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Abstract

Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae,
a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft
ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships
between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a
pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been
considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding
biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be
crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal
analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that
engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of
water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the
main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-
feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin
for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during
the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary
missing link between the tick families.
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Introduction

Ticks (Ixodida) are composed of three main families, the hard

ticks (Ixodidae,700 species), the soft ticks (Argasidae,200

species) and the Nuttalliellidae (monotypic) [1–2]. Genetic and

morphological data indicates that the hard and soft tick families

are monophyletic to the exclusion of all other mites [1,3–5],

suggesting that a blood-feeding lifestyle evolved within the

ancestral tick lineage. However, differences in the salivary gland

repertoires and lifestyles of the main families suggest that many

blood-feeding mechanisms evolved independently [6–8].

Hard ticks are characterized by the presence of a sclerotized

scutum, the apical position of their gnathostoma (mouthparts) and

numerous denticles on their hypostome [9]. Soft ticks have a

leathery integument, nymphs and adults lack a sclerotized scutum

and mouthparts are located anterior ventrally [9]. Nuttalliella

namaqua possess a partly sclerotized pseudo-scutum and an apical

positioned capitulum [10–11]. However, it also has a leathery

integument with few denticles on its hypostome [10–12]. It has

been described as the ‘‘evolutionary missing link’’ between the

hard and soft tick families [10]. Bedford assigned N. namaqua to the

Ixodidae, related to the genus Ixodes, primarily based on the

presence of its pseudo-scutum and pre-anal groove [10]. He

considered this as evidence for the origins of ixodids in Africa.

Schulze and Aragão assigned N. namaqua to a separate tick family,

the Nuttalliellidae [13–14]. Hoogstraal considered the Nuttallielli-

dae to be a separate truncated branch of the superfamily Ixo-

doidae that diverged from the Ixodidae close to the last common

ancestral node, a notion supported by Oliver [15–16]. Recent

considerations place the Nuttallielllidae within the Ixodoidea, but

leaves the phylogenetic relationships for the three families

unresolved, primarily due to the absence of any molecular data

for N. namaqua [1–2]. The latter’s phylogenetic position could

therefore have significant implications for hypotheses on the

evolution of a blood-feeding lifestyle in ticks [7].

The lifestyle strategies of hard and soft ticks and their blood-

feeding mechanisms differ significantly [7,15–16]. Hard ticks of all

life stages (larvae, nymphs and females) feed for prolonged periods

that can last from several days to weeks [9]. They ingest more than

hundred times their body weight in blood during feeding and

concentrate this blood meal by secretion of excess water (60–70%)

back into the host via the salivary glands [17–19]. Soft ticks (adults,

nymphs and some larvae) feed rapidly to engorgement, within

minutes to hours, with the amount of blood taken up limited by
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the extent that their leathery integuments can expand. This

generally results in the uptake of blood two-ten times their initial

bodyweight [20]. Excess fluid is secreted by the coxal glands. In

the case of N. namaqua, no knowledge exists regarding its life stages

and feeding habits. It was suggested that the preferential host

could be rock hyraxes (Procavia capensis), swallows, rodents and

meerkat [10–11], while Agama or other lizards was also considered

[15]. Efforts to feed females and nymphs on chickens, pigeons,

rabbits, rats or mice were unsuccessful [15]. As yet, no empirical

evidence exists to give definitive information on host preference.

Only eighteen N. namaqua specimens were found to date in

southern Africa and Tanzania. Bedford described the holotype

based on one female found under a stone near Kamieskroon,

Namaqualand, South Africa [10]. Schulze’s tick collection

contained a specimen from Windhoek, Namibia [11]. Ten

specimens were collected from museum skins of the slender-tailed

meerkat (Suricata suricatta hahni) from Kobos, Rehoboth district,

Namibia and one from Brants’ karoo rat (Parotomys brantsi), Port

Nolloth, Namaqualand, South Africa [21]. Two specimens were

collected from the nests of the striped swallow (Hirundo abyssinica

unitatis) [11]. Most recently, Dixon collected three nymphs and two

females on the ground thirteen km south of Springbok, Namaqua-

land, South Africa in 1980 [22]. Most existing samples are

therefore of historic value, more than twenty years old and not

useful for DNA extraction as evidenced by previous attempts that

failed to obtain adequate quantities for molecular analysis [1]. In

this study, new N. namaqua specimens were collected to investigate

questions regarding its phylogenetic relationships to the other tick

families, natural hosts, feeding biology and the evolution of blood-

feeding in ticks.

