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Abstract

Background: The majority of previous heroin cue-reactivity functional magnetic resonance imaging (fMRI) studies focused
on local function impairments, such as inhibitory control, decision-making and stress regulation. Our previous studies have
demonstrated that these brain circuits also presented dysfunctional connectivity during the resting state. Yet few studies
considered the relevance of resting state dysfunctional connectivity to task-related neural activity in the same chronic
heroin user (CHU).

Methodology/Principal Findings: We employed the method of graph theory analysis, which detected the abnormality of
brain regions and dysregulation of brain connections at rest between 16 male abstinent chronic heroin users (CHUs) and 16
non-drug users (NDUs). Using a cue-reactivity task, we assessed the relationship between drug-related cue-induced craving
activity and the abnormal topological properties of the CHUs’ resting networks. Comparing NDUs’ brain activity to that of
CHUs, the intensity of functional connectivity of the medial frontal gyrus (meFG) in patients’ resting state networks was
prominently greater and positively correlated with the same region’s neural activity in the heroin-related task; decreased
functional connectivity intensity of the anterior cingulate cortex (ACC) in CHUs at rest was associated with more drug-
related cue-induced craving activities.

Conclusions: These results may indicate that there exist two brain systems interacting simultaneously in the heroin-
addicted brain with regards to a cue-reactivity task. The current study may shed further light on the neural architecture that
supports craving responses in heroin dependence.
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Introduction

Heroin addiction is a complex disease of the brain, involving

both affective and cognitive processes, characterized by a

compulsive drive to take drugs despite serious negative conse-

quences [1]. Emerging neuroimaging studies viewed heroin

addiction under a cue-reactivity paradigm in which drug-related

cues caused significant psychophysiological reactions. The im-

paired response inhibition function and decision-making function

were found in heroin-dependent patients, which were marked by

abnormal activation of the prefrontal cortex (PFC) and anterior

cingulate cortex (ACC) in certain tasks [2–5]. Our group

previously focused on resting state abnormalities in chronic heroin

users (CHUs) and assessed the relationship between the resting

state functional connectivity changes and duration of heroin use

[5–8]. We also found dysregulated functional connectivity of the

ACC and PFC in the CHUs’ resting networks [5,6,8]. Based on

these inherent features, however, whether or not the relevance of

resting state dysfunctional connectivity is related to specific heroin

cue reactivity in heroin dependent patients is still unclear.

Recent studies have suggested that resting state activity had a

specific impact upon subsequent task-induced activity and may be

relevant to individual variability in behavioral and mental states

[9–14]. For example, Wang et al. (2010) demonstrated that

stronger connectivity between the hippocampal and posteromedial

regions during rest predicted better performance on the memory

task in cognitively-intact older individuals [13]. Seeley et al. (2007)

calculated the correlation between intrinsic resting functional

connectivity and an individual’s prescan anxiety ratings, identify-

ing two dissociable networks in humans that are critical for
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guidance of thought and behavior [15]. Comprehensive investi-

gation of brain responses from a rest-task interactions view would

allow for a more general, integrated understanding of the

mechanisms underlying diseased mental states [12]. While

functional abnormality has been reported in resting state networks

and cue-induced tasks in heroin-dependent individuals, therefore,

the first aim of this study was to examine the direct relationship

between abnormal resting functional connectivity and the brain

response to heroin cue reactivity. Few studies have directly

addressed how resting state activity interacts with stimulus-induced

activity in the same CHU, and little is known about the relevance

of resting state dysfunctional connectivity to task-related neural

activity. We hypothesized that the changes in resting state

networks would correlate with heroin cue-induced activity in

CHUs.

Long-term heroin dependence impairs cortical and subcortical

limbic/paralimbic brain regions involved in emotion, reward,

motivation and impulse control [1,8,16]. Volkow et al.(2003)

considered drug addiction as a state initiated by the qualitatively

different and larger reward value of the drug, which triggered a

series of adaptations and changes in motivation, memory, and

control circuits of the brain [6,17]. These brain circuits may also

exhibit abnormal function in heroin cue processes. Therefore, our

second aim was to investigate the different modes of these brain

networks and their distinct interaction patterns between rest and

heroin cue response processes. We hope to gain deeper insight into

the neural architecture that supports fundamental aspects of

human behavior in CHUs [15].

