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Abstract

We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the
assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia
stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than
101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes.
Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of
oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in
other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and
oriented using paired reads separated by ,280 bp or ,3.2 kbp, and many gaps between contigs can be closed using
paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are
discussed.
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Introduction

Massively parallel sequencing methods introduced over the past

few years provide cost-effective, highly redundant sampling of

genomes (reviewed in [1]). Pyrosequencing reads are approaching

conventional dideoxy capillary sequences in their read length,

providing a direct substitute for Sanger sequences [2]. While

sequencing by synthesis produces substantially shorter reads, it has

lower cost per base and higher throughput [3]. Such data has

proven useful for re-sequencing variant genomes [4,5,6], since

short reads can be readily aligned to a reference, and the error

rates are low enough that variation can be detected by consistent

discrepancy of the aligned short reads versus the reference. The

usefulness of such short-read datasets for de novo genome assembly

has been the subject of increasing excitement (reviewed in [7] [8]),

including recent assemblies of mammalian genomes [9,10,11,12].

Critical to the assembly of short (,100 bp) reads is the use of

paired-end sequencing protocols, which were first introduced in

the early 1990s for use with Sanger sequencing [13,14,15]. The

importance of using a range of paired-end linkages to organize

non-repetitive contigs into scaffolds by linking over repetitive

regions was presciently emphasized by Weber and Myers [16] in

the context of human whole genome shotgun sequencing. This

approach became the dominant paradigm for genome sequencing

in the last decade. Pairing also allows the assembly of localized

regions that are repetitive on the scale of the entire genome, since

reads that derive from a particular localized copy of a repeat can

often be inferred by the placement of their mate-pair reads in

flanking unique sequences. With short reads the advantages of

paired-end approaches are accentuated [17], and this strategy

figures prominently in recently developed short-read assemblers

(reviewed in ref. [18]) including EULER-SR [19], Velvet [20,21],

ALLPATHS [22,23], ABySS [9] and SOAPdenovo [11]. These

assemblers all take advantage of the deBruijn graph representation

of the assembly problem [24], in which reads are decomposed into

overlapping words of length k (‘‘k-mers’’), where k is a fraction of

the read length.

Here we present a new assembler, called meraculous, that relies

on an efficient and conservative traversal of a subgraph of the k-

mer (deBruijn) graph of oligonucleotides with unique high quality

extensions in the dataset. Unlike other short-read assemblers,

meraculous avoids an explicit error correction step, instead relying

on base quality scores. Meraculous also incorporates a novel low-

memory hash structure to access the deBruijn graph, allowing a

small memory footprint compared with other short-read assem-

blers. To test meraculous we also report here a deep Illumina

dataset for a yeast genome.

Pichia stipitis CBS 6054 is a predominantly haploid yeast that

efficiently produces ethanol from xylose and other polysaccharides

[25]. The P. stipitis genome (N = 8; GC = 41.1%) was previously

sequenced and finished using Sanger methods [26], and has been

used to assess the abilities of different next generation sequencing
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methods to detect variation [6]. As a test set for meraculous, we

report a dataset of three lanes of 75 bp paired-end shotgun for P.

stipitis produced using Illumina sequencing-by-synthesis methods,

with both short-range (,280 bp) and medium-range (,3.2 kbp)

pairing data. These data provide a nominal 425-fold redundant

sampling of the 15.4 million base pair (Mbp) genome. The

meraculous assembly reconstructs 95% of the Pichia genome in

long contigs and scaffolds without any errors. If we use the

standard ‘‘N50’’ measure, half the genome is in contigs longer

than 101 kbp and scaffolds longer than 269 kbp. Adding a modest

number of fosmid ends recovered entire chromosomes. Many

stages of the meraculous algorithm are parallelized, and to

document their scalability we describe an assembly of simulated

data for the ,120 Mbp Arabidopsis thaliana genome, and show that

for mammalian genomes the limiting memory structure requires

less than 10 Gb of RAM.

The meraculous software, Pichia shotgun sequence and assembly

is available for download at ftp://ftp.jgi-psf.org/pub/JGI_data/

meraculous/.

Materials and Methods

Pichia shotgun sequencing
We constructed short insert ‘‘fragment’’ paired-end libraries,

with an average insert size of ,300 bp, using ‘‘Paired-End DNA

Sample Prep Kit V1,’’ Catalog # PE-102-1001, from Illumina

(San Diego, CA). We also constructed longer-range ‘‘mate pair’’ or

‘‘jumping’’ libraries, with an average insert size of ,3 kbp, using

Illumina’s ‘‘Mate Pair Library Prep Kit’’, Catalog #: PE-112-1002

(Figure 1). Both the fragment and mate pair libraries were

sequenced at read lengths of 75 bases from both ends (2675) using

the Illumina Genome Analyzer II following manufacture’s

Figure 1. Paired ends. A. Fragment pair end separation distribution. Pairs are separated by 27967 bp. B. Mate-pairs are produced by
circularizing a genomic segment (vertical line indicates junction). End-sequences from sheared fragments that contain the junction (1) represent
reads that point outward at the ends of the original segment. End-sequences from sheared fragments that do not contain the junction (2) are
inwardly directed and adjacent on the original segment. C. Mate-pair end separation distribution. Two-thirds of all pairs are found to be
divergently oriented and separated by 3.260.2 kb. An artifactual population of convergently oriented pairs separated by less than 500 bp is
apparent, representing fragments of type (2) shown above in panel B.
doi:10.1371/journal.pone.0023501.g001
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recommended protocols. Genomic DNA came from the same

sample that was used in the earlier Sanger sequencing project [26].

For the fragment library, two channels were sequenced, with 15.5

and 15.7 million clusters reporting sequence. For the jumping

library, one channel was sequenced with 12.4 clusters reporting

sequence. These reads yield a nominal 4256 coverage of the P.

stipitis genome.

Pichia reference sequence
The finished P. stipitis CBS 6054 genome sequence [26] is NCBI

project number NZ_AAVQ01000000, and consists of sequences

AAVQ01000001–AAVQ01000002.

E. coli shotgun sequence and reference
A publicly available paired 36 bp Illumina dataset for E. coli K-

12 MG1655 dataset was downloaded from the NCBI short read

archive, project SRX000429. The finished reference sequence for

this strain [27] is Genbank sequence gi|48994873|gb|U00096.2.

Simulated Arabidopsis dataset
A simulated 1006 fragment paired-end dataset with realistic

error profiles was produced using persimmonator (Bret Barnes,

Illumina). Insert sizes were normally distributed with mean 300 bp

and standard deviation 30 bp. Dataset is available upon request.

Assembly algorithm
The algorithm is encoded in four modules encoded in Perl as

described below.

Selection of k-mer set. The shotgun reads are

initially processed as follows.

1. Select an odd integer k such that (1) a substantial fraction

of the sequence targeted for assembly is unique as k-mers,

and (2) most reads have multiple overlapping error-free k-

mers. A k-mer is an oligonucleotide sequence of length k.

For Pichia we use k = 41.

2. Count the number of occurrences (multiplicity) of each k-

mer in the dataset. This can be accomplished with a single

pass through the read set, and for large datasets is readily

parallelized by dividing k-mers into 4m bins based on their

initial m nucleotides, counting k-mers in each bin

independently. In practice, 16-way parallelization is

convenient (m = 2).

3. Choose a threshold multiplicity dmin that separates k-mers

that are likely to contain sequence errors (multi-

plicity,dmin) from those that are likely to be error free

and occur in the genome (multiplicity§dmin). Practically,

this threshold should be selected at (or below) the first

minimum in the multiplicity curve [28]. We describe

below and in Supplemental Text S1 alternate methods for

setting dmin. For Pichia we use dmin = 10.