Results

Distribution of N. namaqua
Two new collection localities for N. namaqua include Graaff-

Reinet in the Eastern Cape (1 nymph) and Heuningvleipan in the

North-West province (2 adults) (Fig. 1). Ten live and twenty-one

dead specimens were collected near Springbok in Namaqualand,

Northern Cape province (Fig. 1). The total specimen count for N.

namaqua was raised from eighteen females and three nymphs [15],

to fifty-one specimens.

Ticks were collected within a rock crevice, clinging to loose

rocks wedged inside the fissure (Fig. 2A). Potential vertebrate hosts

observed in the vicinity of the collection sites included hyraxes,

skinks, elephant shrews, suricates and tortoises. Skinks were

abundant in the rock crevice and the Cape skink (Mabuya capensis)

could be positively identified.

Ticks were identified based on their leathery integument, semi-

sclerotized scutum that is wider than it is long, orange legs,

presence of ball-joints and apical mouthparts (Fig. 2C and Fig. 2E)

[10]. The larvae, not previously described, could be assigned to the

N. namaqua based on DNA sequencing.

Dissection of a female tick
A partially-engorged female was dissected (Fig. 2F). The gut

shows the typical anterior and posterior stomach lobes with

Figure 1. Localities where N. namaqua has been collected in southern Africa. Biome data are indicated for Namibia [74], and South Africa
[31] and collection sites by black dots and names.
doi:10.1371/journal.pone.0023675.g001
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unbranched caeca that is unique to N. namaqua [12,22]. The semi-

filled state of the gut indicated that this tick fed in the recent past,

but its partial depletion indicated that it has started to process its

blood meal (Fig. 2F). Rupture of the gut showed the presence of

numerous hematin crystals. A Giemsa stained smear prepared

from extruded gut contents showed the presence of intact

nucleated red blood cells (Fig. 2G). A second female was dissected,

but its gut contents did not show the presence of any intact

nucleated red blood cells.

Identification of previous hosts from the gut content
Nucleated red blood cells in the gut indicated that a previous

blood meal was obtained from an avian or reptilian host [23].

Given the collection locality, it was unlikely that birds could be

hosts, while numerous lizards were observed at the collection site.

However, to ensure detection of both avian and reptilian hosts,

primers for the 16S mitochondrial gene that amplifies lizard and

avian gene fragments were used [24]. This strategy was followed as

it is known that nucleated red blood cells retain mitochondria in

lower vertebrates [25]. Sequencing of twenty-six different clones

yielded four different 16S rRNA gene fragments (contig 1: 12,

contig 2: 5, contig 3: 6, contig 4: 3 sequences, respectively).

BLASTN analysis retrieved members of the girdled lizard family

(Cordylidae) with E-values of zero. Neighbor-joining analysis

indicated that contig 1 group within the Karusasaurus clade and

possibly represents Karusasaurus polyzonus. Contig 2 and 4 grouped

with weak support within the Cordylus clade with no distinct

similarities to any of the lizard sequences currently available in the

databases (Fig. 3). Similarly, contig 3 grouped in a clade formed by

the genera Ninurta and Pseudocordylus, but with no distinct similarity

to any lizard sequences currently deposited. The gut contents from

a second dissected tick did not show any intact red blood cells and

no PCR products were obtained from extracted DNA. Neither

was any amplification products detected for DNA extracted from

larvae.

Tick feeding
The identification of lizards as potential hosts prompted the

feeding of N. namaqua on lizards. Both nymphs and adults attached,

probed and fed without engorgement. One nymph attached and

fed slowly for ,3 hours before rapid engorgement, which took

,20 minutes and then remained attached for ,60 minutes. Four

adult females attached and became engorged within 20 minutes.

Rapid feeding coincided with rapid expansion of the leathery

cuticle as observed for soft ticks (Fig. 2D). A period of slow feeding

followed that lasted for 30–120 minutes, during which droplets

were expunged from the anal opening and spurts were observed to

occur in a rhythmic manner, with an appreciable amount of fluid

being secreted (estimated at 30 nl/ 10 seconds). One tick

expanded to a fully engorged state in which even the small

infoldings of the integument became distended (Fig. 2D). En-

gorged weights increased ,5–14 times compared to the unfed

weight. The female that engorged to the greatest extent, ingested

,14 ml final volume (w/v basis), assuming a density of blood of

1.06 g/ml [26]. It also remained attached in the engorged phase

for one hour during which time fluid secretion occurred. A

secretion rate of 30 nl/ 10 s was calculated based on droplet size

excreted, resulting in ,11 ul of fluid secreted. This would make

the final volume of ingested blood ,25 ml and would indicate that

the blood meal was concentrated approximately two fold.

Excretion of fluid terminated immediately upon detachment from

the host and was not observed for up to an hour after feeding.

