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Abstract

The N-linked oligomannose glycans of HIV gp120 are a target for both microbicide and vaccine design. The extent of cross-
clade conservation of HIV oligomannose glycans is therefore a critical consideration for the development of HIV
prophylaxes. We measured the oligomannose content of virion-associated gp120 from primary virus from PBMCs for a
range of viral isolates and showed cross-clade elevation (62–79%) of these glycans relative to recombinant, monomeric
gp120 (,30%). We also confirmed that pseudoviral production systems can give rise to notably elevated gp120
oligomannose levels (,98%), compared to gp120 derived from a single-plasmid viral system using the HIVLAI backbone
(56%). This study highlights differences in glycosylation between virion-associated and recombinant gp120.
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Introduction

The functional envelope spike of HIV is a trimer of non-

covalently associated gp120/gp41 heterodimers [1], densely

coated with N-linked carbohydrates that are essential for correct

glycoprotein folding and shielding vulnerable protein surfaces

from antibody recognition [2,3,4,5,6,7,8,9]. These carbohydrates

are attached to the envelope proteins via the host cell glycosylation

pathway [9,10]. However, the glycosylation processing of virion-

associated gp120 is divergent from that of typical glycoproteins

produced by the host cell: the extensive array of gp120 N-linked

glycans contains an ‘intrinsic’ patch of densely packed oligoman-

nose glycans which are inefficiently trimmed by host ER and Golgi

a-mannosidases [5,11]. Such clusters of oligomannose-type

carbohydrates do not occur in mammalian glycosylation and they

therefore provide a potential target for selective antibody

recognition of the virus [12]. Indeed, one of the few known

broadly neutralising anti-HIV-1 antibodies, 2G12, exploits this

divergence in host and viral glycan processing and recognises

Mana1R2Man-linked residues attached to oligomannose termini

within the gp120 ‘intrinsic’ mannose patch [12,13,14,15,16].

Along with other broadly neutralising antibodies, 2G12 confers

sterilizing immunity to primary viral challenge in non-human

primates [3,17,18,19]. The Mana1R2Man array, recognised by

2G12, has become the blueprint for a range of microbial

[15,20,21,22], synthetic [16,23,24,25] and recombinant glycocon-

jugate [26,27] vaccine candidates against HIV-1. Additionally a

number of lectins, specific for Mana1R2Man structures, exhibit

potent antiviral activity [28,29]. The abundance and conservation

of Mana1R2Man motifs on the functional envelope of primary

viral isolates is therefore crucial for the applicability of a

carbohydrate-based vaccine approach and is the focus of this

study.

Two recent studies have shown that a1R2-mannosidase

trimming is reduced by the steric constraints imposed by gp120

trimerisation [11,30] leading to a ‘trimer-associated’ oligomannose

population in addition to the ‘intrinsic’ mannose patch. Both studies

observed that, compared to recombinant gp120, there is a greater

abundance of Mana1R2Man terminating structures (Man6-

9GlcNAc2) on trimeric envelope glycoprotein. We previously

described that Env, derived mostly from pseudoviral systems, was

almost entirely oligomannose with a predominant population of

Man5GlcNAc2 [11]. Here, we examine a wider range of viral

production systems and envelope expression levels, and report a

greater range of abundances of oligomannose-type glycans, although

in all cases there is an elevation of oligomannose on virion-associated

Env compared to recombinant, monomeric gp120.

Results

As previously reported, the matrix-assisted laser desorption/

ionisation time of flight (MALDI-TOF) mass spectrometry (MS)

spectrum for recombinant wild-type gp120JRCSF showed extensive

complex-type glycosylation [11], with the intrinsic mannose patch

forming around 29% of the total glycan population (Figure 1A).

The abundances of oligomannose- and complex-type N-linked

glycans released from gp120 in this and subsequent production

systems are shown in Table 1.
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Pseudoviral particles were prepared using human embryonic

kidney (HEK) 293T cells with plasmids carrying JRCSF envelope

gene (pSVIII-JRCSF) and the HIV-1 backbone (pSG3Denv) at a

ratio of 1:10 respectively. A recent study by Crooks et al. has shown

that pseudoviral production systems produce significant levels of

non-functional uncleaved ‘gp160ER’ whose glycans are entirely

sensitive to digestion by endoglycosidase H (endo H) [31]. In

addition to ‘gp160ER’, a smaller population of partially endo H-

resistant cleaved gp120/gp41 trimers (indicative of the presence of

some complex-type glycans) was observed and it was proposed that

only this more processed glycoform is shed from the functional

envelope spike into the supernatant. We used mass spectrometry to

determine the divergent glycosylation of these two species and

showed that both gp160, and the less abundant virion-associated

gp120, consisted predominantly of oligomannose glycans (94%

and 85% respectively) (Figure 1B, C). Interestingly, increasing the

Env:backbone plasmids ratio from 1:10 to 1:2 (constant DNA)

