

In this study, the time interval in equation (3) is one year.

Life histories of species
We compiled the most relevant life-history characteristics of the 10

species. Each species was ranked from 1 to 4 based on mortality and

recruitment rates, maximum growth rates, % of no growth or negative

growth, longevity, and turnover rates obtained throughout this study.

Statistical analyses
A non-parametric analysis of variance, PERMANOVA [40],

was used to examine the temporal trends among the different

demographic parameters obtained. For mortality and recruitment,

analyses were performed to test for differences among years (1-way

PERMANOVA) and between time intervals and species (2-way

PERMANOVA). For the latter analysis, annual censuses were

pooled over intervals of five years. Thus, the 25-, 15- and 5-year

series contained 5, 3, and 1 interval(s), respectively. Species was

analyzed as a fixed factor, whereas years and time intervals were

random. In addition, 1-way PERMANOVA was applied to test for

differences in growth at the beginning and the end of the studied

period. Finally, 1-way PERMANOVA was performed to calculate

changes in turnover rates across time intervals. Differences

between samples were quantified using Euclidean distances and

4999 unrestricted random permutations of the raw data were

performed [41]. Pair-wise comparisons for all combinations of

Species6Time intervals were also carried out using t-tests and

9999 permutations of the raw data. The analyses were computed

using the program Primer v6 with the PERMANOVA + add-on

package [42].

Results

Long-term trends in mortality rates
Analyses of the photoquadrats identified (i) 180 initial

individuals that could be tracked between 1981 and 2006 (25-

year data) belonging to Scalarispongia scalaris (n = 28 specimens),

Caryophyllia inornata (n = 100), and Corallium rubrum (n = 52); (ii) 148

individuals between 1993 and 2008 (15-year data) belonging to

Chondrosia reniformis (n = 16), Petrosia ficiformis (n = 30), Spirastrella

cunctatrix (n = 52) and Alcyonium acaule (n = 50); and (iii) 343

individuals between 2001 and 2006 (5-year data) belonging to

Aplysina cavernicola (n = 85), Haliclona fulva (n = 71), and Leptopsammia

pruvoti (n = 187).

Overall, the mean mortality rate was low with values of

3.4%60.4 being obtained for all ten species (n = 671) (Fig. 2).

Nearly all species in each census had rates below 5% (75% of

instances). Mortality rates did not differ significantly among years

(F24,117 = 0.41, p.0.05) and were fairly consistent between time

intervals (five-year period) (F4,112 = 0.25, p.0.05) (see Table S1 for

2-way PERMANOVA test). There was no significant interaction

found between species and the time intervals (F16,112 = 1.6,

p.0.05). However, mortality patterns differed significantly among

species (F9,112 = 5.3, p = 0.004). Considering the species term, pair-

wise comparisons showed significant differences among species.

For example, the scleractinian C. inornata and the alcyonacea A.

acaule showed the highest mean rates of mortality (9.2%62.3 SE

and 6.8%60.8, respectively) and differed significantly from the

sponges S. scalaris, C. reniformis, and P. ficiformis, which exhibited

much lower mortality rates (0.5%60.3 SE, 2.2%61.3 SE, and

1.1%60.6 SE, respectively). C. inornata showed the highest

mortality rate, with a value of 40% in 1999–2000. Conversely,

the lowest mortality rate was zero, observed in 45% of instances,

with the most extreme being for the massive sponge S. scalaris, in

which only 4 out of 28 individuals died in different years during

the 25-year of investigation. The red coral C. rubrum showed an

intermediate level of mortality of 2.7%60.7 SE. Overall, these

values indicate that a half-life (time until 50% of initial individuals

are dead) was not reached for the majority of the species, for

example C. rubrum and S. scalaris (Table 1).

