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Abstract

The production of large progeny numbers affected by high mutation rates is a ubiquitous strategy of viruses, as it promotes
quick adaptation and survival to changing environments. However, this situation often ushers in an arms race between the
virus and the host cells. In this paper we investigate in depth a model for the dynamics of a phenotypically heterogeneous
population of viruses whose propagation is limited to two-dimensional geometries, and where host cells are able to
develop defenses against infection. Our analytical and numerical analyses are developed in close connection to directed
percolation models. In fact, we show that making the space explicit in the model, which in turn amounts to reducing viral
mobility and hindering the infective ability of the virus, connects our work with similar dynamical models that lie in the
universality class of directed percolation. In addition, we use the fact that our model is a multicomponent generalization of
the Domany-Kinzel probabilistic cellular automaton to employ several techniques developed in the past in that context,
such as the two-site approximation to the extinction transition line. Our aim is to better understand propagation of viral
infections with mobility restrictions, e.g., in crops or in plant leaves, in order to inspire new strategies for effective viral
control.

Citation: Capitán JA, Cuesta JA, Manrubia SC, Aguirre J (2011) Severe Hindrance of Viral Infection Propagation in Spatially Extended Hosts. PLoS ONE 6(8):
e23358. doi:10.1371/journal.pone.0023358

Editor: Yamir Moreno, University of Zaragoza, Spain

Received July 1, 2011; Accepted July 13, 2011; Published August 23, 2011

Copyright: � 2011 Capitán et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Projects FIS2008-05273, MOSAICO, and Complexity-NET RESINEE from Ministerio de Ciencia e Innovación (Spain), and MODELICO-CM from Comunidad
Autónoma de Madrid (Spain) provided funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aguirreaj@cab.inta-csic.es

Introduction

Cellular parasites are an ineluctable outcome of the very

evolutionary process [1]. Animal and plant cells can be infected by

a variety of viruses, usually with a high degree of specificity. The

adaptive ability of RNA viruses is a consequence of the vast genetic

diversity of their populations, composed by a large number of

individuals that replicate their genomes at a mutation rate several

orders of magnitude higher than that of cellular DNA [2]. The

survival of RNA viruses depends, among others, on host’s ability to

fight infection, on its capacity to defeat the parasite through the

immune system, and on the features of the environment where

infection takes place.

To guarantee their survival and propagation, viruses deploy

many different and complex strategies that are still poorly

known. As a result, our ability to develop specific therapeutic

protocols is limited, and the design of control strategies that

cause viral extinction represents an important challenge. An

often applied method to extinguish viral infectivity is the use of

mutagenic drugs that increase the replication error rate of the

viral genome. The interference of subpopulations close to

extinction or the precise effect of replication inhibitors

administered together with mutagens [3] are two other

mechanisms under experimental investigation. The effectiveness

of increased mutagenesis has been demonstrated in vitro, though

there is no general agreement on the features of the transition to

extinction [4–7]. Eigen’s quasispecies theory [8] predicted the

existence of a maximum value of the mutation rate (the ‘‘error

threshold’’) beyond which the ‘‘master sequence’’, a particular

genome embedded with a selective advantage with respect to

any other genomic variant in the population, would disappear

from the quasispecies. However, viral extinction through the

removal of a master sequence has not been observed in any

experimental essay. On the contrary, viral populations capable

of surviving only with suboptimal phenotypes have been

described [9]. Most likely, strong increases in the mutation rate

lead to extinction through mutational meltdown [10]. Extinc-

tion may also occur through a progressive decrease in

population numbers [5] or as a result of stochastic effects in

small populations affected by an increasing production of

defective viral forms [11,12].

There is an on-going effort to introduce more realistic

dynamical models able to reproduce empirical results [7,13],

since actual viral behavior often deviates substantially from the

predictions of simple models [14]. Classical quasispecies models

capture the important fact that a population of genomes

replicating at a high mutation rate necessarily has to be

heterogeneous at the mutation-selection equilibrium. However,

a remarkable drawback of a number of quasispecies models is

the assumption that all new mutations have a deleterious effect

on fitness, thus neglecting the appearance of neutral and

beneficial mutations. This is in plain disagreement with the fact
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that adaptation occurs frequently. A second (and very often

overlooked) key point is the existence of a huge amount of

sequences yielding phenotypes that are equally adapted. As a

matter of fact, the extreme redundancy of the genotype-

phenotype map reveals that postulating the existence of a

unique master sequence is not accurate. The inclusion of

beneficial and compensatory mutations in models of viral

evolution reveals a new class of collective behavior where no

error threshold is found, and where extinction occurs through

different mechanisms [7].

In addition to intrinsic viral features, such as the replicative

ability of a virus and its natural mutation rate, the progress and

eventual success of an infection is conditioned by the geometry

of the space where it occurs [15,16]. Infection propagation in

cells suspended in a well stirred media or on a lawn, for

example, can have dramatically different fates [17]. Experi-

ments with the bacteriophage Qb under increased mutagenesis

have shown that the number and quality of mutations fixed in

populations evolving in liquid medium or in bacterial mono-

layers is substantially different [18]. These results might give

clues to treat viral infections in plants, where leaves, in

particular, are well described as two-dimensional tissues.

Plant-to-plant propagation in crops is another example with

the same geometry. Space induces a remarkably strict clustering

of the propagation in crops [19] and even of subpopulations of

clonal viruses, a phenomenon observed, among others, in leaves

infected with apple latent spherical virus [20]. Mutant

phenotypes that remain clustered in a lawn of cells have also

been identified in experiments with the bacteriophage T7 [21].

Despite the formation of clusters, high heterogeneity is a

property observed in most viruses infecting plants [22]. The

relevance of the environment on the evolution of heterogeneous

populations has been theoretically studied in several works,

paying special attention to the effect of explicit space in the

dynamics of the quasispecies [23]. It has been observed that

local diffusion lowers the value of the error threshold [24,25],

though it also enhances heterogeneity in the global distribution

of types of the quasispecies [17,26].