resulted in an increased level of envelope expression [32] (data not

shown) and an even higher oligomannose abundance (.98%, as

previously reported [11]) suggesting envelope expression level

might influence the glycosylation profile of gp120. We observed an

unusual abundance of Man5GlcNAc2, indicating that most of the

virion-associated material had not been exposed to the medial-

Golgi-resident GlcNAc transferase I (GnT I). This lack of

processing is also consistent with the abundance of uncleaved

gp160, in this pseudoviral systems: the furin protease, responsible

for gp160 cleavage into gp120/gp41, is proposed to be largely

resident in the trans-Golgi apparatus [33,34].

In contrast to virion-associated gp160/120, the gp120 shed into

the supernatant, proposed to derive solely from cleaved functional

trimers [31], contained more complex-type glycans (27%)

(Figure 1D) but was nonetheless mostly oligomannose (73%). This

elevated level of oligomannose glycans compared to recombinant

monomeric gp120 (Figure 1A) is consistent with the reduced

mannose trimming previously reported for recombinant, trimeric

gp120 compared to recombinant, monomeric gp120 [11]. More-

over, the 27% complex-type glycans seen in this shed gp120 was

matched by a corresponding reduction in the Man5GlcNAc2 peak

compared to virion associated gp120 (Figure 1C) indicating this

species does not evade processing by GnT I and subsequent Golgi-

resident glycosidases and glycosyltranferases.

We next compared the glycosylation of pseudovirus-derived

gp120 to replication competent virus-derived gp120. The glycans

from gp120 derived from JRCSF virus prepared in HEK 293T

cells using an infectious pLAI-JRCSF Env molecular clone [35]

showed a more even division between oligomannose (56%) and

complex-type glycans (44%), and a more equal distribution of

abundances within the Man5–9GlcNAc2 structures (Figure 1E).

The complex-type glycans were predominantly of the bi- or tri-

antennary type with variable galactosylation and fucosylation

typical for HEK 293T cells [36,37]. We observed a reduced

envelope expression level in these replication competent viral

particles compared to the pseudoviral particles. This reduced

envelope expression level and corresponding reduction in

oligomannose abundance further suggests envelope expression

levels may influence the glycosylation profile of virion-associated

gp120. In addition to cleaved gp120, uncleaved, non-functional

gp160 was also detected in the pLAI-JRCSF Env virus derived

membrane-associated fraction. The analysis of gp160 glycosylation

revealed, as for the pseudoviral derived gp160, less efficient

processing by the Golgi a-mannosidases IA–C, with elevated

populations of Mana1R2Man linked oligomannose glycans

compared to gp120 (68% Man6–9GlcNAc2 for gp160 compared

to 46% Man6–9GlcNAc2 for gp120; data not shown). This suggests

that uncleaved gp160 adopts a quaternary arrangement with more

occluded glycans compared to cleaved gp120/gp41.

Analyses of gp120 derived from virus prepared by infection of

peripheral blood mononuclear cells (PBMCs) with viruses from

clade A (92RW009), clade B (JRCSF), and clade C (93IN905)

showed a predominantly oligomannose glycan composition (62–

79% Man5–9GlcNAc2, Figure 1F, G, H) with a distribution similar

to that previously reported for PBMC-derived gp120JRCSF [11]. In

a previous study we noted the presence of some complex-type

glycans but due to limitations of material we were unable to

perform analysis of desialylated material required to distinguish

these glycans from those of the capture antibodies [11]. Here,

MALDI-TOF MS analysis of desialylated glycans revealed, in

addition to the Man5–9GlcNAc2 glycans, a smaller series of

branched, fucosylated complex-type glycans at m/z 1809 (11–

24%), 2012 (1.5–3%), 2174 (3–5.5%) and 2539 (2.5–4.6%) in all

three spectra corresponding to the neutral derivatives of sialylated

bi, tri and tetra-antennary glycans.