Long term trends in recruitment patterns
Recruitment was only observed for 6 out of the 10 surveyed

species over the study period (Fig. 3). A total of 232 recruits were

recorded mainly belonging to three species A. acaule (40%), C.

inornata (32%), and S. scalaris (19%). Between 0 and 7 recruits were

observed for the other species over the study period. Therefore,

larval recruitment was low, oscillating between 0 (in 58% of

instances) and 17 recruits (in 0.5% of instances) (Fig. 3). No recruits

were recorded for C. reniformis and P. ficiformis (during 15-years) or

for A. cavernicola and H. fulva (during 5-years) (Fig. 3). The mean

recruitment rate was 3.160.5 SE recruits yr21 for the ten species

and annual censuses. The differences in recruitment patterns were

not significant among years (F24,117 = 0.62 p.0.05) but differed

significantly among species (F4,112 = 4.5, p = 0.01) and for the

interaction term between species and time intervals (F16,112 = 2.5,

p = 0.003) (see Table S2 for 2-way PERMANOVA test). For the

sponge S. scalaris, recruitment was 9.261.6 SE and 14.362.0 SE

recruits year21 over the first and second intervals, respectively.

Similar trends were found for the scleractinian C. inornata (with

6.861.0 SE and 1.560.7 SE recruits year21) and the alcyonacea A

acaule (with 18.061.6 SE and 14.062.2 SE recruits year21) over

the fourth and fifth intervals, respectively. Mortality among the

recruits was high, and approximately 50% of the recruits died

during the first 5 years after the first observations. Interestingly,

more than 60% of A. acaule recruits died during the first two years.

Conversely, recruit mortality was by far the lowest for S. scalaris

(27% after 25-years), and they survived for a longer time, with a

mean age of 13.8 yr61.07 being observed.

Temporal Dynamics of Mediterranean Coralligenous Outcrops
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Growth patterns
Changes in both surface area and the number of branches of 187

specimens belonging to the 10 species monitored over 25-, 15-, and

5- years are presented in Fig. S2. The data on surface area and

branching patterns represent net growth measurements for each

census over the study period. Overall, we observed low and

asynchronous growth in all specimens across the ten species

analyzed (Fig. S2, Table 2). In 50% of instances, there was negative

or no growth detected for the ten species, corroborating the

existence of a low growth pattern (Table 2). However, this pattern

varied among species. Based on surface area, only the sponge S.

scalaris out of 8 species studied exhibited a significant change in

growth from the beginning (mean value of 140 mm2631.4) to the

end (mean value of 2203.9 mm26415) of the study period (25-years)

(interaction term F7, 267 = 4.4, p,0.0001, pair-wise comparison

p,0.0001). Of the two branching species, only the red coral C.

rubrum (interaction term F1, 86 = 12.8, p,0.001, pair-wise compar-

ison p,0.0001) exhibited a significant increase in the number of

branches, from colonies with less than one branch at the beginning

of the study period to colonies with a mean value of 4.560.5

branches after 25 years. The other species did not show any

statistically conspicuous growth from the beginning to the end of the

investigation periods. Extreme cases were observed for the sponges

C. reniformis and P. ficiformis, which exhibited a decrease of surface

area, and the alcyonacea species A. acaule, which showed a mean

increment of 160.4 fingers after 15 years (n = 19) (Table 2).

Estimated longevities
Considering the 10 species together, the mean estimated

longevity of individuals was 62628 years, with maximum and

minimum values of 200 and 25 years, respectively (Fig. 4). To

provide an approximation of the range of longevity, seven species

showed intermediate longevities (25–45 years) and one species was

much longer lived than all the others (C. rubrum approximately 200

years). Based on the maximum (range from 5 to 68 years) and

mean (from 25 to 200 years) longevity estimations (Fig. 4), it is

reasonable to conclude, that very large individuals of all the

studied species are at least 20–70 year old.

Turnover
We now summarize the population change patterns for the ten

benthic species based on mortality and recruitment over 25-, 15-,

and 5- years (Fig. 5). The mean turnover pattern for all of the

species, showed slow rates over time (0.8060.5% yr21) and it was

not statistically conspicuous over the investigated time intervals

(F4,24 = 0.72, p.0.05). As an example, the coral C. rubrum and both

sponges C. reniformis and P. ficiformis exhibited no change in 45%

and .70% of instances over the 25- and 15 -year periods,

respectively.