In a recent work [27] we reported on a new mechanism of viral

extinction due to intraspecific competition for susceptible cells in a

space-explicit model of quasispecies. Here, we progress in this line

of research and present a novel analysis of the phenomenology

associated to populations of viruses propagating in two-dimen-

sional spatially extended hosts. In particular, we describe our

results in the light of its biological applications. To this end, we

undertake a detailed numerical characterization of the model and

measure quantities like the average replicative ability of the virus

population, the spatial density of infected cells, the equilibrium

distribution of viral types, and the mixing of types that occurs as

propagation takes place. Furthermore, we exploit the connection

between directed percolation models and the spatial propagation

of viruses in situations of restricted mobility. In particular, our

model can be regarded as a multicomponent generalization of the

Domany-Kinzel (DK) probabilistic cellular automaton [28]. In this

work we have used the same numerical and analytical techniques

that have been applied in the past to that automaton, such as the

two-site approximation to the extinction transition line. This

allows us to gain more insight into the features of viral propagation

in two dimensions, as well as the mechanisms leading to extinction.

In summary, the target and novelty of the present work is to apply

diverse theoretical and computational tools to a model of virus

propagation, in order to better understand the implications that

environments with different geometrical properties might have in

devising effective antiviral strategies.

Methods

In this section we present the model in the context of viral

propagation and quasispecies theory, paying special attention to

explain the biological observations in which it is based. After

describing it in detail, we will consider and analyze the relation

between our model and the directed percolation phenomena.

Model parameters
In our model, each viral particle is phenotypically described by

the number r of offspring able to infect healthy cells. Each type in

the quasispecies is thus defined through its replicative ability

r~0, . . . ,R. Due to the high error replication rate of RNA viruses,

in particular, up to 90% of all virions produced in a single

replication cycle might carry lethal mutations or behave as

defective particles [29,30]. As a result, the number of viable and

infecting offspring, represented through the quantity r, can be

orders of magnitude smaller than the actual number of viral

particles produced. For instance, in vesicular stomatitis virus only a

single viral particle in ten-thousand is able to infect on its own

[31].

The microscopic (genotypic) mutation rate affecting the

replicating genome translates into a macroscopic (phenotypic)

mutation rate that modifies the fitness of the offspring. Though a

single mutation may cause an evolutionary advantage, in most

instances it produces a mutant with fitness lower than that of the

parental virus. Directed mutagenesis in several different viral

systems has shown that the ratio between beneficial and

deleterious mutations depends on the degree of optimization of

the population. Beneficial mutations are about 1000-fold less

common than neutral or deleterious mutations in well adapted

populations [32,33], while poorly adapted populations might have

a ratio of deleterious versus beneficial mutations up to 10:1

[34,35]. Our model does not have a microscopic representation of

mutations: it only describes in a phenomenological way its

macroscopic (phenotypic) result. We will assume that the offspring

of a viral strain can be affected by deleterious mutations

(decreasing its progeny production in one unit with probability

p) or beneficial mutations (increasing its replicative ability in one

unit with probability q). Lethal mutations can hit the class r~1
with probability p. Note that the consideration of a continuous

function of changes in fitness applied to the replicative ability

under mutation [36] does not modify the qualitative results

obtained with this model.

Simple models using the replicator-mutator equation [37] show

that, when beneficial mutations are present, phenotypes of high

replicative ability can be recovered from mutants of low replicative

ability [5], even if mutations accumulate steadily in a genome.

Therefore, the inclusion of a non-zero rate q can change

drastically the outcome of our model.

A second important feature of our model is the formal

implementation of the mechanisms of resistance of the host cells

to infection. In plants, most known viral resistance mechanisms

target either viral replication or mobility [38]. Mechanisms against

replication can be subsumed under parameter p, already

described. To explicitly represent host defenses other than

targeting viral replication, we assume that susceptible cells develop

a resistance against infection quantified through probability p, that

is to say, a viral particle can infect a susceptible cell with

probability 1{p.

Propagation on two-dimensional tissues
Lack of susceptible cells can occur in certain spatial configu-

rations or when virus mobility is limited. In [27] we defined a way

Hindrance of Viral Propagation in Extended Hosts
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of infection spreading in two-dimensional environments inspired

by an often applied protocol in which spreading occurs on cellular

monolayers [39]. The process is started when the offspring of a

viral particle infecting a cell is released to the medium after cell

lysis. A fraction of that progeny infects adjacent, susceptible cells.

The number of infected cells depends on viral mobility limitations.

Our model assumes infection to nearest-neighbors, although

diffusion to wider ranges of cells can be easily incorporated to

the model. This restriction neither represents a loss of generality

nor changes qualitatively the results [27]. The process repeats and

the size of the (lytic) plaque formed by dead cells grows. After a

transient period, all activity occurs at the perimeter of the plaque.

If the population does not tend to extinction, the number of cells

killed per infective cycle asymptotically reaches a constant value.

Even if infection starts off from a single infected cell, it proceeds

like the propagation of a front, and this front will become

practically flat [17]. Hence we consider a flat propagating front

from the beginning. Note that, although the propagation is two-

dimensional, the radial growth can be assimilated to time.

Therefore cells form arrays in one spatial dimension, and the

front propagates perpendicularly and advances one row of cells

per generation (see Figure 1).

Without loss of generality, we assume that the dynamics of the

model proceeds in discrete generations on a triangular lattice with

periodic boundary conditions (see Figure 2 for a typical

configuration close to extinction). Cells are labeled by their

position i~1, . . . ,L in the row (L being the length of the array)

and the generation t~0,1, . . . at which the front reaches them.

Model dynamics
Let ri(t) be the replicative ability of the individual occupying site

i at generation t. Initially we take ri(0)~R for all i~1, . . . ,L. For

a given configuration r(t)~(r1(t), . . . ,rL(t)) of the array of cells at

generation t, the next configuration can be calculated as follows.

