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Abstract

While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of
collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework
for obtaining large amounts of medical information from a recontactable cohort by assessing our ability to replicate genetic
associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes
from a generally unselected cohort of over 20,000 genotyped individuals. Of a list of genetic associations curated by NHGRI,
we successfully replicated about 75% of the associations that we expected to (based on the number of cases in our cohort
and reported odds ratios, and excluding a set of associations with contradictory published evidence). Altogether we
replicated over 180 previously reported associations, including many for type 2 diabetes, prostate cancer, cholesterol levels,
and multiple sclerosis. We found significant variation across categories of conditions in the percentage of expected
associations that we were able to replicate, which may reflect systematic inflation of the effects in some initial reports, or
differences across diseases in the likelihood of misdiagnosis or misreport. We also demonstrated that we could improve
replication success by taking advantage of our recontactable cohort, offering more in-depth questions to refine self-
reported diagnoses. Our data suggest that online collection of self-reported data from a recontactable cohort may be a
viable method for both broad and deep phenotyping in large populations.
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Introduction

In the last few years, the cost of collecting genomic data has

declined rapidly. However, advances in the collection of phenome

data (the set of all phenotypic information from a single organism)

have not kept pace [1,2]. New techniques are needed to

complement the wealth of genomic data and build the large

cohorts needed for highly-powered genome-wide association

studies (GWAS).

The reliability of phenotyping is important for GWAS.

Phenotyping error decreases power, which can be problematic

as most GWAS are not sufficiently powered to explain a significant

fraction of the underlying heritability. Although increasing sample

sizes can counteract the problems caused by misclassification, it is

the very issue of needing ever larger samples that necessitates more

efficient methods for collecting data [3]. A number of associations

reported in very large meta-analyses have not been replicated, and

may never be, simply because of the difficulty of assembling such a

sizeable cohort of patients. There is a need for more straightfor-

ward methods to quickly and reliably gather retrospective

phenotype information from large cohorts of people, not only to

validate existing associations, but to discover new ones.

Although self-report has frequently been used for physical traits,

medical records have traditionally been the preferred source of

retrospective information on medical conditions. Previous studies

have reported good agreement between medical record data and

self-reported medical conditions [4–8], and include a few common

themes. First, there tends to be good concordance for well-defined

and easily diagnosed diseases and for chronic conditions that

require repeated medical follow-up (kappa ranging from 0.71–0.80

for diabetes, hypertension, myocardial infarction, and stroke) [4–

9]. Second, a negative self-report is very likely to agree with a

negative result from the medical record [5]. Third, self-reports of

conditions that are milder, less specific (such as heart failure), or

communicated in different ways by physicians (such as high

cholesterol) tend to be less consistent with medical records,

possibly because the original diagnosis was less certain or because

of insufficient physician—patient communication [4,8,10]. Fourth,

medical records, especially in countries without centralized

healthcare, typically only address diseases from a limited portion

of a patient’s life; self-report can be more accurate for diseases

outside this window [5].

To begin to address the phenomics problem, a structure that

facilitates both broad and deep phenotyping and maximizes the
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utility of information gathered while minimizing the burden on

participants is needed. In this study, we evaluate a research model

in which a large, recontactable cohort is surveyed online across a

broad range of phenotypes. Subsets of this cohort with particular

characteristics can then be contacted for further research with

more in-depth phenotyping on specific topics as appropriate. We

have demonstrated previously that this model can be used to

discover and replicate associations with non-medical traits [11].

Here, by assessing our ability to replicate previously reported

genetic associations across a wide range of conditions, we

demonstrate that broad self-reported data collection online is

useful for medically-related conditions as well. We show that some

classes of conditions lend themselves particularly well to simple

self-report, while others are more complex. We also show that the

ability to recontact the cohort facilitates rapid refinement of

phenotype characterization.

Results

We sought to replicate associations from the list curated by the

National Human Genome Research Institute’s Office of Popula-

tion Genomics (‘‘GWAS catalog’’) in a cohort of 20,182

participants of European ancestry who filled out surveys on the

23andMe website [12,13]. Members of the cohort, drawn from the

23andMe customer base, had been genotyped at approximately

600,000 SNPs, and had access to their raw genetic data as well as

health- and ancestry-related interpretations of their data. The

majority of the cohort was not selected based on disease status or

other characteristics and is roughly a representative sample from

the 23andMe customer base; approximately 4,000 members of the

cohort had been recruited for a study on Parkinson’s disease or a

project with the National Senior Games Association (http://www.

nsga.com/).