Life histories of species
Table 3 summarizes the most relevant life-history characteristics

analyzed throughout this study. Overall, the species exhibit a

gradient of common demographic and life-history patterns of low

mortality, recruitment and grow, and moderate to high longevity.

The majority of the species (n = 7) exhibiting different growth

forms showed low mortality, recruitment, and turnover rates, low

growth and moderate longevity. However, the scleractinian C.

inornata and the alcyonacea A. acaule exhibited the highest mortality

and recruitment rates and high rates of turnover. Interestingly, C.

rubrum presented the highest longevity and the highest proportion

of no growth over time.

Figure 2. Long-term trends in the mortality rates of the ten species in coralligenous communities. Data include the annual mortality rate
(%) for each species from 1982–2008 (25-, 15-, and 5- year time series). The number of individuals at the beginning of the study is shown in
parentheses. Note that black areas indicate zero mortality, whereas white areas indicate no data.
doi:10.1371/journal.pone.0023744.g002
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Discussion

Marine ecosystems are facing a global decline of marine sessile

species in many benthic communities due to the increase of

disturbance regimes linked to global change [43], [3], [44]. Under

this scenario, scientists and managers are putting forth the

questions of the ecosystems’ capacity to recover after natural

and human-induced disturbances and how their populations will

Figure 3. Long-term trends in recruitment of the ten species in coralligenous communities. Recruitment was measured as the number of
recruits * yr21 for each species from 1982–2008 (25-, 15-, and 5- year time series) and was transformed prior to analyses. The total number of recruits
for each species during the study period is shown in parentheses. Note that black areas indicate zero recruitment, whereas white areas indicate no
data.
doi:10.1371/journal.pone.0023744.g003

Table 2. Growth of the ten species in Mediterranean coralligenous communities.

N Measured period % 0 0r neg.
Max Diamterer
or n branches Growth rates (mm/yr) or n6 branches/yr

Species Mean Upper quartile Upper decile Max

Leptopsammia pruvoti 12 5 & 25 yr 39% 17 mmc 0.70 1.18 1.96 3.33

Haliclona fulva 19 5 yr 37% 260 mma 6.63 7.9 12.9 19.9

Aplysina cavernicola 26 5 & 25 yr 28% 220 mma 5.0 7.7 15.0 26.6

Alcyonium acaule* 19 15 yr 82% 45 fingersa - - - -

Spirastrella cunctatrix 29 15 yr 47% 110 mma neg 5.2 8.1 17.6

Petrosia ficiformis 12 15 yr 41% 252 mma neg 6.2 7.2 8.0

Chondrosia reniformis 9 15 yr 48% 180 mma neg 6.1 7.3 9.8

Corallium rubrum 27 25 yr 76% 30 mmb 0.15b 0.17b 0.23b 0.44b

Caryophyllia inornata 12 25 yr 52% 20 mmc 0.68 1.3 1.66 2.6

Scalarispongia scalaris 27 25 yr 30% 180 mma 6.06 8.45 10.8 11.8

Notes:
a: N. Teixidó (unpublished data),
b: Torrents (2007),
c: Zibrowius (1980).
*Growth data for Alcyonium acaule is not presented due to the extreme low growth values.
Annual growth rate estimates (diameter or nu branches) were generated for each species based on mean, upper quartile (highest 75% of data), upper decile (highest
90% of data), and maximum values. Data also include the percentage of individuals showing 0 or negative growth over each census (% 0 or neg.). Max Diameter
indicates the largest colonies encountered in the field or literature.
doi:10.1371/journal.pone.0023744.t002
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change. Therefore, basic knowledge regarding the demographic

processes of sessile marine species at relevant spatial and temporal

scales is becoming crucial, especially for long-lived species. The

present long-term study quantitatively revealed a common life-

history pattern among the ten studied species, despite the fact that

they display different morphological forms, in which low mortality

was accompanied by infrequent recruitment events, low growth

rates of adults, and estimated life-spans covering from decades to

Figure 4. Maximum longevity data for the 10 benthic species. These data are based on the largest size encountered and growth rate
measurements (mean, upper quartile, upper decile and maximum).
doi:10.1371/journal.pone.0023744.g004