Tick systematics
The small ribosomal nuclear RNA (18S rRNA) gene is the

most commonly used molecular marker for the investigation of

arthropod and chelicerate relationships at the level of phyla and

Figure 2. Collection and morphology of N. namaqua. A) The
crevice from which specimens were collected. B) A specimen concealed
on a rock obtained from within the crevice. C) A dorsal view of an unfed
female that shows the pseudo-scutum and ventral mouthparts. D) The
same tick shown as an engorged female still attached to a lizard. E) Size
range and general morphology of the collected live specimens. The
black arrow indicates the tick selected for dissection from which lizard
DNA was extracted. F) A dissected female with midgut that indicates it’s
recently fed status. G) A Giemsa stained smear obtained from the gut
contents of the dissected female.
doi:10.1371/journal.pone.0023675.g002
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superphyla [27–29]. It was particularly useful in the analysis of

phylogenetic relationships within the parasitiform mites and

especially ticks at the familial and generic levels [3–5]. No

nucleotide bias was observed within the 18S rRNA gene fragment

(1571 bp) obtained for N. namaqua (A 25%, G 27%, C 23%, T 25%)

and was comparable to nucleotide frequencies observed for other

tick 18S rRNA genes [4]. BLASTN analysis retrieved as best hits

members of the hard tick family (E-values = 0) confirming the

relationship of N. namaqua to the Ixodida. Bayesian analysis of the

full 18S rRNA dataset (64 sequences) indicated that the three tick

families are monophyletic, but that N. namaqua grouped basal to the

hard and soft tick families, with the Allothyrida as sister-group

(Fig. 4). Most nodes are well supported with posterior probabilities

above 95% and the topology of the consensus tree is similar to

previous studies for the Ixodida [4–5]. This also correlates with

general considerations regarding the current knowledge on the

phylogenetic relationships for the various tick genera [1], except for

the Rhipicephalinae clade which has been condensed due to the fact

that this fragment of the 18S rRNA gene is identical for all

members.

The 18S rRNA gene is too conserved to be useful for resolving

relationships at lower taxonomic levels and within the Ixodidae

many closely related species have 18S rRNA genes with little

phylogenetic information [3]. Conversely mitochondrial genes, such

as the 16S rRNA gene, are useful to resolve relationships at generic

as well as species level and a combination of data could therefore

prove to provide phylogenetic signal at both high and low

taxonomic levels [3]. We therefore included 16S rRNA data to

incorporate fast evolving sites that will allow resolution of closely

related species, while retaining the 18S rRNA information necessary

to resolve the higher level relationships. This concatenated dataset

only contain 25 taxa, but produced similar relationships for the

various tick genera and supported the grouping of N. namaqua at the

root of the tick tree with a posterior probability value of 100 for

Bayesian and 97% bootstrap value for maximum parsimony

analysis (Fig. 5). Both methods gave consensus trees with similar

topologies that recapitulate the current consensus on relationships

within the Ixodida at generic level.

Discussion

The following scenarios for the biology of N. namaqua, the origin

of ticks and the evolution of blood-feeding behaviour are suggested:

Geographic range of N. namaqua
The geographic range of N. namaqua within southern Africa

(excluding Tanzania), seems to be distributed across regions

primary xeric in nature (Fig. 1). This includes the mixed tree and

shrub savannah biome ranging from the Vryburg district in the

East to Kobos, Rehoboth in the West, the Nama Karoo biome of

the smaller Karoo in the South at Graaff-Reinet and the central

succulent Karoo biome of Namaqualand that includes Kamie-

skroon, Port Nolloth and Springbok [30–31]. It is expected that N.

namaqua will be distributed across the numerous biomes of the

greater Karoo area that link these regions (Fig. 1) [30–32].

Natural hosts for N. namaqua
The identification of 16S rRNA genes of four different lizard

genotypes from the blood meal suggests that this female fed at least

four times. The blood meal can therefore be stored for prolonged

periods of time with adults feeding several times intermittently. It

also suggests that the preferred natural hosts are lizards. It is not

known whether larvae and nymphs would preferentially feed on

lizards or whether elephant shrews or rodents could be possible

hosts. Previous records of N. namaqua obtained from museum skins

of rodents and suricates as well as from bird nests [11], could

indicate that it is a generalist and that its host preferences depends

on its ecological habitat. This can as yet not be excluded, although

the successes described in the feeding of N. namaqua on lizards

suggest that they might be preferential hosts.