Phenotypes from the GWAS catalog were matched with available

phenotypes from the online surveys (see Methods). In order to collect

data on a wide range of phenotypes while keeping the time spent

answering surveys low, we chose to assess most phenotypes using

only single questions of the general form ‘‘Have you ever been

diagnosed by a doctor with [Condition X]?’’. A total of 50 conditions

from the GWAS list had direct analogues within the 23andMe

database. For each condition, we used only one SNP from each

linkage disequilibrium (LD) block (using a threshold of r2. = 0.1)

and removed SNPs that were not on our platform or did not have a

proxy SNP on our platform with LD of r2. = 0.5. Ultimately, we

attempted to replicate a total of 392 different associations (315

case—control, 77 quantitative) for these 50 phenotypes.

Using a one-sided P,0.05 threshold for significance, we

replicated 144 (93 case—control and 51 quantitative) of the 392

attempted associations in 36 of the 50 phenotypes (Figure 1, Table

S1, Table S2). For some conditions, the size of our case group was

quite small; however, the odds ratios for replicated SNPs were

generally in good agreement with the published odds ratios. Of the

case—control conditions, 84.6% of the replications had 95%

confidence intervals containing the published odds ratio (replica-

tions for pigmentary phenotypes such as eye color, hair color, and

freckling were not included as the assessment scales are not easy to

match across different published reports). As one aspect of

23andMe’s Personal Genome Service involves returning genetic

data to our customers, we investigated the possibility that

customers viewing a result of elevated risk for a certain disease

before answering surveys may skew the results towards replication.

To address this, we investigated the impact of seeing genetic risk

results before versus after answering survey questions on self-

reported disease status for a set of 20 conditions for which

participants were able to view a personal risk prediction. We

observed that in general, the nature of the genetic risk result did

not have a consistent or significant effect on the way questions

were answered (Table S4).

As many of the known associations were discovered in large

case—control studies, we expected to have low power to detect

many of them using our mostly unselected cohort. Thus, to further

assess our success in replication, we calculated our power to

replicate each association for all case—control phenotypes

(quantitative phenotypes were skipped in this calculation due to

difficulties in matching scales in many of them). Power was

calculated using the odds ratios reported in the GWAS catalog. To

allow for phenotyping error, the calculations assumed that 5% of

our reported cases are actually controls and that the minimum of

the prevalence or 10% of our controls are (or will someday be)

cases. For diseases with over 10% prevalence, controls were

generally chosen to be of sufficient age so that at most 10% of

people without the disease at that age would be expected to

develop the disease. See Methods for full details.

We replicated 70% of the number of replications expected (93

replications against 132.7 expected), given our sample sizes

(Figure 2). Some of the failed replications can be traced back to

the possibility that the reported effect sizes for these associations

are inflated or that the associations themselves are false positives.

Table 1 shows all associations for which we had at least 80%

power to replicate but failed to do so. Of these 19 associations, five

have failed to replicate elsewhere despite high power to do so, two

have shown significant heterogeneity of odds ratios in meta-

analyses, and two exhibited significant signals when the two stages

of a multi-stage study were combined but were not interpreted as

significant by the authors. Removal of these nine SNPs for which

our power may be substantially overestimated increased our

replication rate to about 75% (93 out of 124.0). Furthermore,

among the remaining 213 SNPs that we did not replicate, we

observed the correct directionality of association for 126 out of an

expected 172.0 SNPs (using a p-value threshold set to 0.5), yielding

a rate of 73.2% relative to expected. Interestingly, an inflamma-

tory bowel disease (IBD) association (rs7517847) that we had high

power to replicate also failed to replicate in ulcerative colitis only

cases in an Italian study of IBD, suggesting that the association

may be specific to Crohn’s disease, as opposed to all types of IBD

[14]. Overall, our success rates differed vastly for different classes

of diseases (Figure 2, Figure S1), suggesting that the difference

between theoretical and actual power is to some extent explained

by differences in phenotyping (discussed in more detail below).

Separate from these calculations, we also attempted to replicate

106 associations with phenotypes in our cohort that were only in

weak correspondence with phenotypes in the published papers. Of

the 106, we replicated 39 associations. For example, while we did

not collect data on gallstones, we did collect data on gall bladder

surgery which is often a consequence of gallstones, and were able

to replicate one association with gallstones. Likewise, answers to

the question ‘‘Have you ever been diagnosed by a doctor with high

cholesterol (over 200 mg/dl) or hypercholesterolemia?’’ were

sufficient to replicate 19 associations with cholesterol level. Data

on receiving an abnormal result on a liver function test result were

sufficient to replicate four associations with bilirubin levels. A

summary list of these replications can be found in Table 2 (full list

in Table S3).