Figure 5. Rates of population change through time for the ten benthic species. The black line represents the mean.
doi:10.1371/journal.pone.0023744.g005
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centuries (Fig. 2, 3, 4). These results significantly expand our

knowledge related to the population dynamics of coralligenous

Mediterranean species, and they are consistent with previous

studies of long-lived structural species [45], [46], [47], [48]. It is

important to note that, rather than clearly distinguishable types of

life histories, a continuum of demographic patterns was found

within the K- selection traits of the studied species (Table 3) [49],

[50]. Moreover, the low to moderate turnover rates (mean value of

0.80% yr21) observed among species corroborated their low

dynamics and persistence (Fig. 5). These demographic traits

correspond to those expected based on theory of life-history

evolution for species that grow in stable environmental conditions

[19]. Age estimations provide (mean estimated age from 25–200

years) a first approximation of how ages are distributed among

structural species (Fig. 4) and underscore the importance of age

demographics in the ecological structure and function of these

outcrops. This study represents a pioneer effort to better

understand species’ life-history traits over long temporal scales to

comprehend the natural variability of demographic process and

evaluate ecological significance in terms of community structure

and dynamics.

The mortality rates for all 10 studied species were low

(3.4% yr21 for all species combined), did not change during the

study period, and were 0 in 45% of the cases (Fig. 2). Moreover,

none of the populations that we originally followed for 25-, 15-,

and 5-years disappeared. These results suggest that natural

mortality in the adult population is low, thus leading to high

persistence of the community. Mortality rates in other long-lived

benthic species have also been reported to be low but depend

greatly on species (see below) and size class [51], [46], [26], [52].

The mortality rates for the scleractinian Caryophyllia inornata (mean

value 9.262.3% yr21) and the alcyonacea Alcyonium acaule (mean

value 6.860.8% yr21) were significantly high (Fig. 2). Moreover,

the former species exhibited peaks of mortality as high as 14 and

40% yr21 (1991, 1999, 2000, 2006). This may indicate that

variability among species and over short time scales is also

important. The mortality rates of these species were high relative

to their slow growth and moderate recruitment (Fig. 2, Fig. 3,

Table 2). Interestingly, these two species showed the highest

recruitment among the 10 species with peaks as high as 32 recruits

yr21 for A. acaule (4-fold higher than the overall mean, see below).

However, the survival among recruits was low (50 and 75% for C.

inornata and A. acaule, respectively), and more than 60% of the

recruits of A. acaule died during the first two years of observation.

This is reinforced by the ,10 years required for a surviving recruit

of A. acaule to attain the size of a 1- finger- colony (largest size

encountered in nature is an ,45- finger- colony) (N.Teixidó,

unpublished data). Adult mortality in long-lived species has been

reported to be a key factor for population persistence because it

will influence the time that a population can persist without

recruitment [47], [17], [22], [52]. Additionally, Huston [53]

suggested that high densities of long-lived individuals with low

growth rates should arise only over relatively long periods of time

under conditions of low mortality. Importantly, immediate and

delayed mortality rates in extraordinary events, such as the mass

mortality events of 1999 and 2003 in the NW Mediterranean Sea,

have been reported to be higher than 10% and 48% of the initial

population, respectively [16], [54], [18]. The ten studied species

were among the species affected by these mortality outbreaks [55],

[18]. Thus, the relevance of this study is that it provides natural

mortality rates over a long temporal scale (decades) that can be

contrasted with data obtained after unusual, -low frequency

events.