All host DNA identified belong to the Cordylus family (80

named taxa) of scinciform lizards that is endemic to sub-Saharan

Africa [33]. Karusasaurus (2 species) are limited to semi-arid areas in

South Africa and Namibia, while Cordylus (20 species) is widely

distributed from South Africa as far north as Ethiopia [33]. Most

members are highly adapted to rock-dwelling lifestyles and would

therefore fill potential ecological niches for N. namaqua. The wide

distribution of this lizard family, linked with the finding of N.

namaqua in Tanzania could suggest that the Nuttalliellidae could be

much wider distributed than the current data suggests.

Feeding, blood meal processing and concentration
Previous attempts to feed N. namaqua on a variety of vertebrate

hosts were unsuccessful and included chickens, pigeons, hamsters,

rabbits, mice or rats [12,15]. Successful feeding of all selected

nymphs and adults on lizards were therefore significant.

The long periods of attachment without feeding have been

observed in many argasids [34]. More noteworthy is the rapid

engorgement (10–30 minutes) followed by slow engorgement for

up to an hour. This slow phase probably occur to concentrate the

blood meal, which were estimated to be approximately two fold.

This correlates well with values estimated for argasid ticks [20]. A

packed cell volume of 37% was determined for the lizards used

for feeding, which correlated with packed red blood cell volumes

determined for other lizards (30–40%) [35]. A 2–3 fold blood

meal concentration would be close to the limits of blood

concentration that can be expected in the absence of cuticular

growth as observed for ixodids and the absence of red blood cell

lysis.

No secretion of coxal fluid was observed either during feeding or

after detachment and was confirmed over a period of several days.

This contrasts with argasids, which secrete coxal fluid during

feeding or after detachment [34,36]. This was not due to limited

engorgement, as the tick was fully distended after repletion. In

addition, no evidence could be found for coxal organs in two

dissected ticks and corresponds to previous observations [22].

Active secretion of fluid from the anal pore was observed during

feeding and occurred most probably via the malphigian tubules,

suggesting that the coxal organs are absent in N. namaqua.

Secretion of nitrogen waste occurred once the blood meal was

assimilated by the ticks and could be observed as white guanine

deposit.

Excretion of fluid during and after a blood meal, by malphigian

tubules via the rectal ampulla, has been observed in the soft tick,

Ornithodoros moubata, which do not defecate due to a blind hindgut

[37]. This mode of fluid secretion is therefore considered to be

ancestral, with independent evolution of fluid secretion via the

coxal organs and salivary glands in the respective tick families.

Figure 3. Phylogenetic analysis of the cordylid lizard family and sequences obtained from the gut content of N. namaqua. Consensus
sequences obtained from N. namaqua are indicated with black dots. Clades and genera are labelled according to Stanley et al. [33]. Genbank
accession numbers are indicated within brackets.
doi:10.1371/journal.pone.0023675.g003
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In ixodids, red blood cells are rapidly lysed after ingestion and

released haemoglobin taken up by digestive cells and stored in

endosomes until proteolytic digestion in the lysosomes [17]. In

contrast, red blood cell lysis occurs in two phases within argasid

ticks [17,20]. Initially, some red blood cells are lysed after

detachment and the released haemoglobin stored within the gut

in crystalline form before being taken up by endocytosis for

proteolytic digestion. The remainder of the red blood cells are

stored in the caeca in an unlysed form [20]. Feeding, blood meal

storage and possibly digestion in N. namaqua is therefore similar to

argasids and we assume that the argasid mode of feeding is

ancestral, as proposed by numerous authors that assumed the

argasid-lineage to be more primitive [15–16,38]. The absence of

intact red blood cells in the second dissected tick could indicate

that blood meal digestion has progressed to a stage where all blood

cells have been lysed. It could also indicate that this tick has mated

after it obtained its previous blood meal [20]. Alternatively, this

tick could have fed on a mammalian host and would therefore not

possess any nucleated red blood cells.

Ancestral morphological features of N. namaqua
The basal position of N. namaqua in the tick tree suggests several

interpretations for morphological features shared with the main

tick families or considered to be unique to N. namaqua. The

presence of a pseudo-scutum or true scutum in ticks would be a

derived ancestral parasitiform character and fits with the

observation that scutums are also prevalent in holothyrid and

larval argasids [39]. In ixodids this character became prominent

due to its excellent protective features during their prolonged

periods of host association. Bedford considered N. namaqua to be

closest related to the Ixodes based on the existence of a pre-anal

groove [10]. However, pre-anal grooves are also present in the

Ornithodorinae and have been considered to be an ancestral

character of the Ixodida [39]. The statement that the gnathostoma

of N. namaqua have an apical position [11], should be tempered by

the description of Bedford [10], that indicated a very short base

dorsally and elongated ventrally. When the photographs of the

current study is scrutinized it is clear that while the gnathostoma

can be seen from the dorsal side (similar to ixodids), it is in fact

located apical-ventrally (similar to argasids). Its intermediate

position is similar to that observed for the holothyrida, but lacks

the distinct camerostome found for holothyrida as well as the

Argasidae [40–41].