To characterize the rest-task interaction in CHUs, we used the

method of graph theory analysis (GTA), which has become a

powerful tool to investigate resting brain networks [8,18–27]. This

method has the advantages of evaluating the connectivity strength

as well as the temporal spatial patterns of interactions on a whole

brain scale, by defining a graph as a set of nodes (brain regions)

and edges (functional connections) [8,25,28]. While a graph

represents the functional connection between brain regions,

several statistical parameters were used to delineate cortical

network hubs and information processing efficiency of the

networks under the graph theoretical framework. In this study,

we constructed brain networks to characterize the interregional

relations between brain regions in CHUs and non-drug users

(NDUs) respectively. By applying a cue-reactivity task, we then

measured the relationship between drug-related, cues-induced

craving activity and abnormal topological properties of CHUs’

resting networks.

Materials and Methods

All research procedures were approved by the Institutional

Review Board of the Fourth Military University on Human

Studies and were conducted in accordance with the Declaration of

Helsinki.

2.1 Participants
Sixteen abstinent heroin-dependent males (right-handed, age

36.767.1 years, range 25–47 years) were recruited from a local

methadone replacement therapy center (three of them were

reported in our previous research [6]), and sixteen age-, education-

and gender-matched, healthy, right-handed males (age 37.366.9

years, range 26–49 years) were recruited from the local

community. To confirm the diagnosis of opiate dependence based

on the criteria set forth in the DSM-IV, all patients were screened

by the Structured Clinical Interview (SCID-IV) for the Statistical

Manual of Mental Disorders, Fourth Edition (DSM-IV). Exclusion

criteria included psychiatric, neurological, and medical disorders

requiring immediate treatment; additional current substance

abuse/dependence diagnosis; and contraindications to being

scanned. None of the subjects was taking prescription drugs that

affected the central nervous system within 1 week of testing. All

CHUs had a mean heroin dependence history of 85.3646.2

months (range 19–182 months); a prior mean daily dosage of

0.660.3 g (range 0.2–1.5 g); mean abstinence from heroin for

about 4.760.7 months (range 3–6 months) and tested negative for

morphine in the urinalysis (reagent produced by China Carrie

City International Engineering Co.). None of the subjects had a

history of neurological illness or injury with the exception of heroin

addiction. No patients displayed overt behavioral signs of heroin

intoxication upon recruitment. All subjects were fully informed

and gave written consent. Information regarding the demographic

and clinical information of heroin-dependent individuals and

controls is presented in Table 1. The experimental protocol was

approved by the Institutional Review Board of the Fourth Military

University, China.

2.2 Experimental paradigm
The present study consisted of a resting state fMRI scan and a

drug-related cue-reactivity fMRI experiment. During the resting

scan, which was acquired prior to the cue-reactivity task, all

participants were instructed to fixate on a visual cross-hair

centered on a screen. The resting run lasted 5 min.

During the drug-related cue-reactivity scan, all CHUs were

presented with heroin-related and neutral stimuli. Images for

heroin-related stimuli contained heroin injection, preparation, and

paraphernalia. Neutral images (control) were composed of

household objects and tasks. Trials had 2 sec heroin-related or

neutral stimuli followed by a variable interval (4–12 sec) during

which a crosshair was shown. Images were rear-projected to the

center of the visual field via a mirror mounted on the scanner head

coil. Stimuli were randomized in an event-related experimental

design using E-prime software (Psychology Software Tools, Inc.,

Pittsburgh). Subjects were placed in the scanner in a supine

position using a foam head holder to reduce motion artifacts.

Earplugs were used to safely reduce scanner noise. The task was

initiated with a 10 sec dummy scan followed by the image. Task

duration was 8 min and 10 sec (48 trials). The scan was at least 5–

8 hrs after the last methadone dose; a time point when the

methadone plasma level was stable with daily dosing [29,30].

Before and immediately after each imaging session, craving

ratings were obtained. Craving was assessed by a 0–10 visual

analog scale (VAS), in which participants marked a 0 (‘‘not at all’’)

to 10 (‘‘extremely high’’) in response to the question, ‘‘To what

extent do you feel the urge to use heroin?’’