Our surveys performed using 25-, 15-, and 5- year photographic

series revealed that recruitment was generally low (mean value of

3.160.5 SE recruits yr21) and did not differ among years,

providing only a very small fraction of the new colonies needed to

maintain population sizes (Fig. 3). Extreme cases were observed for

the massive sponges Chondrosia reniformis and Petrosia ficiformis (15-

years), Aplysina cavernicola and the encrusting species Haliclona fulva

(5- years), for which no recruitment was observed over the study

period. Moreover, even though the other six species showed

discrete recruitment events, 50% of these new recruits did not

survive 5 years after their detection. Therefore, it is relevant to

emphasize that despite the importance of recruitment processes,

the survivorship of new individuals over time is crucial for the

establishment and maintenance of populations [28], [56], [57].

Hughes and Tanner [26] emphasize the distinction of two types of

mechanisms to explain the possible causes of recruitment failure: i)

factors related to competition for substrate (filamentous and fast-

Table 3. A summary of the demographic and life-history characteristics of the ten species under study.

Charac-
teristics

Alcyonium
acaule

Caryophyllia
inornata

Spirastrella
cunctatrix

Scalarispongia
scalaris

Corallium
rubrum

Haliclona
fulva

Leptops-
ammia
pruvoti

Aplysina
cavernicola

Chondrosia
reniformis

Petrosia
ficiformis

Table/
Figure

Group A A S S A S A S S S

Growth
forms T C E M T E C M M M

Mortality 1 1 3 4 4 3 3 3 3 4 Figure 1

Recruitment 1 1 2 1 2 4 3 4 4 4 Figure 2

Growth
(max)

- 2 1 2 4 1 2 1 2 2 Table 2

% 0 or neg.
Growth

1 2 2 3 1 3 2 2 2 2 Table 2

Longevity 4 4 3 1 3 4 4 3 2 Figure 3

Turnover 2 2 3 2 4 4 4 4 4 4 Figure 4

Mean
Rank

1.25 2 2.5 2.5 2.6 3 3 3 3 3

Species are ordered from lowest (4) to highest (1) rank values. Group: S sponges; A anthozoans. Growth forms: E encrusting; T tree; C cup; M mound.
doi:10.1371/journal.pone.0023744.t003
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growing macroalgae or other invertebrates), predation, and

physical disturbances; and ii) factors related to the decrease of

the larval pool or lower fecundities associated with positive

seawater temperature anomalies [58], [59], [60]. The relative

importance of recruitment vs. mortality in determining the

viability of sessile marine species can be obtained from

demographic studies using matrix transition probabilities to

explore the sensibility of population growth rates [22], [48]. Our

recruitment results suggest that this process probably does not

strongly influence the abundance of the adult populations. Within

this context, the 10 species studied presented life-history traits

characteristic of organisms with a high life expectancy within the

bet-hedging theory: low and variable recruitment but high and

constant adult survival [19].

Longevity and slow growth are not unknown in coralligenous

species. In this study, we demonstrate the existence of a continuum

of age estimates (,50 yr) (Fig. 4), which provides a solid overview

of the long life spans of these species but also shows the among-

species variation in longevity. This existence of such a continuum

in longevity and life histories in these species despite showing

different morphological forms suggests that they may have

experienced common evolutionary routes. Accurate estimates of

life spans are crucial for understanding evolutionary relationships

and population and community dynamics. In addition, interest in

the conservation and protection of coralligenous outcrops,

resulting from their long life spans, recognition of their ecological

importance, and threats posed by fishing practices, habitat

destruction, recreational diving, and invasive species has increased

considerably. The long life spans of the ten species shown here

reinforce the need for further protection of this community [61].

The longevity of Corallium rubrum challenges the concept that this

species is renewable in the context of fisheries management [13],

[62]. In addition, damage to these sponges and octocoral species

has far-reaching implications for biodiversity, ecosystem structure

and function.