The origins and hosts of the ancestral tick lineage
Considerations on the origins of ticks span almost 300 million

years and ranges across many evolutionary epochs that include: the

late Silurian (443–417 million years ago - MYA) [42], Devonian

Figure 5. Phylogenetic analysis of the concatenated 18S-16S rRNA dataset. Indicated is the 50% majority consensus tree obtained with
Bayesian as well as maximum parsimony analysis. Posterior probability and bootstrap support values are indicated above and below the nodes,
respectively. Genbank accession numbers are indicated in brackets as 18S_16S.
doi:10.1371/journal.pone.0023675.g005

Figure 4. Bayesian analysis of the 18S rRNA gene for the parasitiformes. Nodal support is indicated by posterior probability values.
Genbank accession numbers are indicated in brackets.
doi:10.1371/journal.pone.0023675.g004
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(417–362 MYA) [16,43], late Permian (290–248 MYA) [44],

Triassic (248–206 MYA) [15,45–46] and Cretaceous (146–

65 MYA) [3,47–49]. Recent views consider the origins of ticks to

have occurred in Australia or its counterpart of the Gondwanan

landmass, either in the Devonian (390 MYA) [43], or the Late

Cretaceous (120 MYA) [3,49]. The former was based on a

consideration of the limited geographic distribution of the extant

Holothyrida to Australasia [1]. The three families found within the

Holothyrida are, however, more widely distributed than Australasia

and has been found in the New World, with suspected current

distributions that might extend to Madagascar and the mountains of

East Africa [50–51]. Klompen considered that the origins of the

Australian ixodid lineages, many basal within the Ixodidae, could

only have occurred after the breakup of Gondwanaland and by

extension the rest of the ixodid family [3].

Given the basal position of N. namaqua in relation to the major

tick families, this species is the closest living relative to the last

common ancestral lineage. Its limited distribution to southern

Africa makes a good case for the origins of ticks in this region of

Gondwanaland. This extends the suggestion of Bedford for the

origins of the Ixodidae in Africa to the Ixodoidea [10]. Recent

molecular clock estimates, as well as paleontological considerations

would place the origin of parasitiform mites and ticks close to the

Late Carboniferous/ Early Permian (300627 MYA) [52–53].

This is an interesting period in the evolution of vertebrate life in

southern Africa, specifically the Karoo basin [54–55]. In the

Karoo the ideal climatic conditions for the radiation of ecto-

thermic tetrapods were established during the middle Permian

(270–260 MYA), when climate shifted from ice-house to hot-house

conditions [54]. This period saw the evolution of the numerous

therapsid lineages (synapsid mammalian-like reptiles) in the Karoo

that eventually gave rise to mammals [54]. The largest global mass

extinction event occurred at the end of the Permian (Permo-

Triassic Boundary – 251 MYA) with subsequent recovery and

diversification of numerous vertebrate taxa in the Karoo basin

[56–57]. In this regard, fossil evidence indicates that diapsid

reptiles only appeared in the Karoo basin in the Triassic, probably

due to migration from other geographic regions [54,58].

We propose that the ancestral tick lineage originated in the

middle Permian (260–270 MYA) in the Karoo-basin and

parasitized therapsids. The diversification observed for vertebrates

and particularly diapsid reptiles in the Karoo basin after the

Permian mass extinction was paralleled by the speciation events

that gave rise to the main tick families in the Triassic. It also

suggests that the Ixodida narrowly escaped extinction.

It is possible that the Permian mass extinction event saw a

decline in species richness of the Nuttalliellidae due to host

decimation. The paucity of extant species richness could therefore

be due to the fact that N. namaqua is a monotypic ‘‘dead clade

walking’’ and therefore a living fossil [59]. The relative success of

the main tick families with regard to species richness would

therefore be due to their ability to have adapted and diversified

with their respective hosts and varied ecological habitats. The

origins of ticks in the Karoo could also explain why N. namaqua

remained a living fossil, since the basic ecology of the Karoo has

remained constant since Late Permian times, when climatic

conditions in the Karoo basin turned from a relative wet cool

climate to semi-arid conditions [60]. This would have been

exacerbated by its proclivity to inhabit rock crevices that would

maintain sheltered micro-habitats that are frequented by small

crevice crawling lizards.