4. Keep only k-mers of multiplicity §dmin (the ‘‘k-mer set’’

below). That is, for the construction of U-U-contigs (see

below), ignore k-mers of multiplicity less than dmin as

arising either from sequencing errors or low coverage

regions. (k-mers with multiplicity below dmin can be

recovered in the assembly if they are the unique closure of

a gap, see below.)

meraculous.pl. meraculous.pl implements the follow-

ing algorithm, which produces a set of maximal linear

sub-paths of the deBruijn graph.

1. For each k-mer, count all single-base extensions (forward

and backward) of high quality, that is, occurrences of the

k-mer in reads such that the next or previous base has

quality value greater than or equal to a threshold (Qmin)

that occur in the shotgun reads. Based on analysis of

available data, we use Qmin = 20, where Q is the quality

value assigned to a nucleotide by the Illumina base-calling

software. Single base extensions to a base with Q.Qmin

are referred to as ‘‘high quality extensions’’ below.

2. Designate each end of a k-mer as X, U, or F depending on

whether that end has 0, 1, or §2 distinct high quality

extensions of multiplicity at least dmin. k-mer ends

designated ‘‘X’’ have no high quality extensions; this

condition occurs at persistently unsequenceable or low

depth positions. k-mer ends marked ‘‘U’’ have a unique

high quality extension in the dataset. k-mer ends marked

‘‘F’’ represent a ‘‘fork’’ in the deBruijn graph that

correspond to exits from a repetitive sequence into

multiple alternate sequence contexts. (Polymorphisms in

diploid genomes also lead to forks; such cases are not

considered further here.)

3. Store k-mers with unique high quality extensions at both

ends (i.e., those designated U-U in the previous step) in a

hash where the ‘‘key’’ is the k-mer and the ‘‘value’’ is a

two-letter code [acgt][acgt] that indicates the unique bases

that immediately precede and follow the k-mer in the read

dataset. This hash represents the ‘‘U-U graph,’’ which is a

subgraph of the full deBruijn graph. Implementation of a

novel hashing scheme is described in more detail below.

4. Remove all linkages that are not reciprocal. That is, if the

k-mer v is the unique high quality extension of u in one

direction, then u must be the unique high quality

extension of v in the opposite direction. This step

eliminates subpaths corresponding to residual errors (see

Figure 2) that evade the minimum depth condition.

Figure 2. Example of a 7-mer graph. The node a is X-terminated to the left. The non-reciprocal linkage between nodes b and c is removed
because the terminal base (lower case ‘‘a’’ in the sequence) of node c is low quality. Node e is F-terminated to the right. The resultant U-U contig is
the union of nodes b and d: CTGCTGCT.
doi:10.1371/journal.pone.0023501.g002
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5. Arbitrarily select k-mers to seed forward and reverse

traversals of the U-U graph to produce an initial set of

‘‘contigs.’’ These U-U contigs have the property that each k-

mer is represented only once in them. The resulting contigs

are independent of the selection of seed k-mers. We retain

only contigs longer than a specifiable minimum length

(which is required to exceed 2k21 bases); for the reported

Pichia assembly, only contigs §100 bp are considered.

blastMap.pl. blastMap.pl aligns reads back to the

assembly to identify read-pair information that may be

used to link strings of contigs together into scaffolds.

1. All reads are aligned to the contigs produced by

meraculous using BLAST [29]. Aligners designed specif-

ically for short reads could also be used; we initially opted

for BLAST for simplicity. Parameters for BLASTN were -

b 100 -v 100 -K 100 -e 1e-10 -U -F F -W k. Notably the

word size was chosen to be k, since by construction the U-

U contigs contain each U-U k-mer exactly once.

2. Alignments were parsed using a custom Perl script

(blastView3.pl, Chapman, unpublished) that reports the

highest-scoring HSP (high-scoring segment pair) for all

contigs to which a given read is aligned. Alignments of a

minimal length (a parameter value§k) are retained. For

‘‘jumping’’ libraries, alignment orientations are reversed

to conform to standard paired end conventions (see

Figure 1B), and alignments with less than 600 bp

between the 59 end of the aligning read and a contig

end are rejected to prevent inclusion of artifactual pairs

which can comprise a significant fraction of these libraries

(see Results).

3. Read vs. contig alignments are categorized as full-length,

gap-projecting (alignment ends at contig boundary),

incomplete (less than 5 bp unaligned; not at contig

boundary), or truncated (at least 5 bp not aligned; not at

contig boundary) at each end and also categorized as

‘‘pointing out’’ (39 end within 1.26 insert size of a contig

end), ‘‘pointing in’’ (59 end within 1.26 insert size of a

contig end), or ‘‘in the middle’’ (neither end within 1.26
insert size of a contig end) of the target (contig) sequence.

4. Full length alignments in which both ends of a pair are

placed within a common contig (and appropriately

oriented) are used to estimate the insert size of the pair

library.

5. Alignments that project into a gap (at either 39 or 59 end)

or are ‘‘pointing out’’ from a contig end are retained and

categorized as anchored completely within a contig

(neither end terminates at a contig boundary), pointing

into a gap (39 end terminates at contig boundary), pointing

out of a gap (59 end terminates at contig boundary), or

‘‘splinting’’ a gap (i.e., having two alignments to different

contigs, each of which terminates at a contig boundary).

Pairs and singleton reads with these properties are

reported for use by subsequent scaffolding and gap-

closure steps (discussed below).

oNo.pl. oNo.pl uses paired reads and splinting

singletons from blastMap to produce a scaffolding by

‘‘ordering and orienting’’ a set of contigs (or a previous

scaffolding).

1. The number of links between contig-end pairs are

tabulated and the estimated gap size between contig ends

calculated using a correction that accounts for the fact that

pairs spanning a given gap must be longer than that gap

size (see Results below).

2. Pairs of contig ends that are unambiguously linked by

pairing information are ‘‘locked’’ together. In cases where

two possible links are found, if the greater of the two

estimated gap sizes is large enough to accomodate the

smaller gap as well as its associated contig, the smaller gap

is accepted. In order for contigs to be ‘‘locked’’ together

they must be mutually unique extensions of each other

based on pairing (in analogy to the U-U k-mer

relationship in the contig-building step).

3. The graph of locked contig ends is traversed to produce

scaffolds which terminate when no linking information is

available or the linking information does not represent a

consistent, mutually unique pairing relation. A minimum

number of links (paired or splinting) is required to accept a

contig end connection. This threshold, pmin, is defined by

observing the distribution of the number of links per gap

and may be adjusted to produce more or less conservative

scaffolding. For Pichia, pmin = 6 was used.

4. Gapped contig sequence and a report of the flanking k-

mers (‘‘virtual primer pairs’’) and the estimated size of

each gap are generated and passed on to the next phase of

the process, gap-resolution.

merauder.pl. merauder.pl closes gaps contained

within scaffolds using reads that are projected to lie

within the gap based on their mate reads.

1. For each gap in the scaffolds, reads that project into the

gap by direct alignment and unaligned reads whose mates’

alignments suggest that they fall into the gap are collected

as potential gap-fillers.

2. Potential gap-filling reads are searched to identify those

that contain both gap-flanking primer sequences and

produce a closure within a given tolerance of the

estimated gap size (the tolerance is based on the pair-

end separation uncertainty). Such reads are said to

‘‘splint’’ across a gap. Note that some gaps from oNo

scaffolds may be negative, indicating that the flanking

contigs overlap but that the overlap is either too short or

repetitive (i.e., relevant k-mers are not in the U-U set). If

splinting reads are found, then the gap is filled (or negative

gap joined) if there is a unique gap-resolving sequence

found in all reads that contain both primers. (Note that an

optional more aggressive gap-resolution may be obtained

by using the most common gap-resolving sequence and

eliminating the uniqueness requirement.)

3. If ‘‘splinting’’ fails, merauder.pl attempts a k-mer walk

starting from the forward primer using the meraculous

algorithm above (‘‘mini-meraculous’’) . The gap is closed

if a unique path to the reverse primer is found that is

within tolerance of the estimated gap size. Should the gap

fail to close due to an unresolved repeat within the gap-

filling read subset, the k-mer size is iteratively increased by

two until either the gap is successfully closed or the failure

is due to a lack of extension data (i.e., only reaching an

‘‘X’’ in the graph terminates the process).