We found that mean turnover rates of coralligenous species

were low over the time period studied (Fig. 5). Overall, this result

indicated that there was a synchronized response of the two

parameters, with recruitment occasionally exceeding mortality due

to the recruits of A. acaule and C. inornata. Species turnover is an

emergent property of underlying structural and dynamic commu-

nity processes [63], [64], [65]. Coralligenous outcrops are driven

mainly by endogenous growth, in which energy supplies and

biological interactions, such as competition for space, are

important drivers [66], [13], [12]. However, exogenous distur-

bance events, such high positive temperature anomalies or severe

storms (e.g. an unusual and dramatic storm in December 2008

with waves 12 m high), have affected these communities during

the last decades, and climatic scenarios predict an increase of

environmental variability as a result of more frequent extreme

climatic events [67]. The question behind it is, whether

catastrophic disturbances occur frequently and synchronously

enough to generate large-scale lags of recruitment following

mortality, or whether they are so rare and random that, instead,

pulses of recruitment lead to pulses of mortality. Adaptation of

species to disturbance depends on coupling between disturbance

frequencies and lifetimes and is evolutionarily important [68],

[69]. If these dramatic disturbances occur frequently and

synchronously enough to generate pulses of mortality with lags

in recruitment, then this poses serious questions about the

consequences for biodiversity maintenance, the structure and

functioning of these communities, and their resilience in the face of

ongoing climate change.

We would like to point out that it may not be ideal to establish

the late nineteenth- or early twentieth- century as a baseline

concerning population and community dynamics in the Mediter-

ranean Sea, because the whole system may be undergoing a shift.

For instance, overfishing has severely reduced the number of large-

sized individuals [70], [71], and several coral species from the

Pacific Ocean and the Mediterranean Sea have been extensively

harvested for jewelry [72], [13], [62]. Therefore, we hypothesize

that this reduction of large-sized organisms has ultimately led to a

shift in the size distribution of sessile invertebrates, with

repercussions for their longevity and persistence, in particular,

and in their population dynamics in general. However, we believe

that our findings obtained over decades and different geographical

areas provide consistent patterns regarding the natural variability

of demographic parameters and life-history traits.

In the present study, 25-, 15-, and 5- year photographic records

from two localities in the NW Mediterranean Sea provided

baseline data on the demographic processes associated with ten

sessile species (sponges and anthozoans), that are important

structural components of coralligenous outcrops. The results

presented here provide quantitative evidence of the natural

variability in demographic traits previously attributed to these

types of species over long time periods. In addition, this study has

indicated critical life-history traits and ecological factors that may

be important for the dynamics of coralligenous outcrops. Insights

gained from demographic data underscore the value of annual

surveys and measurements of individuals. Applying this approach

to more coralligenous species, from multiple sites and over time, is

likely to greatly extend our ability to model the dynamics of these

complex, long-lived and resilient sublittoral benthic communities.

Our findings are highly relevant for any mathematical model of

population and community dynamics. Determining demographic

parameters of species is fundamental to understand and predict

the present and future dynamics of individuals, populations, or

communities [73].

Supporting Information

Figure S1 Map of the study sites in the NW Mediterra-
nean Sea. Riou Archipelago (43u109400N, 5u239500E, SE

France, 1 site with 25- year and 3 sites with 5- year of data) and

La Pota de Llop, in the Medes Island Marine Protected Area

(42u39N, 3u139E, NE Spain, 1 site with 15- year of data).

(TIF)

Figure S2 Growth patterns of the ten species studied.
Changes in surface areas of the monitored specimens for the

sponges Aplysina cavernicola, Chondrosia reniformis, Haliclona fulva,

Scalarispongia (Cacospongia) scalaris, Petrosia ficiformis, and Spirastrella

cunctatrix and the scleractinian species Caryophyllia inornata and

Leptopsammia pruvoti or in number of branches for the octocoral

species Alcyonium acaule and Corallium rubrum. The black line

represents the mean 6 SE.

(TIF)

Table S1 Non-parametric univariate analysis of vari-
ance (PERMANOVA) of mortality rates based on Euclid-
ean distances for annual mortality rates (%) of the 10
species.

(DOC)

Table S2 Non-parametric univariate analysis of vari-
ance (PERMANOVA) of recruits based on Euclidean
distances for the number of recruits * yr21 of the 10
species.

(DOC)
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