Overall, the glycan distribution within the oligomannose series

is similar to that observed for the single-plasmid infectious pLAI-

JRCSF env clone (Figure 1E) and the shed material from the

pseudoviral system (Figure 1D), with some complex-type glycans

and without an elevated Man5GlcNAc2 peak. We note however

that the distribution of the oligomannose series differs slightly

between isolates: the ratio of oligomannose-type glycans that

terminate with Mana1R2Man, compared to those that do not, is

higher for 92RW009 (clade A, 5.2) and JRCSF (clade B, 5.6) than

for 93IN905 (clade C, 2.7). A likely explanation for this difference

in glycan processing, in clade C envelope, is the absence of key

glycosylation site(s) which reduce the density of the intrinsic

mannose patch and increase the processing of adjacent Man-

a1R2Man termini. Notably, the oligomannose glycan attached to

Asn295 is absent in most clade C isolates, including HIV-1

93IN905, and is critical for efficient neutralisation by a number of

mannose-specific ligands, including 2G12 [38].

Therefore, as for pseudoviral and viral particles obtained from

HEK 293T cells (Figure 1C, E), the glycans on PBMC-derived

virus from isolates from distinct antigenic and geographical

backgrounds are predominantly oligomannose.

Discussion

The HIV envelope is entirely processed by the glycosylation

machinery of the host cell: the interaction of envelope with the

spectrum of enzymatic activities present in the secretory pathway

determines the types of glycans that will be presented on gp120 at

the virion surface or as a recombinant protein. Although all N-

linked glycosylation sites on gp120 are initially glycosylated with

the same Glc3Man9GlcNAc2 precursor, these sites are not

processed equivalently. We propose a model (Figure 2), based on

the data reported here and integrating previous findings from our

group and others, of how gp120 is processed as it traffics through

the cell. First, the ER glycoform arises following the removal of the

final glucose residue by a-glucosidase II to produce Man9GlcNAc2

(or depending on the cell type by the action of endomannosidase to

yield D2,D3-Man8GlcNAc2). This natural gp120 glycoform,

normally a transient biosynthetic intermediate, has been isolated

in a number of studies using inhibitors of a-mannosidases such as

kifunensine [14,27,39]. The Man8–9GlcNAc2 intermediates are

then processed by the ER and Golgi a-mannosidases. This process

is slower for glycans within the intrinsic mannose patch, and is

further limited by the steric consequences of trimerisation [11,30]

(Figure 1 and 2). These two factors combine to yield an enhanced

abundance of Mana1R2Man terminating glycans compared to
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recombinant monomeric gp120 which is largely insensitive to

changes in expression system or envelope structure. Finally, the

more exposed regions of gp120 are processed by the medial Golgi

resident GnT I to form the hybrid-type glycan, GlcNAcb1R2-

Man5GlcNAc2, and subsequent complex-type glycosylation found

on cell surface and on virions. These complex-type N-glycans are

processed in a tissue-specific manner, consistent with observations

that they are not essential for viral function but may modulate

infectivity and accessibility of some antibody epitopes [40]. The

predominance of the biosynthetic intermediate, Man5GlcNAc2

(and the absence of complex-type glycans), and reduced gp160

processing are both markers for a lack of processing in the medial-

Golgi apparatus. Both these phenomena are observed in envelope

glycoproteins isolated from pseudoviral particles, and the mech-

anism for this Golgi by-pass, which is consistent with a recent

study showing an abundance of ‘gp160ER’ on pseudoviral

particles [31] is unknown, but might reasonably be attributed to

either an alteration of compartmentalisation or to a substrate

saturation of Golgi-resident envelope processing enzymes.

Overall, the data presented here and in our previous study [11]

indicate that the glycosylation of HIV envelope glycoproteins

diverges from typical host-cell glycosylation on at least three levels.

First, the clustering of N-glycans gives rise to an ‘intrinsic’

mannose patch (Figure 1A). Second, the steric constraints of

trimerisation result in an additional population of oligomannose

glycans. Third, in pseudoviral systems, a majority of envelope

glycoproteins bypass the Golgi-resident enzymes responsible for

complex glycan biosynthesis and protein cleavage, leading to an

unusual elevation of Man5GlcNAc2 on non-functional envelope

gp160. The ‘intrinsic’ and ‘trimer-associated’ mannose patches

give rise to a predominance of oligomannose-type glycans on

virion-associated gp120 that is conserved regardless of virus

production system, envelope expression level, 2G12 sensitivity or

envelope sequence.