4. Gap-resolved scaffolds are reported with gap closure

sequences indicated by lower-case letters, as well as a

report of the success/failure of each attempted gap

resolution.

Meraculous
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Multiple insert sizes
The oNo and merauder steps may be iterated if multiple insert

sizes exist, using paired end sets of increasing insert size.

Lightweight Hash
To reduce the memory needed to store and randomly access the

deBruijn graph, we designed and implemented a lightweight hash

scheme that uses a recursive collision strategy with multiple hash

functions to avoid explicitly storing the keys themselves. In the typical

use case, there is a fixed dictionary of keys and associated values.

First, the hash must be ‘‘primed’’ as follows: (we assume there

are hash functions h0…hn already defined).

0. Initialize hash depth d to 0, write all keys to file Fd.

1. For all keys in file Fd, evaluate the hash function hd and update

a ‘‘primer object’’ Pd to keep track of which hash values occur

multiple times at hash depth d (i.e. the keys collide under the

hash function hd).

2. Write all colliding keys to file Fd+1 ; increment hash depth d.

3. Repeat steps 1,2 until the number of colliding keys is 0.

All primers P0…Pd are then sent to the lightweight hash

initializer to create a lightweight hash object. Thereafter, each key-

value pair is simply added to the hash object: the hash checks the

primer information to determine at which level of the recursion to

store the value, while the key itself is discarded. At this point, the

hash is ready to be queried. Note that the client must never

attempt to look up a key that was not used in the priming step, as

the hash cannot verify the identity of the key associated within a

given value after priming.

Using the lightweight hash in meraculous
In the contig generation stage, a lightweight hash object stores

all relevant k-mers and allows contigs to be formed by walking

from random ‘‘seed’’ starting points. Preprocessing is done to

ensure that both U-U mers and terminating k-mers connected to

those k-mers are stored in the hash. The terminating k-mers are

needed because lightweight hashes do not support queries on non-

existent keys. The lightweight hash is first ‘‘primed’’ by exposing it

to each k-mer. Next, the k-mers are loaded, along with their

extension codes, as key-value pairs.

Implementation
The algorithm was implemented in a combination of C and Perl

and uses SWIG to wrap the lightweight hash data structure. All

benchmarks were run on 32-core AMD Opterons running at

1.8 GHz with 512 GB RAM and the ‘‘Linux AMD64-K8-SMP’’

operating system. At times, where noted, parallelized steps were

also run on commodity clusters managed by Sun Grid Engine.

Results

Algorithm overview
Our algorithm follows the broad outline first described in detail

for the Celera assembler [30] (see also the TIGR assembler [31]).

First, we assemble contigs that do not span any repeat boundaries

and therefore are either unique sequence or multi-copy sequences

within recently diverged repeats. Next, we link these contigs into

scaffolds, using paired-end links to jump over unassembled

repetitive regions, leaving gaps whose size and flanking sequences

are known. Finally, we fill intra-scaffold gaps (‘‘captured’’ gaps, or

‘‘sequence-mapped’’ gaps) using reads whose mate pairs constrain

them to lie within the gap.

Instead of computing read-read overlaps, we use the deBruijn

representation of sequencing reads in terms of (overlapping) words

of length k (‘‘k-mers’’) [24]. The word size k plays a role analogous

to the minimum confidently detectable read-read overlap in

alignment-based assembly [32], and is generally an empirical

parameter. Larger k provides more specificity, but fewer k-mers

per read, reducing the effective depth [20]. For each k-mer in a

read, we can define its ‘‘single-base extension’’ in the forward

direction as the k-mer that results by sliding the word forward by a

single base. The first k21 bp of this extension are the same as the

last k21 bp of the original word.

For a random sequence of length G, it is sufficient to use

k*log4(2G)z3, but in practice the repetitive structure of a

genome can require longer k-mers. While this repetitive structure

is typically not known a priori, analysis of related known genomes

can suggest reasonable values of k. One way to assess this is to

identify runs of single-base k-mer extensions that are unambiguous

in the genome. That is, for each k-mer in a run there is only a

single k-mer in the genome that overlaps it by k21 bp. Such

unambiguously extendable runs of k-mers are related to contigs, as

discussed below, and we seek k large enough that a substantial

fraction of the genome is contained in such runs. For P. stipitis we

choose k = 41 to recover ,95% of the genome in uniquely

extendable k-mer runs longer than 500 bp. For more complex

genomes like Drosophila melanogaster, k = 41 recovers ,86% of the

genome in such regions, while for the rice genome, with its long-

terminal-repeat retrotransposons, k = 41 recovers only 59% of the

genome in such regions. These runs of overlapping unique k-mers

are a useful starting point for assembly, and can be improved using

paired-end constraints as described below.

The meraculous algorithm first constructs an initial set of high

confidence contig sequences by decomposing reads into overlap-

ping k-mers, and identifying maximal paths in the space of all k-

mers such that (1) every k-mer in a path occurs at least dmin times

in the dataset, (2) consecutive k-mers are each other’s unique

‘‘high-quality’’ single-base extension in the read set. The k-mer b is

a high quality extension of a if there are at least dmin instances in

the reads where b follows a (that is, the last k21 bp of a are the

same as the first k21 bp of b), and the newly added nucleotide at

the end of b has quality at least Qmin. Extensions must be unique to

be considered in these paths; k-mers that have multiple high

quality extensions are candidates for the boundaries of repeats and

are not included.

We mark each k-mer end with U if it has a unique high quality

extension, F if it has more than one (is a ‘‘fork’’), and X if it has no

high quality extension. We then isolate the subgraph of the

deBruijn graph for which all k-mers are designated ‘‘U-U’’. By

omitting forked k-mers, the tangled full deBruijn graph is

simplified into a set of linear chains, which are easily traversed.

The two parameters dmin and Qmin are selected empirically, as

described below. Note that we make no explicit error correction;

regions of reads containing errors are excluded from participating

in U-U paths based on k-mer depth and sequence quality.

Given a set of U-U contigs, we next map reads back to these

contigs by alignment. For simplicity we use BLAST, but other

algorithms better suited to short-reads can be substituted, as long

as alignments of reads to multiple contig locations are reported

(see below). Since a k-mer that occurs in the U-U graph occurs

only once in the U-U contigs, we require at least a k-bp exact

match to seed the alignment of reads back to the U-U contigs,

and allow mapped reads to project off the ends of contigs. Using

alignment to map reads relieves us of the need to track read

placements through the initial traversal of the U-U subgraph,

simplifying the implementation. Once paired-end reads are

Meraculous
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placed, uncontested pair-linkages between contigs are used to

form scaffolds.

Short gaps between successive contigs can then be filled in by

applying the U-U procedure to the small subset of reads that are

inferred to lie in a gap based on the placement of their paired end

sequence. As with Sanger reads, this gap-filling process is

dramatically simplified relative to the full assembly problem, since

only a small region is assembled for each gap. Gap filling is readily

parallelized, and can be iterated using progressively longer pairs.

A novel lightweight hash for the deBruijn graph
It is common to store and access a deBruijn graph using a hash,

which is a data structure that enables rapid lookup of a ‘‘value’’

associated with each ‘‘key.’’ To efficiently store and access the U-U

deBruijn graph, we use a hash in which the ‘‘key’’ is a U-U k-mer,

and the ‘‘value’’ is the (unique) high quality nucleotide that follows

the key in the read dataset. In a conventional hash, a hash function

h(key) is used to map each key into a position within a linear array

of length H. The hash function is approximately uniformly

distributed between 1 and H. Since multiple keys can hash to the

same value, the data structure and methods must allow for such

‘‘collisions,’’ at additional cost in speed and memory. In a typical

hash implementation, the possibility of collisions for a general and

possibly changing set of keys require that keys themselves also be

stored in the array.