Discussion

Advances in technology have driven down the price and

difficulty of genotyping, but until recently, the same has not been
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Figure 1. Replicated SNPs for binary traits. Our log ORs and 95% confidence intervals are shown as black circles and lines. Published ORs are
shown as blue Xs.
doi:10.1371/journal.pone.0023473.g001
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Figure 2. Success rate (versus total power) by disease class. Replications = number of associations we successfully replicated.
Expected = number of associations we expected to replicate. Attempts = number of associations we attempted to replicate. The blue dot represents
our success ratio (number of successful replications divided by number of expected replications). The black line represents the 95% prediction
interval for the success ratio. The nine associations that we had high power to detect but had known conflicting data were not included in this figure
(see text and Table 1). Conditions assigned to each class (also see Methods S1): Asthma: childhood asthma; Autoimmune: Crohn’s disease,
inflammatory bowel disease, lupus, multiple sclerosis, psoriasis, type 1 diabetes, ulcerative colitis; Cancer: basal cell carcinoma, bladder cancer, breast
cancer, colorectal cancer, prostate cancer, lung cancer, melanoma, pancreatic cancer, scleroderma, testicular cancer, thyroid cancer; Celiac: celiac
disease; Diabetes: type 2 diabetes; Heart: blood clots, coronary artery disease, heart attack; Pigment/Hair: eye color, freckling, hair color, red hair color,
male pattern baldness; Neuro: Alzheimer’s disease, autism, Parkinson’s disease; Other: chronic obstructive pulmonary disease, kidney stones, stroke,
osteoarthritis; Psychiatric: alcohol abuse, bipolar disorder, schizophrenia.
doi:10.1371/journal.pone.0023473.g002

Table 1. Associations with sufficient power for detection (. = 80%) that failed to replicate.

Phenotype SNP Pub OR Rep OR P-value Power Cases Controls
Replications in the
Literature

Alcohol abuse rs7590720 1.35 0.955 0.875 1 1811 8549 Failed to replicate [30]

Bipolar disorder rs1012053 1.59 1 0.485 1 366 13030 Failed to replicate [31–34]

Bipolar disorder rs420259 2.08 0.966 0.659 1 366 13030 Failed to replicate [32–34]

COPDa rs13180 1.3 1.05 0.26 0.89 403 2306 Replicated [35]

COPDa rs7671167 1.32 1.11 0.0968 0.93 403 2306 Replicated [35]

COPDa rs1828591 1.38 1 0.489 0.97 403 2306 Replicated [36,37]

Crohn’s disease rs2066847 3.99 1.54 0.151 0.88 84 13288 Replicated [38]

IBDb rs7517847 1.61 0.855 0.954 1 250 12808 Replicated [39]c

Juvenile allergic asthma rs2786098 1.43 1.07 0.181 1 641 6584 Failed to replicate [40]

Lupus rs3131379 2.36 1.38 0.133 0.82 52 11675 Not yet replicated

Parkinson’s disease rs17115100 1.25 0.992 0.555 0.97 2274 5336 Not claimed [41]d

Parkinson’s disease rs823128 1.52 1.17 0.0531 1 2274 5336 Not claimed [41]d

Psoriasis rs20541 1.27 1.09 0.0953 0.92 833 4291 Replicated [42,43]

Rheumatoid arthritis rs10499194 1.33 0.927 0.797 0.9 308 12845 Failed to replicate [44]

Rheumatoid arthritis rs3761847 1.32 1.01 0.437 0.93 308 12845 Between-study
heterogeneity [45]

Type 2 diabetes rs9300039 1.48 0.976 0.595 0.97 778 3273 Between-study
heterogeneity [46]

Type 2 diabetes rs2943641 1.19 1.03 0.328 0.81 778 3273 Not yet replicated

Thyroid cancer rs965513 1.75 1.37 0.0559 0.83 52 11234 Replicated [47]

Ulcerative colitis rs11209026 1.79 1.47 0.0577 0.85 181 13100 Replicated [48]

Pub OR = published odds ratio. Rep OR = 23andMe attempted replication odds ratio. Power = estimated power to detect association.
aCOPD = Chronic Obstructive Pulmonary Disease. This analysis included smokers only.
bIBD = Inflammatory Bowel Disease.
cThis SNP was initially associated with IBD, but replicated only for Crohn’s disease [39], which is a subtype of IBD. Latiano et al. also replicates rs7517847 with Crohn’s
disease, but not with ulcerative colitis, which is the other major subtype of IBD [14].