Materials and Methods

Ethics statement
Human blood samples from healthy donors were obtained from

The Normal Blood Donor service at The Scripps Research

Institute. The collection of human blood samples for isolation of

PBMCs and subsequent propagation of HIV-1 virus was approved

by the Institutional Review Board at The Scripps Research

Institute (protocol number HSC-06-4604).

Recombinant protein expression
HEK 293T (ATCC number CRL-1573) were cultured in

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% fetal calf serum, penicillin and streptomycin. Transient

transfection using the pHLsec vector followed that of Aricescu

[41]. Briefly, for each T175 flask, 90 mg of polyethyleneimine (PEI)

and 50 mg of DNA were incubated for 10 min in 5 mL of serum

free media; then added to 80–90% confluent cells cultured in

25 mL of serum free media. Culture supernatant was collected at 4

days post-transfection, and subsequently centrifuged, sterile

filtered and then concentrated by centrifugal filtration using

Vivaspin 20 devices.

Pseudovirus and virus preparation in 293T cells
Pseudovirus was generated in HEK 293T cells as described

[42]. Briefly, HEK 293T cells were transfected with plasmids

carrying the reporter gene expressing the virus backbone

(pSG3Denv) and the functional envelope clone (pSVIII-JRCSF)

at a ratio of 2:1 or 10:1 (total DNA, 60 mg per 76106 cells) using

Figure 1. Comparison of recombinant, pseudoviral and viral gp120. MALDI-TOF MS analyses of released desialylated N-linked glycans
([M+Na]+ ions) from: (A) recombinant monomeric gp120JRCSF expressed in HEK 293T cells; (B, C and D) respectively gp160JRCSF, gp120JRCSF and
soluble, non-virion associated envelope gp120JRCSF isolated from pseudoviral particle preparations generated by transfection of HEK 293T cells with
the pSVIII-JRCSF and pSG3Denv plasmids at a ratio of 1:10; (E) gp120JRCSF isolated from replication competent viral particles generated by transfection
of HEK 293T cells with pLAI-JRCSF env molecular clone; (F, G and H) respectively gp12092RW009, gp120JRCSF and gp12093IN905 isolated from virus
obtained by infection of human PBMCs. Symbols used for the structural formulae in this and subsequent figures: e = Gal, & = GlcNAc, # = Man,

= Fuc [46]. The linkage position is shown by the angle of the lines linking the sugar residues (vertical line = 2-link, forward slash = 3-link, horizontal
line = 4-link, back slash = 6-link). Anomericity is indicated by full lines for b-bonds and broken lines for a-bonds [46]. The oligomannose series are
highlighted.
doi:10.1371/journal.pone.0023521.g001

Table 1. Abundances of released N-linked glycans obtained from recombinant (monomeric), pseudoviral, and viral gp120{.

gp120 source Cell-type
Man5-9GlcNAc2

%
Man5GlcNAc2

%
Complex
%

Mannose content
relative to rgp120{

Recombinant monomer (pHLsec JRCSF) 293T 29% 7.7% 71% 1.0

Pseudovirus (pSG3Denv:pSVIII JRCSF, 2:1) 293T 98% 38% 2% 3.4

Pseudovirus (pSG3Denv:pSVIII JRCSF, 10:1) 293T 85% 39% 15% 2.9

Supernatant (pSG3Denv:pSVIII JRCSF, 10:1) 293T 73% 18% 27% 2.5

Virus (pLAI-JRCSF env) 293T 56% 10% 44% 1.9

Virus JRCSF (clade B) PBMC 79% 12% 21% 2.7

Virus 92RW009 (clade A) PBMC 64% 10% 36% 2.2

Virus 93IN905 (clade C) PBMC 62% 19% 38% 2.1

{Abundances obtained for desialylated N-linked glycans released from gp120 described in this study. Values were obtained from data presented in Figure 1 and Doores
et al. [11].
{Values represent the increase in oligomannose population (Man5-9GlNAc2) for pseudoviral and viral gp120 compared to monomeric, recombinant gp120.
doi:10.1371/journal.pone.0023521.t001
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Fugene (Roche) according to the manufacturer’s instructions.

Virus supernatants were harvested after 3 days. Fully replicative

JRCSF virus capable of multiple round infection was made in

293T cells by transfection with a single plasmid construct (pLAI-

JRCSF env) using Fugene [35].