Since the number of distinct keys is comparable to the genome

size G, the memory that would naively be required to store the

hash is ,2G*(k+1) bits, with most of the memory cost associated

with storing the key. (The factor of two arises from allocating two

bits per nucleotide.) For example, for a human genome G,36109;

for k = 75, storing this hash would require 450 Gb. Unlike many

applications of hashes, however, most of this memory is required

to store the keys; the value associated with each key is only a single

nucleotide (two bits). Working with such a hash requires either

large memory systems [11] or distributed memory parallelization

schemes [9].

To dramatically reduce the memory requirement for meracu-

lous, we developed a novel perfect static hashing scheme that can

be applied whenever the complete set of keys is known initially and

does not change during the use of the hash, as is the case with the

U-U deBruijn graph for a given shotgun dataset. In contrast,

general dynamic hashing schemes typically retain the flexibility to

add new (key, value) combinations at any time. Our hashing

scheme is ‘‘perfect’’ in the sense that the average lookup time does

not depend on the genome size. For a genome of size G, our hash

requires only ,e*G bytes of memory, independent of the choice of

k, where e = 2.71828… is base of natural logarithms. The U-U

hash for a human genome then requires only ,8 Gb, a ,60-fold

memory savings relative to a standard hash and well within the

range of many desktop systems.

Our perfect hash h(u) is constructed using a preprocessing step

that iteratively identifies and progressively eliminates collisions for

all U-U k-mers (Methods). Let hi(u) be a series of independent hash

functions defined on k-mers. Each hash function hi(u) returns an

integer between 1 and Hi that is assumed to be uniformly

distributed over that range. Then a perfect hash h(u) can be

defined iteratively as follows. First, compute h1(u) for all U-U k-

mers, and record all collisions. Applying the Poisson distribution,

H1*exp(2G1/H1) k-mers do not collide. For such k-mers, we

assign a hash ‘‘level’’ of 1, and define the perfect hash by

h(u) = h1(u). The G2 = G12H_1*exp(2G1/H1) k-mers that collide

at level 1 are then hashed at the second level using an independent

hash function h2(u) with a reduced range H2. Those that do not

collide are assigned h(u) = H1+h2(u); those that do collide are

passed to the third level. This process is iterated until there are no

more collisions.

The result is a ‘‘perfect’’ hash h(u) that, by construction, has no

collisions. Since each of the input U-U k-mers is uniquely mapped

by this function, we do not need to store the ‘‘key’’ k-mer with

each entry, and need only store the ‘‘value,’’ which is just a single

nucleotide. This results in a memory savings of order 1/k.

The total memory usage is Htot = H1+H2+H3+… If for each

iteration we use a hash size Hi proportional to the number of

elements Gi to be hashed, i.e., Hi =lGi, then it is straightforward

to show that the optimal l= 1, and the total memory usage is

Htot = e*G1. In practice we do not allow Hi to drop below some

cutoff Hmin,1,000, to avoid excessive iteration. Although the

maximum number of iterations (levels) needed to avoid collisions is

order log(G), the average number of iterations needed is e in the

Poisson approximation.

Pichia sequencing summary, accuracy, and coverage
As a test dataset for assembling small eukaryotic genomes, we

produced 87.3 million paired 75-bp reads for P. stipitis CBS 6054

using the Illumina GA II sequencer. Two libraries were

sequenced, a ,300 bp insert standard library (two lanes on a

GAII Instrument) and a ,3 kbp mate-pair (‘‘jumping’’) library

(one GAII lane), as described in Materials and Methods. The two

short-insert paired-end lanes had a somewhat higher cluster

density than the mate-pair library (15.5 and 15.7 million clusters

reporting sequence vs. 12.4 million). These reads yielded data that

totals 6.55 Gbp, or nominal 4256 redundant coverage of the

15.4 Mbp P. stipitis genome.

The per-base error rate relevant to k-mer assembly can be

estimated by measuring the probability that a k-mer that starts at

position i in a read (and ends at i+k21) is observed in the genome.

For the Pichia dataset, we find that the matching probability

against the reference genome is higher for forward reads of a pair

than for reverse reads. For these three lanes, the matching

probability of the first 41-mer ranges from 80.9%–87.8% for

forward reads, and 70.5%–77.4% for reverse reads. Similarly, the

matching probability for the last 41-mer (beginning at i = 35 for

our 75 bp reads) ranges from 72.7%–77.1% for forward reads and

54.2%–71.1% for reverse reads.

Overall, the matching probability for all 41-mers is 74.2%, so

that ,3/4 of all 41-mers are error-free. If we crudely assume that

errors are uniformly distributed across reads (and neglect the effect

of contamination, which also reduces the matching probability)

then this corresponds to a per-base error rate of

12
ffiffiffiffiffiffiffiffiffiffiffi
0:74241
p

= 0.7%. In the absence of a reference genome as we

have for Pichia, we find that Illumina quality scores provide a

useful surrogate for the accuracy of base calls, so that the

probability that a k-mer is correct is well-approximated by

Pizk{1
j~1 ½1{10{Qj=10�, where Qj is the Phred [33] quality score

at position j (data not shown).

Counting both strands, the Pichia nuclear genome contains

29,746,832 distinct 41-mers (i.e., 41-bp words). 29,746,314

(99.998%) of these occur at least once in the Illumina shotgun

data set. The mitochondrial genome contains 60,344 distinct 41-

mers and all occur at least once in the data set. (68 distinct k-mers

occur in both the nuclear and mitochondrial genome, and all

occur in the dataset).

Due to sequencing errors, the Pichia shotgun data set contains

1,211,630,294 distinct 41-mers, ,40-fold more than found in the

genome. Most of the errors are single occurrences of a k-mer in the

dataset, and are due to isolated base-calling errors. In particular,

1,042,166,572 (86%) of observed 41-mers occur only once in the

data set, of which only 96 (9.261026%) are true genomic mers.

Meraculous

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23501



The size of the 41-mer set used in an assembly can therefore be

dramatically reduced with minimal impact by discarding k-mers

that occur only once in the dataset, since the vast majority of these

are erroneous. The remaining ,140 million erroneous 41-mers

found in the dataset but not in the genome are recurrent sequence

errors in the same sequence context (which may or may not occur

in multiple locations in the genome).

Depth statistic
A common statistic for a sequencing project of N reads with

average read length R is the raw depth of coverage d = NR/

G = total number of nucleotides sequenced divided by genome size

[32]. Assuming no errors, the number of times that a k-mer covers

a given nucleotide in the genome is deff ~d½1{(k{1)=R�, since

each read of length R only contains R2k+1 k-mers (see, e.g., [20]).

This reduction in effective depth is equivalent to the h parameter

introduced by Lander and Waterman in the analysis of restriction

maps [32], with k21 corresponding to the minimum detectable

overlap between reads in the deBruijn formulation of assembly.

Since k is comparable to the read length R for many short-read

assembly applications, this factor can be substantial. Thus while

for our Pichia dataset the raw depth is d = 4256, for k = 41 the

finite read length correction reduces deff to ,2006. A similarly

large factor arises from sequencing errors; as we have seen, ,3/4

of observed 41-mers in Pichia are error-free. Since ,75% of the k-

mers contained in the reads map perfectly to the genome, the

effective depth of true k-mers is ,1506, consistent with the mean

multiplicity of 1456 (modal value 1306, see Figure 3A). (The

mitochondrial genome is at 2,9006 in true 41-mer coverage.)