dThis association was curated into the GWAS catalog as significantly associated with Parkinson’s disease but was not identified by the authors as significant.
doi:10.1371/journal.pone.0023473.t001
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true of phenotyping [15]. We propose that web-based collection of

self-reported data on medical phenotypes is an efficient and

effective method for phenotyping a large cohort of individuals, as

evidenced by our ability to replicate a high percentage of

associations across a wide range of conditions. Relative to medical

record review, internet-based phenotyping is fast (we assessed

more than 20,000 people for 50 phenotypes in approximately 12

months using only a small team of people). To our knowledge, this

is the largest number of replications across a wide variety of

diseases ever reported, demonstrating the value of gathering self-

reported data on a large genotyped population.

While many of the associations tested here have been replicated

before, there are a few that are, based on our literature review, the

first independent replications of these associations in a population

of European descent: basal cell carcinoma (PADI4, RHOU), plasma

levels of liver enzymes (PNPLA3), and bone mineral density

(MEF2C, MEPE—these have already been replicated in a

population of Asian descent). Though our study has been

performed in a population of European ancestry, a similar study

would be feasible in other populations. Such a study could

potentially improve risk prediction in non-European populations

as well as further our understanding of disease architecture (e.g.,

understanding how effect size varies across populations could

provide insight into how tightly linked associations are to the

causal variants). Furthermore, while it is true that we are able to

replicate previously identified associations using our research

platform, the reverse is also true—novel discoveries using our

method have been independently replicated using other modes of

data collection for both traits and medical conditions [16–19].

Although most studies use medical records as the gold standard

against which self-reported data are compared, there are some

inherent challenges to the use of medical records [5]. As very few

people have received all their health care from the same provider,

the medical records from different stages of their lives are stored at

different sites of care. Thus, a childhood diagnosis of asthma might

be stored in a record at the pediatrician’s office but not be reported

in the record at the adult medical practice. In addition, extracting

data from medical records often requires either manual curation,

which is time-consuming and expensive, or reliance on ICD-9-CM

or CPT codes which may have been miscoded. For example, a

replication study was carried out using the BioVU DNA databank

at Vanderbilt University by applying natural language processing

techniques and billing-code queries to electronic medical records

[20]. Their algorithms achieved high positive predictive value (as

measured by independent record review by two physicians) but

required manual review and significant iterative work. Out of 21

SNPs in five phenotypes, they were able to replicate eight

associations. In contrast, we were able to examine 50 phenotypes

and replicate over 180 associations. For cases in which the

information required may be difficult for individuals to report but

can be extracted from electronic medical records (such as lab

values), these two methods can provide complementary sources of

data.

We replicated approximately 75% of the associations we

expected to (excluding those for which our power may be

substantially overestimated), based on power calculations. There

are several possible reasons why we did not replicate all the

associations we expected to (see Figure 2 and Figure S1 for

instances in which our success ratio did not overlap the 95%

prediction interval). One factor is systematic inflation of odds

ratios in the initial reports due to the winner’s curse—a bias in the

effect size estimates from the first publication to report an

association, generally occurring when the discovery sample is

poorly powered to detect the association [21]. For example, if we

were to assume a systematic inflation of 15% in the log-odds ratio,

the replication rate would change from 70% to 77% (or 75% to

82% if we again exclude the nine associations that are not clearly

true positives). This amount of inflation is entirely within the

confidence intervals for most studies: it corresponds to an

estimated odds ratio of 1.3 where the true odds ratio was 1.25

or an estimate of 1.5 where the true odds ratio was 1.41. There are

more sophisticated methods to perform bias correction for odds

ratios but these require an analysis of the original experimental

design that is beyond the scope of this paper [22].

While winner’s curse probably explains part of the deviation

from expected, some classes of diseases were likely not well

phenotyped in this study, through some combination of misdiag-

nosis and misreport. For example, autoimmune diseases are more

challenging because they may be of low prevalence, have non-

specific symptoms, and a high rate of misdiagnosis. In a study of

rheumatoid arthritis diagnoses by non-rheumatologists, 23–82%

were judged to be misdiagnoses [23], while another study showed

that relative to assessment in a specialist setting, patients in a

community setting who received a diagnosis of celiac disease were

actually misdiagnosed more than 50% of the time [24]. Some of

the underperformance of this approach for autoimmune diseases is

Table 2. Replications without strictly matching phenotypes.