The only major therapsid lineage that survived the End-

Permian extinction was Lystrosaurus (95% of all early Triassic

terrestrial fossils) and its ability to survive far into the Triassic at

low diversity (two species) was linked to it taking refuge in burrows

[56,61]. It is therefore possible that N. namaqua parasitized this

lineage and when the therapsid lineages were replaced mostly by

diapsids [54,56,58], host switching occurred and lizards became

preferential hosts. Similarly, lizards were probably some of the

major host species parasitized by hard and soft ticks, until

mammals and birds supplanted them as hosts. Association with

synapsid reptiles and their dispersal across Gondwanaland [54]

could have triggered longer host association that eventually

manifested in the typical life cycle of ixodids.

Implications for the evolution of salivary gland protein
complexity

The implication of the current study is that blood-feeding

behaviour evolved within the ancestral tick lineage, before

divergence into the main tick families. This fits parsimonious

arguments for the origins of blood-feeding behaviour in ticks,

given that all ticks are obligate blood-feeding ecto-parasites. This is

in contrast to the proposal that the hard and soft tick families

evolved blood-feeding behaviour independently [6–8]. The latter

proposal was based on the extensive differences observed in

salivary gland sialomes of the hard and soft ticks. In this regard,

few orthologs with conserved function are conserved between the

tick families [62]. It was shown that although the ancestral tick

lineage would have possessed the major salivary gland protein

families, most of the gene duplications found in these families are

lineage specific expansions, indicating that functions associated

with these occurred after divergence of the main tick families [62].

How can these differences be reconciled with the conclusion that

all ticks share a common blood-feeding ancestral lineage?

The proposed origins for ticks in the Late Permian (260–

270 MYA) occurred just before the End Permian extinction event

(251 MYA), while the main tick families, speciated in the Early

Triassic (240–230 MYA). The origins, adaptation to blood-feeding

and speciation therefore happened over a short period of time that

was marked by its own turbulent history of therapsid origins,

extinction and expansion of new vertebrate host species.

Concurrent adaptation to blood-feeding linked with host switching

during this period could have played a major role in the evolution

of blood-feeding behaviour of the main families. This probably

had a more significant effect in ixodids, due to their longer

association with their hosts. In contrast, soft ticks feed fast and it

has been shown that their hemostatic and immune-modulatory

systems have been conserved in the major argasid genera even

though these feed on birds and mammals, respectively [63–64].

Thus, even though blood-feeding evolved in the ancestral tick

lineage, the adaptation to the mammalian and avian blood-feeding

interfaces occurred independently in the soft and hard tick

families. It would be of interest to determine whether the anti-

hemostatic and anti-inflammatory mechanisms conserved in soft

ticks, has been present in the ancestral tick lineage and whether

these would be found in N. namaqua. From a comparative analysis

of salivary gland transcriptomes of hard and soft ticks it was shown

that all of the major protein families are conserved, but that the

majority of gene duplications are lineage specific expansions that

occurred after the divergence of the hard and soft tick families

[62]. This suggested that the ancestral tick lineage had a simple

(few members for each family), but diverse (many different protein

families) salivary gland protein domain repertoire. In regard to a

reconstruction of ancestral proteins evolved for tick-host interac-

tion, a common blood-feeding origin allows for the assignment of

various proteins found in hard and soft tick salivary glands to

ancestral evolved functions. These would include tick apyrases and

biogenic amine-binding proteins [65–66]. The testing of these
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hypotheses would be possible once the sialome for N. namaqua has

been determined.

Conclusions
In conclusion, phylogenetic analysis indicates that N. namaqua

groups basal to both tick families and is the closest extant lineage

to the last common ancestral tick lineage. Its argasid-like feeding

behaviour and biology provides compelling evidence for the

evolution of a blood-feeding lifestyle within the last common

ancestral tick lineage. The semi-arid nature of the Northern Cape

as found in Namaqualand and the Karoo has been maintained

since Permian times. The partiality of N. namaqua for xeric

environments and small reptiles could therefore be an indication of

a lifestyle maintained for more than 250 million years. This would

truly make this tick species a living fossil.

Materials and Methods

Ethics statement
All experiments related to the lizard feedings were performed in

strict accordance with the Ethics guidelines from the Onderste-

poort Veterinary Institute. Experiments were approved by the

Onderstepoort Veterinary Institute Animal Ethics Committee

(approval number: AEC12.11) and falls under the routine tick

feeding and colony maintenance project.