Paired-end separation, chimerism, and mate-pair artifacts
To assess insert size distributions and chimerism rates

independent of the assembly, we aligned reads from one lane of

short insert pairs and one jumping library lane to the finished

reference genome using BLAST (see Materials and Methods). The

single highest scoring HSP (high-scoring segment pair [29]) was

retained for each read. (In cases where multiple equally high

scoring HSPs exist a best hit was chosen at random, so the

chimerism rate inferred from this result should be considered an

upper bound.) For the short insert lane, 11,472,868 read pairs had

both ends aligned to the genome, so that ,73% of reported

clusters provide a successful read pair. The aligned pairs from each

lane therefore represent ,2006physical (‘‘clone’’) coverage of the

genome. 150,085 pairs (1.3%) had best hits on differing

chromosomes and 27,045 pairs (0.2%) align to the same

chromosome but on the same strand. The remaining appropri-

ately-oriented pairs have a tight, nearly symmetrical insert size

distribution with mean and standard deviation of 27967 bp (see

Figure 1A). 174,044 of these pairs (1.5%) have ends separated by

a distance more than three standard deviations above or below this

mean value. We estimate from this an upper bound of 3%

chimeric pairs in this library.

For the ,3 kbp jumping library, 10,380,635 read pairs had

both ends aligned to the genome, so that 84% of reported clusters

provide a successful read pair. Of the aligned read pairs, 3.7% had

ends hitting different chromosomes, and 0.8% hit on the same

chromosome but the same strand. The remaining oppositely

oriented read pairs have a bimodal distribution of separations

Approximately 2/3 of all read pairs are directed away from each

other and ,3.2 kbp apart, as expected. Most of the remaining

aligned, oppositely directed read pairs are directed towards each

other and separated by less than 500 bp. This second group of

pairs (‘‘innies’’) represents an artifact of mate pair library

construction, in which the sequenced fragment is derived from a

portion of the circularized DNA that does not contain the junction

region (see Figure 1B).

The orientation and separation of these artifactual pairs makes

them easy to exclude in the scaffolding step (Materials and

Methods). The distribution of the innie separations is not normally

distributed, and contains at least three components: a broad peak

at ,100 bp, and two somewhat narrower peaks at ,300 bp and

,400 bp. Excluding the ‘‘innies’’, the mean and standard

deviation of the end-separation for the jumping library is

3,2736196 bp, although the distribution is somewhat skewed,

with mode ,3,215 bp and half maximum range ,3,045–

3,525 bp (Figure 1C). Since a negligible fraction of the ‘‘innie’’

artifact is due to chimerism (which would be unlikely to yield

paired reads within 500 bp and with a specified orientation), we

Figure 3. k-mer frequency and extension characteristics in Pichia. A. 41-mer frequency distributions. The overall 41-mer distribution
(green) is decomposed into genomic (red) and non-genomic (yellow) contributions. At fewer than ,30 occurrences non-genomic (error-induced) 41-
mers dominate. The modal frequency is ,135. B. Graph features as functions of dmin. The total number of nodes (blue), total number of X-
terminated nodes (red), and total number of F-terminated (yellow) nodes in the 41-mer graph are calculated as functions of the assembly parameter
dmin. We find the optimal assembly to occur at dmin = 10.
doi:10.1371/journal.pone.0023501.g003
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can estimate the chimerism rate of mate pairs as less than ,7%.

The mate pairs provide a staggering ,1,4506 spanning coverage

of the genome.

Multiplicity distribution, error rates, and local properties
of the deBruijn graph

The multiplicity of a k-mer is the number of times it occurs in

the dataset [24,28]. The multiplicity distribution n(d) is then the

number of k-mers that occur exactly d times in the dataset. If

sampling is random, and in the absence of errors, then n(d) is

Poisson distributed with mean deff . As noted previously [28], in

practice n(d) has a sharp peak near d = 0 and another broad peak

somewhat below deff . The peak near zero corresponds to k-mers

that arise from relatively rare sequencing errors; the peak near deff

corresponds to k-mers that occur in the genome and are present in

many reads. A simple way to distinguish erroneous k-mers from

true k-mers is to separate them based on a depth cutoff dmin9,

retaining only k-mers with at least this multiplicity.

The number of U-U contigs of the deBruijn graph depends on

the choice of dmin (which in our formulation determines the nodes

and edges of the graph). For high values of dmin, U-U contigs are

likely to terminate at positions marked X, indicating that the

terminal k-mer of the contig has no single base extensions that

occur in the dataset more than dmin times. In contrast, for low

values of dmin, many U-U contigs will terminate at F (forked)

positions where the terminal k-mer of the contig has two (or more)

possible single base extensions, each with at least dmin occurrences

in the dataset. Ideally, we would choose dmin to produce the fewest

U-U contigs. We show next that the number of contigs as a

function of dmin can be expressed simply in terms of k-mer-local

properties of the deBruijn graph. This allows us to identify an

appropriate choice for dmin prior to the time/memory-intensive U-

U contig formation step.

The number of k-mers with at least d occurrences is given by

Mz(d)~
P?

x~d n(x), and similarly the number of k-mers with

fewer than d occurrences in the dataset is M{(d)~
Pd{1

x~1 n(x).
The total number of k-mers is simply M~

P?
x~1 n(x)~

Mz(d)zM{(d). We note that M+(d) is also the number of k-

mers in the graph when dmin = d, and similarly M2(d) is the

number of k-mers excluded from the graph when dmin = d.

Let n1(d) and n2(d) be the number of k-mers with precisely d high

quality extensions to their most frequent next k-mer, and their

second most frequent next k-mer, respectively. Then

Xmer(d)~
Pd{1

x~1 n1(x) is the number of k-mers that are X-

terminated when dmin = d, and X (d)~Xmer(d){M{(d) is the

number of k-mers in the graph that are X-terminated when dmin = d.

Similarly, F (d)~
P?

x~d n2(x) is the number of k-mers in the graph

that are F-terminated when dmin = d. So finally, the total number of

contigs when dmin = d can be written as C(d)~X (d) zF(d),
which is readily calculated from histograms that are produced by

meraculous.

Results for Pichia with k = 41 are shown in Figure 3B.

Evidently, the ‘‘X’’s dominate the ‘‘F’’s because of the large

number of k-mers that arise from low frequency error. Minimizing

C(d) would lead us to choose dmin,30. In practice, dmin,10 yields

a much better assembly, which is near the ‘‘knee’’ in the F(d) curve.

While there are more total ‘‘contigs’’ at this point, the great

majority of them are small contigs of size ,2k21 with a central

erroneous base. These small contigs are disconnected from the rest

of the graph, and are discarded in the output of meraculous due to

a minimum contig size cutoff ,2k. Distinguishing between these

small erroneous fragments and true contigs requires more than

nearest-neighbor information on the graph. In practice, however,

we find empirically that the best results occur for dmin just above

the rise in F(d ).

Scaffolding using paired-ends
Rather than tracking the position of reads through the de Bruijn

graph, reads were mapped to the U-U contig set by alignment; for

simplicity, BLAST was used, but other aligners designed for short

reads could be used instead. As noted above, the k-mer uniqueness of

the initial U-U contigs means that read-contig alignments with exact

k-mer matches are necessarily unique placements of that k-mer. Gap

filling (described below) removes this property of the contigs, since the

sequences between U-U contigs need not be unique. We represent

gap-filled sequence by lower case letters, which both (1) indicates the

derivation of the sequence as outside of the U-U subgraph, and (2)

allows us to run BLAST in a mode that prohibits seeding matches in

gap-filled sequence. Reads can be (1) placed entirely within a contig,

(2) project into a gap, or (3) ‘‘splint’’ across two contigs if the read

aligned consistently to the ends of two different contigs. The splinting

configuration allows a gap to be closed directly.

Paired-end sequences from sheared and size-selected ,279-bp

fragments were used to create an initial scaffolding. The pair-ends

have a tight, nearly symmetrical insert size distribution (standard

deviation 7 bp, see Figure 1A), and provided ,4006 spanning

clone depth, with negligible chimerism. Typical contig-contig links

involve several hundred pairs (mean = 310); scaffolds were

produced using uncontested linkages from pmin or more read

pairs, where pmin = 6. For the ,3.2 kbp jumping library, the mean

number of paired-end links between contigs is 809, with the

weakest uncontested link is spanned by 37 pairs. (This can be

substantially less than the overall depth for long gaps, since only

pairs with separations from the high end of the distribution can

span long gaps, see below.)