23andMe Phenotype Published Phenotype # Replications Genes

Liver test Bilirubin levels 4 CHUK, GGT1, SAMM50, UGT1A1

High cholesterol Cholesterol levels (quantitative)a 19 ABCG8, APOA1, APOB, CELSR2, CILP2,
DNAH11, DOCK7, FADS1, GCKR, HNF1A,
LDLR, LIPC (62), MAFB, NCAN, PCSK9 (62),
TOMM40, TRIB1

Gall bladder removal Gallstones 1 ABCG8

High blood pressure Blood pressure (quantitative)a 8 ATP2B1, CYP17A1 (62), CYP1A1, FGF5,
SH2B3, ULK4, ZNF652

Osteoporosis Bone mineral density (quantitative)a 5 MEF2C, MEPE, OSX, SOX6, SPTBN1

Macular degeneration Advanced age-related macular degeneration 2 C2, C3

Nicotine abuse Nicotine dependence 1 CHRNA3

aThese phenotypes were measured quantitatively in the published reports, but the corresponding 23andMe phenotypes listed here were measured qualitatively (yes/
no).

doi:10.1371/journal.pone.0023473.t002
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therefore likely due to patients reporting a mistaken diagnosis by a

non-specialist.

Because we chose to keep the burden of answering surveys low

for our participants, many of the conditions in this study were

assessed with single questions such as ‘‘Have you ever been

diagnosed by a doctor with schizophrenia?’’ This assessment likely

led to reporting errors for some diseases. For example, psychiatric

diseases or mental disorders such as Alzheimer’s disease, for which

diagnosis requires a somewhat subjective clinical evaluation of a

patient’s symptoms or an autopsy, were each assessed via a single

question in this study. More questions are needed here to gather

information about the clinical features that led to the diagnosis. In

addition, in some cases it may make more sense to have a family

member, friend, or caregiver provide information for an

individual.

On occasion, the nature of people’s answers to such single

questions necessitated making judgment calls on how to define a

phenotype. Because some people may have type 2 diabetes but

are only aware of having high blood sugar, we included people

who self-reported having hyperglycemia as type 2 diabetes cases.

For chronic obstructive pulmonary disease (COPD), we included

individuals who reported having emphysema or chronic bron-

chitis. However, there are likely to be individuals who repeatedly

get bronchitis associated with a cold or flu and reported having

‘‘chronic bronchitis’’, not knowing that the clinical definition of

this condition is developing bronchitis lasting at least three

months in two consecutive years. This confusion may have

reduced our power to replicate associations with COPD. In other

cases, we were unable to come up with an acceptable match for a

condition. For example, most GWAS of age-related macular

degeneration (AMD) have focused on advanced AMD and

generally only included cases with large drusen, geographic

atrophy, and/or neovascularization. Our question asked only

about AMD without assessing severity and thus our study may

have included individuals with small or intermediate drusen and/

or pigmentary abnormalities as cases. Such phenotypes from the

GWAS catalog without direct analogs in our database were

skipped for the main calculations in this paper. For all such

conditions, more in-depth questions will be necessary to collect

data more accurately.

These in-depth questions, which will be important when

attempting to unravel the complex biological underpinnings of

most phenotypes, can be asked up front for phenotypes that we

suspect a priori may be challenging to assess. However, having a

recontactable cohort makes the process of refinement possible

when more information must be gathered. For celiac disease,

starting with the question ‘‘Have you ever been diagnosed by a

doctor with celiac disease?’’, we replicated only one association out

of almost six expected. As the prevalence of celiac disease in our

cohort appeared to be somewhat higher than the reported

prevalence in the United States [25], we chose to return to our

customer database with a refined question of ‘‘Have you ever been

diagnosed with celiac disease, as confirmed by a biopsy of the

small intestine? If your diagnosis was not confirmed by a biopsy,

please select no.’’ As a result, with a much smaller number of cases

(which also reduced the number of associations we expected to

replicate), we successfully replicated 4 out of 4.5 associations

expected for celiac disease. This approach could also be used to

examine endophenotypes or to divide broad phenotypes into

subclasses with more defined characteristics.