Tick collection
Ticks were collected at Krymekaar (S29u46.0339; E 017u50.4919)

and Voëlklip (S29u44.5189; E 017u51.7699), ,13 km south of

Springbok, Namaqualand, South Africa in the proximity where

Dixon collected N. namaqua specimens in 1980 [22]. All necessary

collection and transport permits were obtained from the Veterinary

Authorities (Permit number: SP2011/02/02/01). In addition

permission to collect ticks from Krymekaar and Voëlklip was

granted by the owner, Mr. A. van Heerden. A single female

collected near Krymekaar were brushed from the roof of a rock

crevice habited by hyraxes (Procavia capensis). Two live nymphs and

seven adults as well as two dead nymphs, six dead adults and twelve

dead larvae were collected near Voëlklip from a rock crevice in the

ground habited by lizards and elephant shrews (undetermined

species). In addition, two females were collected near Heuningvlei-

pan, North-West province (1991) on a rock wall and one nymph in a

collapsed eagle nest near Graaff-Reinet (1995), by one of the authors

(DdK). Ticks were deposited in the Onderstepoort Tick Museum

under the collection numbers OP3403–OP3409.

Tick dissection, preparation of blood smears and DNA
extraction

Two female ticks were embedded in wax and the dorsal cuticles

removed using a scalpel under phosphate buffered saline to reveal

the undisturbed gut. Guts were removed and contents extruded to

prepare Giemsa stained smears and the remainder used for DNA

extraction. The carcasses were extracted separately for DNA. In

addition, four dead larvae were pooled and DNA extracted. All

DNA extractions were performed using the Roche MagnaPure

(Roche Diagnostics) and the MagNa Pure Large Volume DNA

Isolation Kit (Roche Diagnostics).

Amplification and sequencing of the 16S mitochondrial
and 18S nuclear tick DNA

The tick 18S rRNA fragment was amplified with high fidelity

KAPA long range polymerase (KapaBiosystems Inc, Woburn MA,

USA) using the 18S NS1 and 18S NS8 primer set [67]. PCR

products were cleaned up using the silica clean-up kit (Fermentas)

and sequenced using the BigDyeH Terminator v3.1 Cycle

Sequencing Kit (Applied Biosystems) with the 18 NS1 primer as

well as internal primers to obtain a 1571 bp consensus sequence

for the 18S rRNA gene. At least four separate PCR products were

cloned and sequenced for every tick sample. The 16S rRNA gene

was amplified using Pfu polymerase (Fermentas) with the 16S+1

and 16S21 primers [48]. At least four separately amplified PCR

products were cleaned up and sequenced from both sides using the

same primers to obtain a 454 bp consensus sequence.

Bioinformatics for the tick 18S nuclear gene
Sequences for the tick 18S rRNA genes were extracted from

Genbank using BLASTN analysis [68]. All tick sequences, and

sequences for Opilioacarida (outgroup) and Allothyrida, were

extracted and edited to yield a non-redundant dataset of 64

sequences. Sequences were aligned using a consideration of the

secondary structure of RNA (Q-INS-i) as implemented in MAFFT

[69]. Alignments were manually inspected, adjusted and edges

trimmed to give 1610 aligned characters of which 264 were

phylogenetic informative sites.

Bayesian analysis was performed using MrBayes 3.1.2 [70],

using a general time reversible (GTR) of nucleotide substitution

with a proportion of invariant sites and a gamma distribution of

among site heterogeneity using the nst = 6 rates = ingamma

command. Four categories were used to approximate the gamma

distribution and two runs were performed simultaneously, each

with four Markov chains (one cold, three heated) which ran for

3,000,000 generations. The first 300 000 generations were

discarded from the analysis (burnin) and every 100th tree was

sampled to calculate a 50% majority-rule consensus tree. Nodal

values represent the posterior probability that the recovered clades

exist, given the sequence dataset and are considered significant

above 95% [28].

For the 16S rRNA gene, sequences for which 18S rRNA genes

from the same species are available in the database were extracted

to yield a non-redundant dataset of 25 sequences that included one

sequence for the Allothyrida (outgroup). These sequences were

concatenated with the 18S rRNA gene, aligned as above and the

most variable regions (gapped positions) within the 16S rRNA

gene removed to produce an alignment of 1822 bp with 290

phylogenetic informative sites. Bayesian analysis was performed as

described above, while maximum parsimony analysis for this

dataset was performed using the Mega4 program [71]. For

maximum parsimony, all sites were used and a tree search were

performed using close-neighbor-interchange (search level = 1) and

random addition of trees of 500 replications. Nodal support was

estimated using bootstrap analysis (10 000 replicates).