Insert size estimation accounting for bias
The sizes of captured gaps can be estimated from spanning pairs

given a known distribution of separations between paired end

sequences. Accurate estimates, however, must correct for the bias

introduced by the fact that the pairs that span a given gap of size g

must be longer than g+2R, where R is the read length. Since the

probability that a given read pair of separation lc spans a gap is

proportional to the size of the spanning region (the unsequenced

portion of the genome between the two end-reads, lc{2R), the

mean separation of pairs spanning a gap of size g can be written as

SlcT(g)~

ð?
gz2R

l(l{2R{g)Pc(l)dlð?
gz2R

(l{2R{g)Pc(l)dl

ð1Þ

where Pc(l) is the distribution of end separations in the library. If

we model Pc(l) by a normal distribution with mean Lc and

standard deviation sc, then analytic estimates can be made in the

small and large gap limits. In the small gap limit g?0,

SlcT(g)&Lc 1z
(s=Lc)2

1{2R=Lc

" #
,

while in the large gap limit g?Lc{2R

SlcT&Lc 1z

ffiffiffi
p

2

r
s

Lc

� �
:

ð2Þ

ð3Þ
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The true gap size is then the self-consistent solution to

g~g0zSlcT(g){Lc ð4Þ

where g0 is the naive gap size (assuming the mean of the spanning

pairs is the overall mean Lc). This equation can be solved

iteratively. In practice, it is initially tabulated for each possible gap

size.

Closure of gaps
The estimated gap sizes that result from scaffolding the U-U

contigs are shown in Figure 4, plotted vs. the true gap size. (The

true gap size is known from the Pichia genome, and is shown to

demonstrate accuracy of the gap size estimates; this information is

not used in the assembly.) ‘‘Negative’’ gaps arise when adjacent U-

U contigs cannot be joined in the U-U graph, but are inferred to

overlap based on paired-end constraints. This situation can arise

due to short repetitive sequences (typically tandem short

microsatellite repeats) whose associated k-mers are not in the U-

U set, which prevents a U-U path from linking the contigs.

Nevertheless, reads can sometimes be anchored by uniquely

occurring k-mers in the two flanking contigs. Such ‘‘splints’’ are

only allowed if their mate pair read is placed nearby with the

appropriate orientation. 95% of estimated negative gaps (938 out

of 985) were closed, as were 36% of positive gaps (183 out of 515),

resulting in an approximately four-fold increase in contig N50 size

after gap resolution.

For each gap that is not spanned by splinting reads, we collect

the reads that are projected to lie within the gap based on the

location of their pair. Even if the gap contains a repetitive

sequence, this modest collection of reads often has a simple

assembly, since there is no interference from reads that lie in other

similar copies of the repeat. To close such gaps, we attempt a

meraculous assembly of the reads projected to the gap. Since in

some cases short localized repeats are still present, if no path across

the gap is found that agrees with the gap estimate, k is incremented

by 2 and another attempt is made. This iterative procedure either

terminates when a gap-filling path is found, or all paths connecting

the flanking sequences terminate by X, indicating lack of unique

continuous sequence. Using both splints and iterative meraculous

assemblies, 75% of gaps between U-U contigs are closed. 97% of

the gap-filling sequences are within 4 bp of the estimated gap size,

and 58% are within 1 bp. Gap filling sequences are reported in

lower case, since they do not have the uniqueness property of U-U

contigs. Though there are no such errors in the Pichia assembly, we

have observed rare errors occuring in gap-filled sequence due to

the collapse of short tandem repeats.

Pairing from a jumping library
A single ‘‘jumping’’ library was produced by shearing genomic

DNA to ,3 kbp, circularizing it, and shearing the circles again to

produce short ,250 bp fragments that were then sequenced at

both ends. Nearly 70% of the paired-ends produced in this

manner are oriented away from each other and separated by

,3.2 kb on the genome, as expected. The distribution of insert

sizes is slightly skewed (Figure 1C). The remaining ,30% of the

pairs were directed towards each other and separated by less than

,250 bp, a configuration that results from sequencing fragments

that do not include the junction of the ,3 kbp circles (Figure 1B).

These aberrant pairs can be excluded by requiring that only end-

sequences that lie .500 bp from the end of a contig are used

(Figure 1C). This in turn limits the order and orientation from

jumping libraries to be done on contigs longer than this length

scale.

Using fosmid-ends for chromosome-scale scaffolding
We performed a long-range scaffolding using paired-end Sanger

sequences from ,9,200 fosmid clones generated previously [26]

(insert size ,3663.2 kbp; 21.56 clone coverage). When the

assembly is bolstered by this modest amount of additional long-

range linking information, 90% of the genome is spanned by 12

scaffolds, all longer than 344 kbp. Since the Pichia genome is

comprised of 8 chromosomes ranging from 980 kbp to 3.5 Mbp,

the fosmid-end-scaffolded assembly therefore recovers chromo-

some-scale sequences.

Accuracy of Pichia assembly
The meraculous assembly reconstructs 95% of the Pichia

genome in long contigs and scaffolds. The contig N50 is

101 kbp, and the scaffold N50 is 269 kbp. (The contig N50 is

the length such that half of the assembly is in contigs longer than

that length; scaffold N50 is similarly defined.) When compared

with the finished reference sequence, we observed no local

sequence errors or global misjoins. More precisely, seven single

nucleotide discrepancies were noted, but all seven loci had

unanimous support for the meraculous consensus among the

Illumina reads, and no support for the finished reference. These

seven discrepancies represent errors in the reference sequence and

not genotypic differences between the original and current

projects, since the genomic DNA was from the same source.

The total assembled contigs spanned 14,703,442 bp, and covered

14,763,519 bp of the reference genome, with ,124 kbp of

identically duplicated sequences in the reference genome that

are assembled only once. Only 4.2% of the reference sequence was

unaligned to the assembly. 20% of these missing bases occurred

within the first or last 2% of chromosomes, and are telomeric

sequences. Half of the missing bases are in 38 long stretches of

more than 5 kbp, and 13 stretches longer than 10 kb account for

about a third of the missing bases. These regions represent

chromosomal regions that are typically annotated as transposable

elements or repetitive genes, including the rDNA locus (See

Supplemental Table S1).

Assembly with a reduced dataset
The Pichia dataset described here includes two lanes of short

,280 bp pairs, and 1 lane of medium ,3 kbp pairs, providing a

Figure 4. Estimated gap sizes vs. actual contig separation in
the Pichia genome. 75% of the initial inter-contig gaps are resolved
during gap closing. 97% of gaps are found to be within 4 bp of their
estimated size, and 58% within 1 bp.
doi:10.1371/journal.pone.0023501.g004
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total of ,1506 sequence coverage based on the distribution 41-

mer multiplicities. Assembly quality decreased only marginally

when we reassembled with only a single lane of short pairs (contig

N50 90 kbp; scaffold N50 254 kbp; total assembled length

unchanged). With half a lane of each paired-end type (,1/3 of

total starting data, or ,506 true 41-mer coverage), the typical

contig size was halved (N50 = 41 kbp) but the N50 scaffold length

decreased only slightly (250 kbp); again the total assembled length

was unchanged. When only 20% of a lane of each paired-end type

was included (,13% of the starting data, or ,106depth based on

41-mer count), however, the contig N50 and total assembled

lengths decreased substantially.

Implementation
Most steps of the meraculous assembly pipeline are parallelized

to take advantage of commodity clusters, by partitioning reads or

k-mers among processors. Additional parallelization is possible

since gap filling can be done independently for each gap; in

practice, this step is fast compared with other steps. The two steps

that are not parallelized are (1) the construction of the U-U

subgraph, which requires the entire k-mer hash to be held in

memory, and (2) the scaffolding step (which is not memory

intensive).