The trend in GWAS research has been towards ever increasing

sample sizes and reuse of previously genotyped cohorts whenever

possible. Because it is relatively straightforward for our participants

to provide information that is relevant for a variety of studies, any

given individual can be a case or a control in multiple analyses at

once. This could potentially reduce the total amount of work for

the patient (sample collection needs to occur only once to

participate in many studies) as well as potentially reducing the

total number of people an investigator needs to genotype. In

addition, for most conditions, this framework leads to a much

larger number of controls than cases, which increases the study’s

power up to a certain point. Though self-report may lead to a

slight increase in phenotyping error, in many cases, the lower

phenotyping cost may lead to a more powerful study. For example,

a study with 3,000 cases and 3,000 controls and a phenotyping

error rate of 5% would have 77% power to detect a SNP at a

minor allele frequency of 30% and an odds ratio of 1.3 with a p-

value threshold of 1027. But a study with 5,000 cases and 5,000

controls with a phenotyping error rate of 10% would have 95%

power to detect such an association. Even if the error rate were

15%, the 10,000 person study would have 77% power and would

have many more people to follow up with. Although more data are

needed to evaluate the true costs of this model relative to other

models, we believe that this method has the potential to collect

high-quality phenotype data in an efficient manner.

The framework described here, in which additional questions

can be directed at participants at any time with relatively low

marginal effort, facilitates follow-up on specific topics as shown

in the celiac disease example. Thus, one possible model for large-

scale phenotyping could start with broad but shallow phenotyp-

ing by self-report on a very large cohort of individuals, followed

by targeted recontact of specific subsets of individuals for deeper

phenotyping based on the initial information gathered. The

additional phenotyping could involve more in-depth questions to

the participants or a completely different type of data collection

that may require an in-person visit. A platform like this one that

maintains an ongoing relationship with the participants,

including sharing data with them, may motivate individuals to

participate and stay active in research (for example, more than

80% of our research participants have taken more than one

research survey).

There are many benefits to having a large, recontactable cohort.

Testing new hypotheses, following up on initial data, and assessing

the accuracy of different risk prediction models are easier when the

need to assemble a new cohort every time is obviated. This raises

the question, how large of a cohort is needed? With 20,000

generally unselected people, we expected to replicate approxi-

mately 40% of the associations that we tested. Only a 106increase

to 200,000 individuals would raise the expected proportion of

replications to 80%, and with a million the expected replication

rate would be more than 97%. A simple sum of the initial sample

sizes in the papers reported in the GWAS catalog totals nearly

1,400,000. This is clearly an overestimate of the number of

genotyped individuals as certain cohorts are reported in more than

one study, but even if only 70% of these individuals are unique,

this would constitute a resource of a million individuals with

genome-wide genotype data who may be interested in participat-

ing in further research if given the opportunity. Unfortunately,

because of the way research is currently done, these individuals

come from dozens of different cohorts and it would be impractical

if not impossible to recontact them all. As we move into studies

that require ever larger sample sizes, such as those investigating

gene—gene or gene—environment interactions, developing more

efficient methods of conducting this type of research will become a

necessity. We believe that this model in which investigators

maintain long-term relationships with research participants and

facilitate their participation through online tools is a significant

step in that direction.

Efficient Replication of over 180 Associations
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Methods

Cohort, Genotyping, and Phenotyping
Participants of European ancestry were drawn from the

customer base of 23andMe. This group is almost 58% male, with

an average age of 46 (approximately 95% of the group is between

the ages of 20 and 80). Most of our participants are from the

United States, with the next largest groups from Canada and

Europe. Genotyping was performed on the Illumina Human-

Hap550+ BeadChip and all SNPs tested had a call rate of at least

99%. All individuals provided informed consent and answered

surveys online according to our human subjects protocol, which

was reviewed and approved by Independent Review Consulting,

now part of Ethical & Independent Review Services, a private

institutional review board (http://www.eandireview.com). A

number of the surveys were based on existing instruments in the

literature; the remainder was developed by 23andMe scientists. In

general, the new questionnaires were designed in collaboration

with a medical professional and reviewed by an external scientific

group. All surveys were accessible to customers who had logged in

to their 23andMe accounts on a page labeled ‘‘Research Surveys’’.

Each survey was labeled with a descriptive title and a link to a

short explanation of the content and purpose of the survey.

Surveys could be taken in any order and at any time. Because of

this, the response rate (number of people who answered the survey

divided by all genotyped users who had consented to participate in

research, which is likely greater than the number of people who

ever viewed the survey) varied from survey to survey but was

generally in the range of 15–40%. The ‘‘Your Medical History’’

survey, from which the majority of the phenotype data used in the

study were collected, had a response rate of 39%. We used data in

our analysis that were collected prior to October 20, 2010.