Assume that ri(t)~r1 and riz1(t)~r2. At generation tz1 site i
can be infected by one of the r1zr2 offspring produced by

individuals at sites i and iz1, respectively, at the parental

generation. Host resistance p decides whether the cell at site i is

infected or not. The probability that site i does not become

infected after r1zr2 independent trials is pr1zr2 . Then infection

supervenes with probability 1{pr1zr2 . If infection is taking place,

the individual that infects ri(tz1) will be with probability

r1=(r1zr2) an offspring of the parent with replicative ability r1,

and with probability r2=(r1zr2) an offspring of the parent with

replicative ability r2. During cell infection the individual is allowed

to mutate to neighboring classes. Therefore, the replicative ability

of the individual released in the next generation will be

ri(tz1)~

r{1 with probability p,

r with probability 1{p{q,

rz1 with probability q,

8>>><
>>>:

ð1Þ

r[fr1,r2g being the parental replicative ability. Boundary

conditions hold for the maximum replicative ability class R. Note

that these stochastic rules simply amount to postulating a

conditional probability v(rjr1,r2) that ri(tz1)~r, given that the

replicative abilities of the individuals attempting to infect are

ri(t)~r1 and riz1(t)~r2, given by

v(rjr1,r2)~pr1zr2 dr,0z 1{pr1zr2ð Þ r1pr1,rzr2pr2,r

r1zr2
, ð2Þ

where di,j stands for the Kronecker symbol (di,j~1 for i~j and 0

otherwise),

pr1,r2
~pdr1,r2z1z(1{p{q)dr1,r2

zqdr1,r2{1 ð3Þ

for r1,r2vR and pR,r~pdR,rz1z(1{p)dR,r. In order to obtain

the configuration for all sites of the array we simply apply this local

rule to all pairs of sites, using periodic boundary conditions when

necessary.

Note that the probability of infection tends to one as the number

of viral particles trying to infect a particular cell increases, and

tends to zero as the cell resistance improves. Since the entry of

more than one viral particle is not allowed, the model implicitly

assumes that different genotypes rarely infect the same cell [20].

This is a ‘‘winner takes all’’ rule that could be easily relaxed to

account for different processes, including a multiplicity of infection

larger than one or the superinfection of a cell.

Probabilistic cellular automata and directed percolation
The dynamics just introduced describes the global update of an

array of cells at each generation. Those rules are in fact a way of

Figure 1. A two-dimensional set-up for viral spreading. In the
limit t?? the growth of a lytic plaque in a two-dimensional monolayer
is approximated by an array of length L representing the propagation
front. Shaded cells are those infected by viral particles. At generation t,
the infective classes occupying two adjacent sites compete with each
other to enter a cell and produce an offspring at generation tz1 (cells
involved are shown with yellow borders).
doi:10.1371/journal.pone.0023358.g001

Figure 2. Dynamics of the model of infection propagation close
to the extinction threshold. A linear array of infected cells
represents the propagation front and produces offspring to infect the
next infective cycle. In this example, the maximum replicative ability is
R~4. Individuals of each class form clusters (black: r~1, red: r~2,
green: r~3, blue: r~4). Failure to infect leaves an empty site; success
means occupation according to the probabilistic rules given by (2).
doi:10.1371/journal.pone.0023358.g002
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defining a (1+1)-dimensional, probabilistic cellular automaton

evolving in discrete time to which our model can be easily

mapped. In this section, we exploit the mapping between our

model and a class of cellular automata to obtain some exact results

regarding the transition to extinction of the infection propagation.

Cellular automata are discrete, spatially extended dynamical

systems, composed of adjacent cells or sites arranged as a regular

d-dimensional lattice, which evolve in discrete time steps. Each cell

is characterized by an internal state whose value belongs to a finite

set. The update is performed simultaneously according to a

common local transition rule involving only a neighborhood of

each cell. For probabilistic cellular automata, update rules are

stochastic. In the discussion that follows, we will only consider

(1+1)-dimensional cellular automata.

Among all probabilistic cellular automata, the Domany-Kinzel

(DK) automaton is paradigmatic and deserves a brief description.

Consider a finite one-dimensional array of L cells. Any of its

configurations is determined by an array of stochastic variables

s~(s1, . . . ,sL) defined at each lattice site at discrete times t§0.

Site i may be in one of the 2 states si[f0,1g describing active or

empty cells, respectively. Note that the array of replicative abilities

r~(r1, . . . ,rL) of our model is the counterpart of s, with the

difference that ri[f0,1, . . . ,Rg. This makes clear in which sense

our model generalizes the DK cellular automaton, namely by

allowing, at each site, R possible active sites instead of one.

Let pt(s) be the probability that state s occurs at time t. Since any

probabilistic cellular automaton is a discrete-time finite Markov

chain –i.e., a stochastic process evolving in discrete time steps over a

finite configuration space for which the probability of any state at

time tz1 exclusively depends of the state at the present time t–, the

time evolution of pt(s) is determined once the (conditional)

transition probabilities w(sjs0) are specified, according to

ptz1(s)~
X

s0
w(sjs0)pt(s

0): ð4Þ

The probability of the transition s0?s satisfies the conditions

w(sjs0)§0 and
P

s w(sjs0)~1. For the DK automaton, transition

probabilities are defined as a product of factors associated with each site:

w(sjs0)~ P
L

i~1
vi(sijs0), ð5Þ

where vi(sijs0) is the conditional probability of finding site i in state si

at time tz1, given that the configuration was s0 at time t. Rules are

local, i.e., wi is assumed to depend only on the variables si and siz1 at

the previous time step,

vi(sijs0)~vDK (sijsi,siz1): ð6Þ

Equations (4)–(6), together with the elementary rules

vDK (sijsi,siz1) given in Figure 3, define the DK cellular

automaton. All transition probabilities are expressed in terms of

two parameters p1 and p2. These microscopic rules should be

compared with the conditional probabilities (2) of our automaton

for viral spreading. Note that the transition (0,0)?(1) is forbidden,

hence the configuration si~0 for all i is absorbing, that is, it will

persist over time. Something similar occurs with our spatial model.

When two adjacent cells are healthy, the probability of infection

obviously equals zero (i.e., expression (2) reduces to v(rj0,0)~dr0).

Hence the configuration ri(t)~0 for all i~1, . . . ,L at generation t

represents extinction of the population and therefore is an

absorbing state, as in the DK case. On the other hand, in both

models the absorbing state is unique.

For certain combinations of p1 and p2, the system evolves

towards the absorbing state in finite time. A transition line in the

(p1,p2) plane separates that phase from an active phase in which

fluctuating configurations persist over time (for this phase diagram

we refer the reader to [40]). From now on, the extinction regime

will be equated to the absorbing state and the survival regime to

the active phase.