Benchmarking against other short-read assemblers
To benchmark meraculous against other short-read assemblers,

we assembled a publicly available E. coli K-12 MG1655 dataset of

10.4 million pairs of 36-bp reads, with insert size 215611 bp. A

finished reference sequence for this 4.64 Mbp genome is available

[27]. The short-read dataset represents a nominal ,1606shotgun

coverage (total sequence/genome size), although the distribution

of 21-mer frequencies peaks at 65, due to both short read length

(see deff above) and errors. Assemblies of this dataset are reported

in refs. [9] (for ABySS [9], EULER-SR [19], SSAKE [34], and

Edena [35]), [23] (for AllPaths2 [23], as well as Velvet [20] and

EULER [19]) and [11] (for SOAPdenovo). Assemblies vary

depending on parametrization and other details. With parameters

k = 21, dmin = 9, and pmin = 5, meraculous assembled 97.8% of the

4.64 Mbp genome into contigs ranging from 200 bp to 175 kbp,

with half the assembly in 36 (26) contigs (scaffolds) longer than

40.7 (56.6) kbp. (Our assembly includes 26 contigs that are

redundant on the genome, which represent perfect repeats

spanning 51 kbp of the genome.) While the meraculous contigs

and scaffolds are comparable in size to those produced by other

assemblers on this data [9,11,23] no assembly errors were made

(see Table 1). The number of errors reported for other assemblers

on this dataset range from 1 for AllPaths2 to 36 for SSAKE. Four

apparent discrepancies between the meraculous assembly and the

reference (one insertion, one deletion, and two substitutions) were

identified. In all four of these cases, Illumina reads unanimously

support the meraculous sequence over the Genbank reference,

suggesting either an error in the reference or a slight difference in

genotype between the Sanger project and the Illumina sequence

(see also ref. [23]).

We also identified three locations in the finished reference

sequence (,257,905, ,1,298,720, and 1,871,060) that were

discrepant in a manner consistent with the insertion of an IS1

transposase in the meraculous assembly relative to the reference.

These have not been noted previously in other Illumina assemblies

of this dataset. The situation is shown schematically in Figure 5.

At these locations, the meraculous assembly is confirmed by all

available Illumina data, which does not match the reference

sequence. We suggest that these loci are either incorrectly finished

regions (which seems unlikely given the special care used in [27],

who were focusing on intraspecies variation) or, more intriguingly,

recent insertions of IS1 in the lineage separating the E. coli K-12

MG1655 genotype used by [27] from the sample used in Illumina

library construction.

Table 1. Comparison of assembles of E. coli K12 MG1655 benchmark dataset.

Assembler Assembly as reported in Contig N50 (kbp) Scaffold N50 (kbp) Coverage Errors reported

Allpaths2 Allpaths2 337 2,680 99.3% Base accuracy Q67; no misassemblies

Soapdenovo Soapdenovo 89 105 NR 5 incorrect contigs

Velvet Allpaths2 62 298 97.7 Base accuracy Q34; 6.9% of 10 kb regions
missassembled

Velvet ABySS 54 NR 98.8 9 incorrect contigs (mean size 33 kbp)

Euler-SR ABySS 57 NR 99.8 26 incorrect contigs (mean size 52 kbp)

Euler Allpaths2 19 19 94.6 Base accuracy Q30; 7.0% of 10 kb regions
misassembled

Meraculous This report 41 57 97.8% No errors*

Edena ABySS 16 NR 99.1% 6 incorrect contigs (mean size 13 kbp)

ABySS ABySS 45 NR 99.4% 13 incorrect contigs (mean size 33 kbp)

SSAKE ABySS 11 NR 99.99% 38 incorrect contigs (mean size 6 kbp)

In ref. [9] analysis of ABySS, Velvet, Euler-SR, SSAKE, and Edena, only contigs of at least 100 bp were considered and genome coverage was based on full length, partial,
and broken alignments with at least 95% identity to reference. Contigs with broken alignments, or that aligned with less than 95% identity, were considered incorrect.
In the ref. [23] analysis of Allpaths2, Velvet, and Euler, only contigs of at least 1 kbp were considered. Genome coverage computed as the fraction of 100-mers in the
reference sequence that are present in the assembly, allowing for multiple occurrences in the assembly. Base quality reported as total number of discrepancies to
reference, computed over ,10 kb assembly segments that contain fewer than 1% such discrepancies. Misassemblies were reported as the total fraction of bases in
,10 kb segments containing at least 1% error. In the ref. [11] summary of Soap denovo assembly, contigs .100 bp were reported.
NR: not reported.
*Four localized discrepancies were noted between our meraculous assembly and the E. coli K12 MG1655 reference sequence. As described in the text, further
examination showed that all four discrepancies were in fact errors in the reference (or mutations in the lineages separating the MG1655 reference sample from the short
read dataset sample). Analysis of errors reported for other assemblers have not been analysed.
doi:10.1371/journal.pone.0023501.t001
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Comparison of meraculous Pichia assembly with other
short-read assemblers

We applied several previously published short-read assemblers

to the Pichia dataset, with results summarized in Tables 2, 3.

Details of the assembly protocols and resource utilization of the

assemblers used in this comparison are included in Supplemental

Text S2. Compared with the other assemblers tested, meraculous

has the fewest errors (none in the genome, vs. ,1/10 kb for the

others), and comparable completeness (,95%), contig, and

scaffold N50. (Although ABySS has substantially more total

assembly than meraculous and the other assemblers that were

tested, a large fraction of the additional ABySS sequence is

redundantly assembled, which explains why the unique coverage is

less than that of the others (last column of Table 3).)

Simulated assembly and scaling for larger genomes
To assess the feasibility of using meraculous to assemble larger

genomes, we performed two experiments with simulated data for

the ,119 Mbp genome of A. thaliana, which is ,8-fold larger than

the P. stipitis genome. First, we assembled an idealized 41-mer

dataset (all 41-mers present in the TAIR8 A. thaliana reference).

35,208 contigs longer than 200 bp were produced, totalling

105,782,921 bp (89% of the 118,960,067 bp in the finished A.

thaliana reference sequence). The N50 was 13.1 kb, and no errors

were made. Of the 35,208 gaps between these contigs, 15,591

(44%) are negative, corresponding to short repetitive sequences

that should be closed using splinting reads. Another 5,902 gaps

(17%) are between 0 and 100 bp, readily captured and closed by

short-insert pairs as described here for Pichia. These results suggest

that ,50–60% of gaps could be closed with short-insert pairs,

reaching a contig N50 of ,25–30 kbp. Only 1,302 gaps are longer

than 2 kbp, further suggesting that scaffolding with medium insert

pairs as described for Pichia would produce typical scaffolds of

,100 kbp.

We also simulated a 1006nominal depth coverage sampling of

A. thaliana with realistic error profiles (Methods), with 79,456,596

75-bp read pairs with end-separation normally distributed with

mean and standard deviation 300630 bp. The initial contigs

(prior to gap closing) closely matched expectation based on the

idealized 41-mer dataset described above (total length 105.4 Mbp;

36,854 contigs ranging in size from 200 to 102,310 bp; half the

assembly in 2,375 contigs of at least 11,621 bp). With gap closing,

we obtained 17,609 contigs ranging in size from 200 to

180,022 bp, with half the assembly in 1,066 contigs of at least

26,949 bp, again as expected. Scaffolding with these 300 bp pairs

was modest, with half the assembly in 679 scaffolds longer

42,556 bp, consistent with estimates based on the idealized data

set. This assembly contains eight localized sequence errors and one

non-local scaffolding error relative to the reference sequence.

To demonstrate the memory scaling of our algorithm for larger

genomes, we determined the U-U contigs for the human genome,

based on a shred of the 2.8 Gbp reference sequence into its

constituent 75-mers. The U-U contigs longer than 150 bp

accounted for 98% of the reference genome, with N50 contig

length of 8.7 kbp. No scaffolding or gap closing step was attempted

in this demonstration. As expected, only 8.8 Gb of memory was

required to represent the U-U deBruijn sub-graph using our

lightweight hash scheme.