Identification of SNPs for replication studies
The GWAS catalog is a list of genome-wide association studies

curated by the National Human Genome Research Institute’s

Office of Population Genomics [12,13], and is a relatively

complete catalog of SNPs found in published GWAS. We accessed

the catalog on May 10, 2010 and sought to replicate as many SNP

associations as possible from that list. We removed any SNPs from

the list with reported p-values greater than 1027 to limit the

number of false positives we were attempting to replicate. In

addition, we required that the entry had a reported odds ratio or

regression coefficient and that the associations were to single

SNPs, rather than haplotypes. For this analysis, as most GWAS

are performed in populations of European descent, we restricted

our attention to those associations reported in European

populations to maximize the total number of associations we

could test. We removed duplicate associations from the list,

attempting to use the study with the largest total number of cases.

To further avoid testing the same association twice, for SNPs that

were in LD with each other (using a threshold of r2. = 0.1), we

only picked one association, again attempting to use the study with

the largest total number of cases. Where papers reported multiple

SNPs in LD with each other, we chose the SNP with the smallest

p-value. In cases where we did not have the reported SNP on our

platform or where the SNP was not called in over 99% of our

subjects, we used a proxy SNP if there was one with r2. = 0.5. We

did not use results reported from papers that included the

23andMe database. Original data from the GWAS catalog can be

found for all attempted replications with well-matching pheno-

types in Table S7, and for all successful replications with less

strictly matching phenotypes in Table S8.

Not all papers used the same stranding conventions, and some

papers have misreported the risk allele. Therefore, we checked the

stranding of the reported associations using a multi-step process.

First, we confirmed that the CEU HapMap frequency information

roughly matched the risk allele frequency reported in controls for

all SNPs. Specifically, if the reported risk allele frequency and the

HapMap frequency were both less than 0.35 or greater than 0.65,

the frequency was judged to match. Unambiguous SNPs (i.e.,

SNPs whose two alleles are not reverse complements) with

matching frequencies were judged to be correctly reported. All

ambiguous SNPs and SNPs without HapMap data were checked

manually in the original papers. This process turned up at least

one SNP whose risk allele could not be determined from the

original data (rs6457620 with rheumatoid arthritis, not replicated

here).

Finally, we required that we could define cases in essentially the

same manner as the original paper (using self-reported data for

clinical data, where applicable). For example, we restricted our test

to people in our database reporting disease onset before the age of

18 for associations to juvenile onset conditions. We also attempted

to match smoking status and sex when applicable. In several cases

the matching of diseases was a judgment call (for example, self-

reports of hyperglycemia and type 2 diabetes were both coded as

type 2 diabetes cases). For several common diseases, in an attempt

to maximize power, we restricted our set of controls using

incidence data for the disease. Specifically, we required controls to

be at an age advanced enough that 90% of the controls would be

expected never to develop the disease. See Methods S1 and Table

S6 for how phenotypes were defined.

Power calculations
We calculated power only for binary traits, using the model

from Freidlin et al. [26], modified to calculate power under a one-

sided test and to allow for phenotyping error (specified as the

percentage of cases incorrectly classified as controls, and vice

versa). We set error rates at 5% for cases, based on general

evidence that misdiagnosis rates are often over 5%. For example,

misdiagnosis rates have been estimated to be 30–45% for celiac

disease [24], 5% for multiple sclerosis [27], between 23% and 82%

for rheumatoid arthritis diagnosed by a non-rheumatologist [23],

and even for cancer with biopsy there are 1.4% discrepant

diagnoses when comparing the original diagnosis with a second

opinion [28]. We took the error rate for controls to be the

minimum of the disease prevalence and 10%. For associations

where we used a proxy SNP not in complete linkage disequilib-

rium with the original reported SNP, the total sample size was

scaled by r2 in the power calculation [29].

Statistical methods
We calculated the p-values for binary associations using the

score test for a logistic regression (also known as the Armitage test).

Odds ratio (OR) and effect sizes are specified for the risk allele

reported in the GWAS catalog [12,13]. For non-binary traits, we

used the Wald test for a linear regression. We used a threshold of

0.05 for significance of any individual test. All tests were one-sided

in the direction of the published OR. Using different thresholds

did not change the results substantially (Table S5). There is no

substantial multiple testing burden in this study, as the vast

majority of the associations are probably true signals.

For the prediction intervals in Figure 2, we used a model in

which each attempted replication was considered to be an

independent Bernoulli event with success probability equal to

our estimated power for replicating that association. Using a

dynamic programming recurrence, we explicitly computed the
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probability distribution over the total number of successful

replications based on this model. We then determined a 95%

prediction interval [L, U] for the total number of successful

replications by finding the largest L such that the probability of

observing fewer than L replications (or analogously, the smallest U

such that the probability of observing greater than U replications)

was at most 2.5%. Finally, we determined the reported prediction

intervals by dividing these lower and upper bounds by the

expected total number of successful replications.