Numerical simulations confirm that the critical behavior along

the whole transition line (except for its upper terminal point p2~1)

is that of directed percolation (DP). Directed percolation,

introduced by [41], was conceived as an anisotropic variant of

percolation due to the introduction of a specific direction in space.

Such a process models, for example, the propagation of fluids in

porous media in the presence of an external gravitational force

that singles out a direction of movement of the fluid. Varying the

microscopic connectivity of the pores, DP models display a phase

transition from a macroscopically permeable to an impermeable

state. Originally DP was formulated as a bond percolation (i.e., the

connectivity of bonds –pores– determines the set of channels in

which the fluid propagates), although the same definition applies

Figure 3. Microscopic transition rules of the DK cellular automaton. Each elementary rule vDK (sijsi,siz1) has been specified below each
diagram.
doi:10.1371/journal.pone.0023358.g003
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for a directed percolation of sites [42]. In fact, it can be shown [40]

that the DK automaton contains both types of percolation as

particular cases: the choice p2~p1(2{p1) leads to directed bond

percolation, whereas directed site percolation corresponds to the

choice p1~p2.

DP phase transitions occur when the system adopts a

configuration in which a connected cluster of active sites covers

all the physical space of the system. In both isotropic and directed

percolation, the density of active sites serves as an order parameter

(i.e., a quantity that is equal to zero in one phase and non-zero in

the other), as well as in our model. Numerical estimates for the

corresponding critical points of bond and site DP in the limit

L?? are summarized in Table 1 in the language of the DK

cellular automaton.

From the point of view of statistical physics, DP models are

relevant because of their peculiarities in the transition to

extinction. Order parameters are known to exhibit functional

dependences near the transition points determined by certain

critical exponents. Each set of critical exponents defines a

universality class, so that models with different dynamical rules

but with the same set of critical exponents exhibit the same

universal behavior near the transition. In fact, the DP class covers

a wide range of different models, in a way that those models are

robust under variations in the microscopic rules. The DP

conjecture [43,44], so far neither proven nor disproven, reflects

this fact [40]. It states that a model should belong to the DP

universality class if these conditions hold: (i) the model exhibits a

continuous transition to a unique absorbing state, (ii) the order

parameter that characterizes the transition is positive and scalar,

(iii) dynamics involves short-range elementary rules, and (iv) the

system has neither special symmetries nor quenched disorder.

Although this conjecture has not yet been rigorously proven, it is

highly supported by numerical evidence. In particular, the DK

verifies the conjecture, which is consistent with the numerical

evidence for its belonging to the DP universality class.

In [27] we showed that our model of viral propagation with R

states belongs to the DP universality class. Previously, DP has been

also used as a two-state model for epidemic spreading with a

transition between survival and extinction of the disease depending

on the infection rate [40].

Results

We start this section briefly reviewing previously obtained

results, and rephrasing them in the context of the present article.

This is done to serve as an introduction to the features to be

described and discussed in the subsequent parts of the section. We

will then develop several numerical calculations to generically

describe the evolutionary dynamics associated to the model, we

will focus in the mechanisms leading to extinction, and will finally

develop several approximations to obtain the extinction threshold.

Summary of previous results
In order to clearly identify the effects induced by propagation

on two-dimensional arrays of cells or hosts, it is important to recall

the dynamical properties of the infection when propagation occurs

in excess of hosts, that is, when physical space is not explicitly

considered (e.g. in well stirred liquid media). Most dynamical

models of population dynamics are defined in the latter scenario,

i.e., they are mean-field models, and it is assumed that resources

are abundant enough to allow for an unbounded growth of the

population. The detail of the results reviewed in this summary can

be found in [17,27,45].

There are two important results for mean-field models of the

type here discussed that are qualitatively different from the

behavior observed in their spatial counterpart. One is the super-

exponential growth of the population during the transient prior to

attaining mutation-selection equilibrium [45]. Another is the

inefficiency of host defenses to counteract the production of

sufficiently large amounts of viral progeny [27]. To illustrate these

two properties, consider the mean-field version of the model

presented previously, where the description is cast in terms of the

total number nr(t) of individuals of class r at generation t:

nr(tz1)~(1{p) r(1{p{q)nr(t)z(rz1)pnrz1(t)½

z(r{1)qnr{1(t)�,
ð7Þ

for classes 1ƒrvR, and

nR(tz1)~(1{p) R(1{p)nR(t)z(R{1)qnR{1(t)½ �: ð8Þ

Besides, there is a class r~0 which has lost its replicative ability

and is maintained by class r~1 through deleterious mutations, i.e.

n0(tz1)~(1{p)pn1(t).

Consider first the case p~0 and suppose that, initially, there is a

single particle of type r0 in the population: nr(0)~dr0,r, with

r0%R, R&1. It can be shown that the asymptotic growth of the

total population n(t)~
P

r nr(t) in the regime when 1%tvR
follows

n(t)*Ar
(tzr{1)

es1

� �tzr{1=2

, Ar~
1

(r{1)!qr

ffiffiffiffiffiffiffiffi
2pe

s1

s
, ð9Þ

where s1:V{1 log
(1zq{pzV)2

4q

 !
and V:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{2(pzq)z(p{q)2

q
. Thus, a population able to increase the

number of offspring produced by its individuals through beneficial

mutations grows faster than exponentially before the mutation-

selection equilibrium is attained [45]. When transients to

equilibrium are short, it may be assumed, as most models do,

that the dynamics of populations is dominated by their behavior at

the mutation-selection equilibrium. However, this does not have to

be the case if R&1: the fast growth of the population could in

some cases lead to an exhaustion of the resources before the

equilibrium composition can be reached. This situation remains

unchanged for other values of p, which only affects quantitatively

the result above.

Let us discuss now a second situation where R is small enough

for the population to attain equilibrium, and consider the case

where no beneficial mutations are possible, that is q~0. In order

for all r{classes to be populated, we take as initial condition

nr(0)~dR,r. The asymptotic growth rate of the population (at

Table 1. Special transition points in the DK cellular
automaton [40].