Discussion

Using meraculous, a new short-read assembler, we have shown

that high quality, near-complete de novo assemblies of small fungal

genomes can be produced using deep short-read paired-end

datasets. Half the genome assembly is contained in contigs of at

least 101 kbp (N50 contig), and in scaffolds of at least 269 kbp

(N50 scaffold). Adding a modest number of fosmid-ends allows

recovery of entire chromosomes. Approximately 4.2% of the

genome (650 kbp out of 15.4 Mbp) is not captured in the

assembly, representing repetitive sequences, notably including

telomeric sequences, long retrotransposons, and high copy

tandemly-arrayed elements. Comparing the assembly consensus

to the previously finished and validated reference sequence, we

find no errors across the entire assembly.

Our algorithm incorporates elements used in other long- and

short-read paired-end assemblers, in a new combination and with

new parallel implementations and heuristics based on our analysis

of the Pichia dataset. The deBruijn graph, first applied to shotgun

sequence assembly nearly a decade ago by Pevzner et al. [24]

(following previous introduction in sequencing by hybridization

[36]; see also [37,38]), is the basis for all of the current generation

of short-read assemblers [18]. In our approach, however, we do

not construct the full de Bruijn graph defined by the reads.

Figure 5. Differences between E. coli meraculous and reference
sequence identify transposon insertion. Bottom line shows
portion of the Genbank reference genome for E. coli str. K-12 substr.
MG1655 produced by Sanger sequencing and directed finishing strain
[27]. Top shows alignment of the de novo meraculus contigs to
reference sequence. Solid lines agree perfectly. Angled dashed lines
represent unaligned meraculous contig-ends that correspond to the
beginning and end of a transposable element. All short-read data
supports the meraculous sequence, indicating either insertion of the
transposon in the Illumina-sequenced lineage, or an error in the
MG1655 reference.
doi:10.1371/journal.pone.0023501.g005

Table 2. Comparison of P. Stipitis assembly scaffold characteristics (including scaffolds of size at least 2 kbp).

Assembler No. Scaffolds Total Size (Mbp) Scaffold N50 (no. / kbp) Total gap bases (kbp; %) Scaffolding errors

ABySS 111 15.48 20 / 263 7.3 (0.05%) 0

Meraculous 118 14.79 18 / 269 81.7 (0.55%) 0

SOAPdenovo 88 14.74 14 / 348 156 (1.06%) 0

Velvet 157 14.82 24 / 202 136 (0.92%) 78

To assess accuracy of the assemblies, contigs were aligned to the reference genome using BLAST. Scaffolding errors include non-colinear arrangements of contigs
within scaffolds with respect to the reference sequence.
doi:10.1371/journal.pone.0023501.t002
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Instead, we limit ourselves to the ‘‘U-U’’ subgraph that includes

only likely k-mers from the genome that possess unique, reciprocal,

high quality extensions at each end. In this way we remove most

error-containing k-mers and produce a graph that consists of a

collection of simple unbranched paths. These paths are closely

related to the ‘‘unitigs’’ of the Celera Assembler [30] and the

‘‘unipaths’’ of ALLPATHS [22] in that they represent genomic

regions whose assembly into contigs is uncontested based on read-

read alignments or their equivalent in the deBruijn formulation. A

related approach is taken in SOAPdenovo [11]. The U-U

subgraph can be readily produced with a memory footprint that

scales linearly with the genome size, a characteristic of de Bruijn

graph based methods.

Overall, memory usage in Meraculous depends not only on the

size of the U-U subgraph, but also on the parallelization

parameters used in the stages that preprocess the U-U subgraph.

By dividing the k-mer sample space into disparate chunks,

peak RAM usage and running time can be adjusted to user

requirements. For instance, on our 32-core test machine, one can

optimize for speed by allowing all k-mer sample chunks to be

processed simultaneously: in this case, the Pichia assembly runs in

3 hours 37 minutes with a peak RAM footprint of 153 Gb. By

varying the number of simultaneously-processed chunks pro-

cessed on a per-stage basis, one can optimize for RAM use: the

Pichia assembly then runs in 12 hours 28 minutes but with a

peak RAM footprint of 7.72 Gb. In general, given P chunks

preprocessed simultaneously out of C total chunks of the k-mer

space of M mers and genome size G, the peak RAM R is

characterized by R = O(P * M/C)+3.7 * G. In other words,

meraculous can be made to fit (at the expense of increased

runtime) into an arbitrarily small RAM footprint down to the

limit of the U-U subgraph hash itself which, in practice, requires

,3.7 bytes per base in the genome to store.

Our implementation avoids explicit error correction [24,28], a

feature of most other short-read deBruijn assemblers

[9,11,19,20,22], in favor of a brute force approach that is made

possible by the quality and quantity of current Illumina data. Error

correction takes advantage of the preponderance of accurate

sequence to identify outliers (e.g., error-containing k-mers that

occur only a few times in the dataset when the typical true k-mer

from that genomic region occurs dozens or hundreds of times).

Assuming that such k-mers contain errors, the error-correction

approach seeks the minimal sequence change to convert these

outlying k-mers into sequences found more often in the data [24].

While this approach is clearly feasible in uniquely assemblable

regions of strong coverage, it is also not necessary there, since the

correct assembly will often be evident anyway due to overwhelm-

ing depth of accurate sequence. From this perspective, it is

sufficient to simply ignore the erroneous k-mer, as we do here. Our

algorithm identifies these outliers (using a combined quality and

depth filter) and disregards them in a robust way that does not

degrade the assembly but allows the algorithms and their

implementation to be simplified and streamlined.

Using mate-pair information, scaffolds of nominally single copy

sequences can be constructed. Gaps captured within these

scaffolds (comprising repeats) can then be back-filled using

paired-ends, as first described in [16] and robustly implemented

for large-scale assembly in the Celera Assembler [30]. This ‘‘gap-

filling’’ step allows residual errors to be corrected through the

construction of consensus sequences. Thus by combining the

efficient deBruijn approach for determining an initial set of

contigs, with a read-based approach using mate-pairs to link across

and fill in gaps between the initial contigs, meraculous can

produce accurate assemblies of short-read datasets.

A limitation of the current meraculous algorithm is that it

assumes data from a haploid genome. In a diploid sample,

heterozygous single nucleotide variations generate forks in the

deBruijn graph, and our algorithm’s reliance on the linear U-U

component of the graph as a starting point for making contigs

must be augmented to allow for bubbles in the graph that arise

from such heterozygous regions.

Supporting Information

Table S1 Summary of unassembled genome sequences.
This table lists the locations, sizes, and annotations of 38 regions of

the Pichia genome larger than 5 kb which contain 62% of the

sequence missing from the meraculous assembly.

(DOC)

Text S1 Optimal Choice of dmin. This note presents a formal

calculation of the contig-number minimizing choice of the

assembly parameter dmin.

(DOC)

Text S2 Timing and memory comparisons with other
assemblers. This note details the protocols and computational

resources we used to perform assemblies of Pichia with alternative

available assembler software.

(DOC)
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Table 3. Comparison of P. Stipitis assembly contig characteristics (including contigs of at least 100 bp).

Assembler No. Contigs Total Size (Mbp) Contig N50 (no. / kbp) Contig error rate Reference coverage Unique coverage

ABySS 132 15.48 21 / 263 1/29 kbp 97.8% 92.2%

Meraculous 489 14.70 44 / 101 ,1/15000 kbp 95.8% 95.8%

SOAPdenovo 561 14.58 64 / 65 1/6.4 kbp 95.2% 95.1%

Velvet 572 14.69 87 / 53 1/15 kbp 96.5% 95.4%

Contig error rate is measured for only the single best-aligning BLAST HSP per contig. Reference coverage is based on the total number of bases spanned by at least one
HSP; unique coverage is based on the total number of reference bases spanned by exactly one HSP.
doi:10.1371/journal.pone.0023501.t003
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