Virus preparation in PBMCs
Human PBMCs were obtained from healthy individuals and

isolated and stimulated as previously described [43]. HIV-1JRCSF,

HIV-192RW009 and HIV-193IN905 virus stocks were grown and

titered on CD8+-depleted PBMCs [44]. Virus production was

monitored by p24 ELISA (Aalto Bioreagents, Dublin, Eire).

Envelope Isolation
Virus preparations were pre-cleared by low speed centrifuga-

tion. Virus particles were pelleted by ultracentrifugation

(22,000 rpm, 1 hour). Virus pellets were lysed with NP-40 (1%

in PBS with protease inhibitors, 20 mins at 4uC). The debris was

removed by centrifugation and the envelope protein was

immunoprecipitated with HIV envelope specific monoclonal

antibodies (D7324, b12, b6, F425-b4e8, VRC01, VRC03,

PGV04) depending on virus isolate). Protein A and G beads were

added and incubated overnight at 4uC. The beads were washed 5

times with PBS and then the protein was eluted by heating in

loading buffer (containing dithiothreitol) for 10 mins at 100uC and

resolved by SDS-PAGE. The envelope band was confirmed by

western blot (primary antibodies; 2G12, F425-b4e8, PGV04,

HIVIG (depending on strain), secondary antibody, goat-anti-

human-Fcc-HRP) and cut to use directly in glycan analysis. The

‘soluble non-virion associated fraction’ is the envelope protein

isolated by immunoprecipation of the supernatant after the virus

has been removed by ultracentrifugation.

MALDI-TOF mass spectrometry
Oligosaccharides were released from target glycoproteins with

Peptide-N-Glycosidase (PNGase) F (New Englands Biolabs) from

Coomassie blue-stained NuPAGE [45]. Excised bands were

washed five times alternatively with acetonitrile and deionised

water, and rehydrated with a 3000 Units/ml of PNGase F water

solution. After incubation for 12 hours at 37uC, the enzymatically

Figure 2. Multiple divergences of gp120 glycosylation from host cell glycosylation. Following removal of terminal a-linked glucose
residues in the ER, folded glycoproteins contain exclusively oligomannose glycans. During transit through the ER, intermediate compartment (IC) and
cis-Golgi apparatus, Mana1R2Man termini are removed by ER Mannosidase I and Golgi Mannosidases A–C to yield Man5GlcNAc2. However, the
oligomannose cluster intrinsic to monomeric gp120 [5,14] limits glycan processing on both monomeric and oligomeric gp120 [11,30]. The steric
consequences of trimerisation further limit Mana1R2Man trimming [30] leading to an additional ‘trimer-associated’ population of Man5–9GlcNAc2.
The exposed Man5GlcNAc2 glycans on gp120 that passage through the full extent of the Golgi apparatus and trans Golgi network (TGN) to the
plasma membrane (PM) are processed by GnT I and subsequent enzymes to form complex-type glycans. However, envelope glycoprotein that does
not follow this route to the PM is characterized by an elevated abundance of Man5GlcNAc2 (and closely resembles gp120 expressed in GnT I-deficient
cells [11,30]), and reduced furin cleavage. Thus the intrinsic mannose patch, which includes the 2G12 epitope, persists from the earliest stages of
glycan processing whilst other elements of the glycan shield exhibit variably processed glycans depending on oligomerization state and, at least in
the case of pseudoviral gp160/gp120, cellular trafficking.
doi:10.1371/journal.pone.0023521.g002
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released N-linked glycans were eluted with water. Samples were

analysed by positive ion matrix-assisted laser desorption/ioniza-

tion (MALDI) time-of-flight (TOF) mass spectra with a Shimazu

AXIMA TOF2 MALDI TOF/TOF mass spectrometer (Kratos

Analytical, Manchester, UK) fitted with delayed extraction and a

nitrogen laser (337 nm). Samples were cleaned on a Nafion 117

membrane (Aldrich), and then prepared for mass spectrometry by

adding 0.5 mL of an aqueous solution of the glycans to the matrix

solution (0.3 mL of a solution of 2,5-dihydroxybenzoic acid in

acetonitrile:water (1:1, v:v) on the stainless steel target plate and

allowing it to dry at room temperature. The sample/matrix

mixture was then recrystallized from ethanol. Samples were

examined after removal of any potential sialic acids by heating at

80uC for 1 hr with 1% acetic acid.
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