Transition point p1,c p2,c

site DP 0:705489(4) 0:705489(4)

bond DP 0:6447001(1) 0:8737620(2)

doi:10.1371/journal.pone.0023358.t001
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equilibrium now) is l~(1{p)R(1{p), and the fraction of

individuals in each replicative class reads

lim
t??

nr(t)PR
r~0 nr(t)

~
R

r

� �
pR{r(1{p)r: ð10Þ

The condition of extinction of the population is obtained in this

case from lƒ1, which means that, for a progeny production R

smaller than Rc~(1{p){1(1{p){1, the defenses of the host can

defeat the parasite. However, if no restrictions are imposed on the

maximum value R, the production of a sufficiently large progeny

(just above Rc) translates into the persistence of the infection. Note

that the case q~0 represents the worst situation for the virus. If

beneficial mutations are present, the average replicative ability of

the population increases, so the virus acquires an additional

advantage.

In the light of those two results, it turns out that qw0 together

with an unbounded value of R produces an unbeatable parasite, at

least if host resistance takes the form of a finite probability p of

eluding the infection of each viral particle independently.

However, the strategy of increasing progeny production as a

mean of beating host defenses fails with the incorporation of

physical space [27]. When types compete for the same cell, it turns

out that propagation comes to a halt at a finite value of the host’s

resistance to infection, regardless of the progeny production of the

virus. Even in the hypothetical situation R??, the intraspecific

competition for space leads to an effective average value of the

replicative ability of the population bounded by the average

number of susceptible cells that a viral particle at generation t can

reach at generation tz1. In these conditions, super-exponential

growth does not occur, and infection clearance might supervene if

the host is able to increase its defenses beyond a finite critical

threshold.

Numerical characterization of the model
The dynamical state of the system can be characterized by the

spatial density of active sites (those occupied by particles with r§1)

at time t,

r(t)~
1

L

XR

r~1

nr(t) ð11Þ

and the average replicative ability of the population at time t (in

the limit L??)

Sr(t)T~

PL
i~1 ri(t)PR
r~1 nr(t)

, ð12Þ

where nr(t) is the number of individuals of type r at time t.
Independently of the initial conditions (r1(0), . . . ,rL(0)) the

quasispecies evolves towards an equilibrium distribution where

the proportions of all phenotypic classes are maintained constant,

and are expressed by

ur~ lim
t??

nr(t)PR
r~1 nr(t)

ð13Þ

in the limit L??.

Figure 4 shows the evolution in time of two different

populations, one in the survival regime and the other in the

extinction regime. We have paid special attention to (a) the

average replicative ability at time t Sr(t)T, (b) the density of active

sites r(t), and (c) the equilibrium distribution for t~300. An

example of the evolutionary dynamics of both populations is

plotted in (d) and (e). Note in Figure 4a and 4c that the tendency

towards an equilibrium distribution of phenotypes is also present

in the population that gets extinct (although in this case it can only

be observed if the time to equilibrium is short enough to reach the

equilibrium distribution while the population is still large).

Figure 5 shows the dependence of the main properties of the

population on the parameters of the model when t??, that is,

when the population has reached the equilibrium distribution. In

particular, we have calculated the average replicative ability

SrT~ limt?? Sr(t)T and the phenotypic diversity of the popula-

tion D in the equilibrium as a function of: (a) the maximum

replicative ability R, (b) the host resistance p, (c) the deleterious

mutation rate p, and (d) the beneficial mutation rate q. The insets

show the equilibrium distributions for the values of the

corresponding parameter marked with crosses in the x-axis

(p~0:01 in (c) and q~0:001 in (d), black bold line), (p~0:125
in (c) and q~0:1 in (d), red solid line), and (p~0:275 in (c) and

q~0:2 in (d), blue dashed line).

Regarding Figure 5a we see that when the rest of the parameters

are kept constant, the average replicative ability SrT saturates beyond

a finite value of R. This is at odds with what occurs when there are no

spatial constraints. Furthermore, in (b) we observe that SrT slightly

increases with p, which means that increasing host defenses selects

individuals with larger replicative ability. It is precisely the

intraspecific competition that causes the saturation of the average

replicative ability of the population for increasing R, which ultimately

leads to the extinction of the pathogen [see the Summary of previous

results and [27]]. Finally, in (c) and (d) and the insets therein we can

see that SrT increases with q and decreases with p, as expected.

As the characteristics of the model do not allow for the existence of

multi-peak distributions, the phenotypic diversity of the population

in the equilibrium can be measured by its standard deviation,

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXR

r~1

ur(r{SrT)2

vuut : ð14Þ

As it happened with SrT, in Figure 5a we see that increasing R
makes the diversity D saturate. On the other hand, Figures 5c and

p and q
maximize D because of a boundary effect imposed by the existence

of a maximum replicative ability R [46], being this effect especially

prominent in the equilibrium distributions plotted in the insets.

Furthermore, we have focused our attention in the mixing effect

of mutations on the propagating front and their influence in the

size of the clusters of individuals with similar replicative ability.

This phenomenon has been analyzed studying how the correlation

between the replicative abilities of two individuals of the

population depends on their distance in the stationary regime.

For this purpose, we define SrTm,i, the average replicative ability of

individuals at a distance m of an individual of class i, as

SrTm,i~
1

2

XL

j~1
rj~i

rjzmzrj{m

� �
: ð15Þ

When the parameters allow for the survival of the population and

we are not too close to the transition line, this quantity

approximately behaves as
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5d show that intermediate values of the mutation rates



SrTm,i~SrTz i{SrTð Þe{m=ji , ð16Þ

where ji is the typical size of a cluster of type i. We have

numerically observed that ji depends on the parameters of the

model but is roughly independent of the class i used to calculate it.