To test whether having seen personal risk estimates for a disease

had an effect on self-report of that disease, we looked for an

interaction between reported disease risk and whether the

individual had possibly seen their report before answering the

question (Table S4). This was possible as many people filled out

surveys before their results became available. More precisely, we

regressed reported phenotype on predicted risk, a ‘‘results

available’’ indicator variable, the interaction of these two variables,

and age, sex and five principal components of ancestry, and tested

the interaction term for significance.

Supporting Information

Figure S1 Success rate (versus total power) by disease.
Replications = number of associations we successfully replicated.

Expected = number of associations we expected to replicate.

Attempts = number of associations we attempted to replicate. The

blue dot represents our success ratio (number of successful replications

divided by number of expected replications). The black line represents

the 95% prediction interval for the success ratio. For ovarian cancer,

the success ratio is 12.8 (not within the scale of the graph).

(DOCX)

Methods S1 Survey text. Unless otherwise noted, if multiple

questions were asked, any subject who answered positively (bolded

answer) to at least one was included as a case. Controls were those

who answered negatively to these questions. Individuals who gave

neither an affirmative nor a negative reply (such as ‘‘I’m not sure’’ or

‘‘Decline to state’’) were not included in the analysis. A subject who

answered questions inconsistently (for example, yes to one breast

cancer question, no to another) was removed from that analysis.

Questions marked with ‘‘RS’’ were asked as Research Snippets,

which are questions that are asked singly, as opposed to being part

of a larger survey. For additional parameters, see Table S6.

(DOCX)

Table S1 All binary replications attempted. Risk = risk

allele for original SNP. Chr = chromosome. log(OR) = 23andMe log

odds ratio. Pub log(OR) = Published log odds ratio. Rep = replicated.

(DOCX)

Table S2 All quantitative replications attempted. Risk = risk

allele for original SNP. Size = number of participants. Chr = chromo-

some. Beta = 23andMe beta (effect size). Rep = replicated.

(DOCX)

Table S3 All successful replications without strictly
matching phenotypes. Phenotype = 23andMe phenotype. Pub-

lished = published phenotype. OR = 23andMe odds ratio. a Note that

this replication is in the opposite direction from that reported in the

GWAS catalog. However, a close reading of the original report shows

that the direction of the effect was misreported in the GWAS catalog.

(DOCX)

Table S4 Effect of viewing genetic risk data on reported
disease status. Because one aspect of 23andMe’s Personal

Genome Service involves returning genetic data to our customers,

it is possible that viewing a result of elevated risk for a certain

disease may make it more likely for an individual to recall a

previous diagnosis of that disease, thus potentially skewing the

results towards replication. To address this, we investigated the

impact of seeing genetic risk results before versus after answering

survey questions on self-reported disease status for a set of 20

conditions for which participants were able to view a personal risk

prediction. Only for psoriasis was there a statistically significant

impact of seeing one’s results on self-report of disease status, and

this impact was no longer observed once the direction of the

estimated risk (increased or decreased) was taken into account,

suggesting that in general, the nature of the genetic risk result did

not have a consistent or significant effect on the way questions

were answered. Estimated Risk = p-value for association of

estimated risk with reported disease status. We expect to see an

association with any risk model that is reasonably predictive. Saw

Data First = p-value for association of viewing genetic risk results

before answering survey questions with reported disease status.

Estimated Risk * Saw Data First = p-value for association of

interaction between estimated risk and viewing this risk before

answering survey questions with reported disease status.

(DOCX)

Table S5 Success rate by replication p-value threshold.
Alpha = p-value threshold for replication. Replications = number

of associations successfully replicated. Expected = number of

associations we expected to replicate. Ratio = expected / replica-

tions. These calculations do not include the nine associations for

which our power may be substantially overestimated.

(DOCX)

Table S6 Additional parameters for phenotype classifi-
cation.
(DOCX)

Table S7 Data from GWAS catalog for associations with
strictly matching phenotypes. PMID: PubMed ID. RA-

F = risk allele frequency. OR/Beta = odds ratio or beta (effect size).

CI = confidence interval.

(DOCX)

Table S8 Data from GWAS catalog for successful
associations without strictly matching phenotypes.
PMID: PubMed ID. RAF = risk allele frequency. OR/Beta = odds

ratio or beta (effect size). CI = confidence interval.

(DOCX)
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