Amplification and sequencing of the 16S lizard
mitochondrial DNA

Primers for the 16S rRNA gene of sub-Saharan scincine lizards

were selected based on the identification of the common Cape

skink (Mabuya capensis) near the Voëlklip collection site. The 16S

rRNA gene (,600 bp) was amplified using the 16S F.1 and 16S

R.0 primer set [24], with Pfu polymerase (Fermentas). BLAST

analysis of this primer set indicated that it will also amplify the 16S

rRNA gene from other reptiles and birds. PCR products were

cloned into the pGEM T-Easy vector system and colonies

screened using the M13 vector primer set. Twenty six positive

colonies were cleaned up and sequenced with the M13 reverse

primer using the BigDyeH Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems). Four different 16S rRNA consensus

sequences were obtained from the 26 clones sequenced and
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sequences were submitted to Genbank (Liz1: JF729312; Liz2:

JF729311; Liz3: JF729310, Liz4: JF729313).

Bioinformatics for the lizard 16S mitochondrial gene
The 16S rRNA lizard sequences were analysed against the non-

redundant database using BLASTN analysis [68]. For each, the

first hundred best hits were retrieved, combined and filtered to

give a non-redundant master sequence data set of 139 sequences.

In the case where multiple sequences from a specific species were

obtained, the number of specimen sequences was limited to two.

As outgroup, members of the genus Platysaurus were included [33],

to give a final master set of 73 sequences that were aligned using

ClustalX [72].

Alignments were manually inspected, adjusted and edges

trimmed to give 387 bp of which 128 were phylogenetic informative

sites. Neighbor-Joining analysis was performed using Mega4

software with the Tamura-3 paramater model [71]. Gaps were

treated as pairwise deletion and both transitions and transversions

were included in the analysis. Rates among sites were treated as

uniform and patterns among lineages as heterogeneous. Branch

support was estimated using bootstrap analysis (10 000 replicates).

Tick feeding on lizards
Skinks (Mabuya genus) captured at Onderstepoort Veterinary

Institute was used for tick feeding. Lizards were restrained by hand

and ticks were allowed to roam freely until attachment. Lizards

were then kept immobile by hand and feeding observed under a

stereomicroscope until completion, after which they were released.

Packed cell volumes were determined by collecting blood in

capillary tubes [73].

Acknowledgments

We thank Mr. A. van Heerden for permission to search his farm for ticks.

Author Contributions

Conceived and designed the experiments: BJM RP AAL DdK. Performed

the experiments: BJM RP DdK. Analyzed the data: BJM RP AAL DdK.

Wrote the paper: BJM RP AAL DdK.

References

1. Barker SC, Murrell A (2004) Systematics and evolution of ticks with a list of valid
genus and species names. Parasitology 129: S15–S36.

2. Guglielmone AA, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Pena A,

et al. (2010) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida) of the
world: a list of valid species names. Zootaxa 2528: 1–28.

3. Klompen JSH, Black WC, 4th, Keirans JE, Norris DE (2000) Systematics and

biogeography of hard ticks, a total evidence approach. Cladistics 16: 79–102.

4. Klompen H, Lekveishvili M, Black WC, 4th (2007) Phylogeny of parasitiform

mites (Acari) based on rRNA. Mol Phylogenet Evol 43: 936–951.

5. Klompen H (2010) Holothyrids and ticks: New insights from larval morphology
and DNA sequencing, with the description of a new species of diplothyrus

(Parasitiformes: Neothyridae). Acarologia 50: 269–285.

6. Mans BJ, Louw AI, Neitz AW (2002) Evolution of hematophagy in ticks:

common origins for blood coagulation and platelet aggregation inhibitors from

soft ticks of the genus Ornithodoros. Mol Biol Evol 19: 1695–1705.

7. Mans BJ, Neitz AW (2004) Adaptation of ticks to a blood-feeding environment:

evolution from a functional perspective. Insect Biochem Mol Biol 34: 1–17.

8. Mans BJ (2011) Evolution of vertebrate hemostatic and inflammatory control
mechanisms in blood-feeding arthropods. J Innate Immun 3: 41–51.

9. Sonenshine DE (1991) Biology of ticks. Volume 1. Oxford: Oxford University

Press. 447 p.

10. Bedford GAH (1931) Nuttalliella namaqua, a new genus and species of tick.

Parasitology 23: 230–232.

11. Keirans JE, Clifford CM, Hoogstraal H, Easton ER (1976) Discovery of
Nuttalliella namaqua Bedford (Acarina: Ixodoidea: Nuttalliellidae) in Tanzania and

redescription of the female based on scanning electron microscopy. Ann
Entomol Soc Amer 69: 926–932.

12. El Shoura SM (1990) Nuttalliella namaqua (Acarina: Ixodoidea: Nuttalliellidae)

redescription of the female morphology in relation to the families Argasidae and
Ixodidae. Acarologia 31: 349–355.

13. Schulze P (1935) Zur vergleichenden anatomie der zecken. Z Morph Ökol Tiere
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