Hence we can define the typical size of a cluster as

j~
1

R

XR

i~1
ji. Regarding (16), we see that SrTm,i decreases

exponentially with the distance m and therefore the memory in

Figure 4. Evolution in time of two populations of L~105 individuals with parameters R~6, p~0:1, q~0:01, and p~0:2 (survival
regime, black curves) and p~0:3 (extinction regime, red curves). The initial conditions are ri(0)~R for i~1, . . . ,L. (a) Average replicative
ability at time t, Sr(t)T. (b) Density of active sites r(t). (c) Equilibrium distribution of phenotypes (calculated at t~300). (d) and (e) Detail of the
dynamics of the infection propagation in the survival regime and the extinction regime, respectively. Each individual is colored depending on its
replicative ability (r~1, black; r~2, red; r~3, green; r~4, blue; r~5 yellow, and r~R~6, brown). White spots represent individuals of r~0 or empty
sites.
doi:10.1371/journal.pone.0023358.g004

Figure 5. Dependence of the average replicative ability SrT (black circles) and the phenotypic diversity D (white circles) at
equilibrium on the main parameters of the system: (a) the maximum replicative ability R (p~0:1, p~0:2 and q~0:01), (b) the host
resistance p (R~6, p~0:2 and q~0:01), (c) the deleterious mutation rate p (R~6, p~0 and q~0:01), and (d) the beneficial mutation
rate q (R~6, p~0 and p~0:2). The insets in (c) and (d) show the equilibrium distributions for the values of the parameter marked with crosses (low
value of the parameter in black bold, intermediate value in red solid and large value in blue dashed).
doi:10.1371/journal.pone.0023358.g005
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this system is short-ranged, which means that the mixing effect of

mutations should be very relevant in the destruction of the

phenotypic clustering.

As we would expect, Figures 6a and 6b show that the typical size

of a cluster j strongly decreases for high values of the mutation

rates p and q. However, note that the multi-parametrical nature of

j makes that, for low p and q it happens that j counterintuitively

grows with the mutation rates, the reason being that other

parameters such as the average replicative ability might influence

j in a non-trivial way (see Figure 5c and 5d for the values of SrT
and D corresponding to Figures 6a and 6b). To overcome this

difficulty and in order to study the real effect of p and q on j, in (c)

we have calculated the typical size of a cluster j for a wide range of

(p,q) such that the average replicative ability is maintained

constant to SrT~3:25. This way we avoid the extremely

disturbing consequences of a variable SrT on the equilibrium

distribution. The relation between the clustering and the mixing

effects of the mutation rates p and q actually becomes monotonic

and numerically agrees with j!(pzq){a, where p and q are such

that SrT is constant, and a is close to one and slightly depends on

SrT. Furthermore, the destructive effect of increasing the mutation

rates on the clusters of the propagating front is manifest in

Figure 6d and 6e, where we have plotted the dynamics of the

infection propagation for the cases marked in (c) with circles,

(p,q)~(0:05,0:001) (where pzq is low, SrT~3:25, D~1:04 and

j~9:45) and (p,q)~(0:3,0:082) (where pzq is large, SrT~3:25,

D~1:43 and j~1:81), respectively.

Finally, Figure 7 shows the average replicative ability SrT (left

plots) and the density of active sites r (right plots) when t?? for

R~6 and different values of the parameters p, q, and p. In the

phase diagrams that plot SrT, the survival regime is plotted in

color and the extinction regime in white, while in (b), (d) and (f) the

extinction regime is represented by r~0. Note that in the absence

of beneficial mutations (Figures 7a and 7b) the transition line is in

fact the superposition of different transition lines that represent the

disappearance of phenotype classes through a cascade of error

catastrophes, a phenomenon that is not observed for qw0. When

q~0, there is no chance to increase the replicative ability of each

class, so the behavior of the model is equivalent to that of classical

quasispecies models, in which the absence of beneficial mutations

leads to error catastrophes [5]. In the present case, the class of

higher replicative ability present at a certain time can irreversibly

disappear in the same way that the master sequence disappeared

from Eigen’s model at the error threshold. In our spatial model,

the extinction behavior near each error threshold is again that of

DP universality class. This can be checked numerically, but in

addition there is an exact mapping of the lowest-r error threshold

to a DK cellular automaton. In fact, when only the fitness class

r~1 survives, the two non-zero elementary probabilities given by

(2) can be mapped to the parameters p1 and p2 of the DK cellular

automaton,

p1 ~(1{p)(1{p),

p2 ~(1{p2)(1{p):
ð17Þ

This yields the black line shown in Figure 7a.

The extinction threshold for the highest class r~R (marked in

Figures 7a and c with arrows) can be also calculated thanks to a

mapping with a DK automaton in the absence of deleterious

mutations. Since the initial condition is formed by individuals of

the maximum replicative ability and r is not allowed to decrease

(p~0), sites can be either occupied or empty. This maps our

model to a DK automaton defined by

p1 ~1{pR,

p2 ~1{p2R,
ð18Þ

which satisfies p2~p1(2{p1) and therefore corresponds to the

directed bond percolation case. This yields an upper bound for the

value of p beyond which the propagation will not progress,

pc~(1{p1,c)1=R, ð19Þ

where p1,c is the critical value of the bond directed percolation case

(c.f. Table 1). From this expression it is apparent that pcv1 for

finite values of R. Note that if host defenses are above that

threshold at p~0, the spatial configuration (or any other situation

where viral mobility limitations are relevant) causes the extinction

of the pathogen. This fact is different to the situation of excess of

available cells (see the summary of previous results): for a certain

value p of host defenses, the pathogen can increase its maximum

progeny production R above a critical threshold (equal to

(1{p){1(1{p){1 for q~0, the worst case scenario), which

permits the survival of the virus. As a result, this mechanism

produces a runaway co-evolution between the virus and the host in

situations of excess of resources.

Approximations to the transition line
To gain more insight into the mechanisms leading to extinction

in our spatial model, it is useful to make approximations to the

density of active sites and the transition line. Standard techniques

have been applied in the past to probabilistic cellular automata

[47,48], in particular, to the DK cellular automaton. This

methodology can be extended to our model as well.

Such approximations use the fact that probabilistic cellular

automata are discrete-time Markov processes and therefore satisfy

a dynamical equation [analogous to (4)] for the probability pt(r) of

a given configuration of replicative abilities r~(r1, . . . ,rL)
occupying the lattice at time t. This way, we can write down a

hierarchy of equations for the one-, two-, m-site marginal

probabilities. Such a hierarchy is obviously infinite, but can be

closed at a certain level using an approximate closure relation

between marginal probabilities.

Let ur~ limt?? pt(r) be the asymptotic density of cells

occupied by a virus of class r, where

pt(r):Prfrj(t)~rg ð20Þ

is the marginal probability that a given cell (j) is infected by a viral

particle of replicative ability r (remember that rj[f0,1, . . . ,Rg).
The time evolution of the one-site distribution,

pt(r):
X

r{frjg
pt(r), ð21Þ

according to (2) and (4), is

ptz1(r)~
X

ri ,riz1

v(rjri,riz1)pt(ri,riz1) ð22Þ

where pt(ri,riz1) is the marginal probability distribution for two

adjacent sites. Further, the two-site marginal probability is coupled

to the three-site probability, so
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ptz1(ri,riz1)~X
r0
i
,r0

iz1
,r0

iz2

v(rijr0i,r0iz1)v(riz1jr0iz1,r0iz2)pt(r
0
i,r
0
iz1,r0iz2): ð23Þ

Recursion on these formulae leads to an infinite hierarchy of

equations. The m-site approximation consists of truncating the

hierarchy by estimating the (mz1)-site probabilities on the basis of

those for m sites.

The one-site approximation factors the two-site marginal

probability out as a product of one-site probabilities,

pt(ri,riz1)&pt(ri)pt(riz1): ð24Þ

This relation provides a closure of the hierarchy and transforms

(22) into the following nonlinear system for the asymptotic

densities of each viral class,

ur~
XR

j~0

XR

k~0

v(rjj,k)ujuk, r~0,1, . . . ,R, ð25Þ

together with the normalization condition
PR

r~0 ur~1.

Two-site approximations take into account two-site marginal

probabilities,

pt(i,j):Prfrk(t)~i,rkz1(t)~jg, ð26Þ

the next in the hierarchy [Eqs. (22) and (23)]. It can be closed at

this level by approximating three-site probabilities in terms of two-

site quantities, using conditional probabilities:

pt(ri,riz1,riz2)&
pt(ri,riz1)pt(riz1,riz2)

pt(riz1)
: ð27Þ

Additionally, one-site probabilities satisfy pt(ri)~
X

riz1

pt(ri,riz1). Hence the hierarchy closed by (27) reduces, in the

asymptotic limit t??, to the non-linear system

ui ~
XR

j~0

v(ijj,j)xjjz2
XR

j~0

XR

kwj

v(ijj,k)xjk,

xij ~
XR

k~0

1

uk

XR

l~0

v(ijl,k)xlk

" # XR

m~0

v(jjm,k)xmk

" #
,

ð28Þ

for i,j~0,1, . . . ,R, and where xij~ limt?? pt(i,j) denote two-site

correlations. Thanks to the symmetry pt(i,j)~pt(j,i), the number

of independent correlations reduces to those which satisfy the

constraint j§i. The consistency condition ui~
XR

j~0
xij as well

as the normalization condition
XR

i~0
ui~1 must be satisfied.

Approximations involving higher order correlations are too

cumbersome for this automaton.

We have checked the accuracy of the two-site approximation for

a maximum replicative ability R~3, both in the presence

(q~0:01) and the absence (q~0) of beneficial mutations. Results

for the average replicative ability are summarized in Figure 8. For

q~0, the two-site approximation recovers qualitatively the

sequence of error thresholds observed in simulation (the same

phenomenon was shown in Figure 7a for q~0 and R~6).

Although the comparison with the transition line is not

satisfactory, far away from the transition the surface of SrT as a

function of (p,p) (at constant qw0) is well predicted, as we observe

Figure 6. Dependence of the typical size of a cluster j on the mutation rates p and q for a population of L~106 individuals, t~500,
R~6, p~0, and (a) constant q~0:01, (b) constant p~0:2, and (c) constant SrT~3:25. (d) and (e) Detail of the dynamics of the infection
propagation for (p,q)~(0:05,0:001) and (p,q)~(0:3,0:082) (marked with circles in (c)). The initial replicative abilities are ri(0)~R for
i~1, . . . ,L. Color code for the replicative ability r of each individual as in Figure 4.
doi:10.1371/journal.pone.0023358.g006
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from the inset of Figure 8b. Therefore, these approximations

capture the global dependence of the average replicative ability,

although the approximation of the critical threshold is poor.

In Figure 9 the density of infected sites (11) is plotted in the (p,p)
plane. Similarly, the two-site approximation produces accurate

results away from the transition, although the prediction of the

critical line is only qualitative.

In the Supporting Information S1 we show how this technique

can be used to obtain analytical approximations to the transition

line in the simplest case of maximum replicative ability R~2.

Discussion

In this work, we have developed a general description of a two-

dimensional model of quasispecies propagation, paying attention

to the dependence of the evolutionary dynamics on the

probabilities of undergoing a beneficial and a deleterious mutation

at rates q and p, on the maximum replicative ability R, and on the

parameter accounting for the host resistance to infection p. We

have analyzed the mixing effect of mutations, which destroys the

clusterization of the population as the mutational probabilities

increase. Furthermore, all transitions occurring in the spatial

environment studied belong to the DP universality class, be they

the loss of the highest-r class present when advantageous

mutations are absent or the global extinction of the population

when beneficial mutations are considered. To the best of our

knowledge, this mechanism is different from all other extinction

transitions described in models of evolving populations so far.

When there is competition for susceptible cells within the

different classes that form the quasispecies, the transition line

between the infective (or survival) and the non-infective (or

extinction) phases has been calculated by numerical simulation

upon variations on the mutation rates p and q and the host

resistance p. We have performed approximations to the transition

Figure 7. Phase diagrams for R~6 showing the average replicative ability SrT (left plots), and the density of active sites r (right
plots), as a function of: (a) and (b) p and p in the absence of beneficial mutations (q~0); (c) and (d) p and p with q~0:01; (e) and (f), p
and q with p~0:2. All simulations were developed simulating a system size of L~104 individuals, ri(0)~R for i~1, . . . ,L, and averaging over
5|103 generations after a transient of 5|103 generations.
doi:10.1371/journal.pone.0023358.g007
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line under the one- and two-site approximation regimes. The

correct exponents of the DP transition cannot be recovered under

this approximation scheme, since it is but a mean-field

approximation to the dynamics. This notwithstanding, our

approximations lead to fairly good analytical results when the

maximum replicative ability R is not too large. As a matter of fact,

we have checked that any approximation based on two-site

correlations decreases its accuracy as R increases. The reason is

simple: when multiple viral types of different replicative abilities

coexist, the range of the correlations between types becomes wider

and an approximation based in just two sites is not enough to

reproduce correctly the behavior near the transition line.

The generation of large progeny numbers is usually interpreted

as an adaptive strategy of viral populations. In particular, it is

broadly accepted that the high mutation rates of RNA viruses are

combined with a large progeny production in order to enhance the

diversity of the population, thus maximizing the chances of

successful infection. Previous studies identified over-production of

viral progeny in spatial infections as a by-product of competition

within the quasispecies [17]. In a mean-field scenario (e.g. in well

stirred liquid media), and taking host resistance to infection into

account, offspring over-production appears as an adaptive strategy

to overcome host defenses. When the availability of susceptible

cells is unlimited (or just not explicitly considered), host defenses

are thus unable to counteract a sufficiently large increase in the

number of offspring, with the result of a run-away co-evolution

between virus and host [27]. However, the explicit consideration

of the physical space dramatically changes the situation. First,

irrespectively of the maximum number of offspring R that a virus

can produce, there is a finite value of host defenses able to halt its

propagation. Second, the super-exponential growth observed

during the transient towards mutation-selection equilibrium in

the mean-field model disappears. It is the saturation of the average

replicative ability of the population to a finite value, due to limited

resources, what explains those major changes in the dynamical

behavior of the system.

Our model is relatively simple when it comes to the actual

mechanisms that plants, for instance, have developed to fight

pathogens. However, it could be extended to account for more

realistic situations. For example, many plant species present

genetic polymorphism for susceptibility to a particular virus [49],

i.e., different individuals might have variable degrees of resistance

to viral infection and spread. Our model can be extended to

account for infection propagation in crops or in tissues formed by

non-identical cells by allowing the resistance probability p to be

host-dependent. The spatial configuration should then be cast as a

heterogeneous distribution of individuals occupying fixed positions

in space. This would introduce a form of quenched spatial disorder

Figure 8. Phase diagrams for R~3. (a) Contour plot of the average replicative ability SrT as a function of (p,p) in the absence of beneficial
mutations (q~0). (b) SrT in the (p,p) plane when beneficial mutations are considered (q~0:01). The initial replicative abilities are ri(0)~R for
i~1, . . . ,L. Two-site approximations to the critical thresholds are shown as black curves, whereas simulation results appear in a color scale coding for
the average replicative ability SrT. Insets correspond to cross-sections of the surface at p~0:11 (green curves). For q~0:01 we also show the
dependence of SrT with p under the two-site approximation regime at fixed p (red curve).
doi:10.1371/journal.pone.0023358.g008
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that may lead to universality classes for the extinction transition

different from DP [40]. Spatially quenched disorder could change

the properties of viral extinction to those of dynamic percolation

[50]. The scenario we have studied is a first step towards tackling

new situations where different factors like individual variations in

host resistance, co-evolution of the relevant parameters, or host

superinfection could be made explicitly. Current knowledge of the

phenomenology of percolation phenomena in different situations

might inspire new strategies to stop viral propagation in different

environments.

Supporting Information

Supporting Information S1 Obtention of the analytical

approximations to the extinction transition line in the simplest

case of maximum replicative ability R~2 under the one- and two-

site approximation schemes discussed in the main text. These

approximations qualitatively capture the behavior observed in

simulations for the transition to extinction.

(PDF)
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26. Pastor-Satorras R, Solé RV (2001) Field theory for a reaction-diffusion model of

quasispecies dynamics. Phys Rev E 64: 51909.
27. Cuesta JA, Aguirre J, Capitán JA, Manrubia SC (2011) The struggle for space:

Viral extinction through competition for cells. Phys Rev Lett 106: 028104–4.

28. Domany E, Kinzel W (1984) Equivalence of cellular automata to ising models
and directed percolation. Phys Rev Lett 53: 311–314.

29. Sanjuán R (2010) Mutational fitness effects in rna and single-stranded dna
viruses: common patterns revealed by site-directed mutagenesis studies. Phil

Trans R Soc B 27: 1975–1982.

30. Parera M, Fernández G, Clotet B, Martı́nez MA (2007) Hiv-1 protease catalytic

efficiency effects caused by random single amino acid substitutions. Mol Biol

Evol 24: 382–387.

31. Manrubia SC, Lázaro E (2006) Viral evolution. Phys Life Revs 3: 65–92.

32. Miralles R, Gerrish PJ, Moya A, Elena SF (1999) Clonal interference and the

evolution of rna viruses. Science 285: 1745–1747.

33. Orr HA (2003) The distribution of fitness effects among beneficial mutations.

Genetics 163: 1519–1526.

34. Sanjuán R, Moya A, Elena SF (2004) The distribution of fitness effects caused by

single-nucleotide substitutions in an rna virus. Proc Natl Acad Sci USA 101:

8396–8401.

35. Eyre-Walker A, Keightley PDR (2007) The distribution of fitness effects of new

mutations. Nat Rev Genet 8: 610–618.

36. Manrubia SC, Escarmı́s C, Domingo E, Lázaro E (2005) High mutation rates,

bottlenecks, and robustness of rna viral quasispecies. Gene 347: 273–282.

37. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics.

Cambridge: Cambridge University Press.

38. Knipe DM, Howley PM (2007) Fields Virology, volume I. Philadelphia, USA:

Lippincott, William & Wilkins.

39. Manrubia SC, Garcı́a-Arriaza J, Domingo E, Escarmı́s C (2006) Long-range

transport and universality classes in in vitro viral infection spread. Europhys Lett

74: 547–6.

40. Hinrichsen H (2000) Non-equilibrium critical phenomena and phase transitions

into absorbing states. Adv Phys 49: 815–958.

41. Broadbent SR, Hammersley JM (1957) Percolation processes. crystals and

mazes. Proc Camb phil Soc 53: 629–641.

42. Kinzel W (1983) Directed percolation. In: Deutscher G, Zallen R, Adler J, eds.

Percolation structures and processes: Annals of the Israel physical society.

Bristol: Adam Hilger, volume V. pp 143–171.

43. Janssen HK (1981) On the non-equilibrium phase-transition in reaction-di_usion

systems with anabsorbing stationary state. Z Phys B: Cond Mat 42: 151–154.

44. Grassberger P (1982) On phase transitions in schögl’s second model. Z Phys B
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