2.3 MR data acquisition
This experiment was carried out in a 3T GE scanner. Prior to

the functional run, subjects underwent ‘mock scans’ (gradients

40 mT/m, 150 T/m/sec) in order to become familiar with the

scanning environment (for 1 min). A gradient echo T2*-weighted

sequence with in-plane resolution of 3.75 mm63.75 mm (TE

30 ms, TR 2 sec, matrix 64664, field of view 240 mm, and flip

angle 90u, 5 mm slice thickness, no gaps) and a set of T1-weighted

high-resolution structural images (TE 3.39 ms, TR 2.7 sec, matrix

2566256, field of view 256 mm, flip angle 7u, in-plane resolution

1 mm61 mm, and slice thickness 1 mm) were acquired. The

resting run generated 150 whole-brain volumes, and 240 whole-

brain volumes in each subject were acquired in the drug-related

cue-reactivity run.

Rest-Task Interactions in Chronic Heroin Users
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2.4 Data preprocessing
Image preprocessing was carried out using SPM5 (http://www.

fil.ion.ucl.ac.uk/spm). All datasets were initially slice time

corrected with a reference to the first slice acquired, and then

corrected for temporal offsets using sinc interpolation and head

movement-related effects using a six-parameter spatial transfor-

mation [31]. To minimize movement artifacts, individuals with an

estimated maximum displacement in any direction larger than

1 mm or head rotation larger than 1u were discarded from the

study. No data were excluded under this criterion. All datasets

were then spatially normalized to the Montreal Neurological

Institute (MNI) echoplanar imaging (EPI) template image using an

optimum 12-parameter affine and nonlinear cosine basis function

transformation, and resampled to 3-mm isotropic voxels. In order

to avoid local correlations, the spatially normalized data were not

spatially smoothed in this study.

2.5 Construction of the unweighted voxel-based network
For the resting state dataset, we down-sampled all voxels to

6 mm isotropic and obtained 3446 nodes of interest covering the

entire brain to obtain high-resolution brain networks in both the

CHU and NDU groups. In order to correct the physiological

noise, the fMRI time series of all of the nodes was first filtered

using a bandpass filter (0.01–0.08 Hz) to reduce the effects of low-

frequency drift and high-frequency noise. Then, the mean time

courses from the deep white matter and ventricles were regressed

out from the filtered time series. The mean time course from the

deep white matter was obtained by averaging the voxel values

within a sphere (8 mm radius) positioned in the anterior portion of

the right centrum semiovale comprised solely of white matter

voxels. The mean time course from the ventricles was obtained by

averaging the voxel values within the ventricles using the ventricle

mask produced by the WFU PickAtlas Tool [32]. Removal of the

global signal would cause a shift in the distribution of the

correlation coefficients and make interpretation of the sign of the

correlation ambiguous [33]. The global signal was not regressed in

the current study. To correct subject motion, we also regressed out

the 6 rigid-body motion parameters from the motion correction

process from the time series. Finally, a 344663446 matrix of the

Pearson correlation coefficients was calculated based on the above

denoised motion-corrected time courses between all possible

connections of the node pairs.

We investigated the brain’s topological properties by way of

binarized graphs (G) in which each correlation matrix was

thresholded and converted to the adjacency matrix. The adjacency

matrix is a means of representing which nodes of the graph are

adjacent to other vertices with 1 being the existing edge and 0

indicating the absence of an edge between the two nodes. A brain

functional connection could be represented as an undirected edge

if the correlation coefficient between the two nodes achieved a

correlation threshold T. Since there is no definitive method in

selecting a single threshold, we followed a processing stream that is

widely used in threshold selection [34,35]. We thresholded each

correlation matrix repeatedly over a wide range of threshold T

from 0.36 to 0.6 in 0.01 increments and then estimated the

network properties at each threshold value. We chose R = 0.36 as

the lower bound so that each network was fully connected with all

of the nodes (n = 3446) (Fig. 1). This allowed the adjacency matrix

Table 1. Demographic characteristics of subjects.

Information Non-drug users (n = 16) Chronic heroin users (n = 16)

Age (years) 37.366.9 36.767.1

Education (years) 8.762.1 8.461.6

Duration of heroin use (months) N/A 85.3646.2

Dosage of heroin use (g/day) N/A 0.660.3

Duration of abstinence from heroin(months) N/A 4.760.7

Average methadone use (mg/day) N/A 34.6618.1

doi:10.1371/journal.pone.0023098.t001

Figure 1. The selection of lower bound threshold T. (A) Largest subgraph size as a function for the NDUs’ voxel-based resting networks (black
lines) and (B) the CHUs’ voxel-based resting networks (red lines). It showed that brain networks were fully accepted in both groups at Tƒ0.36.
doi:10.1371/journal.pone.0023098.g001

Rest-Task Interactions in Chronic Heroin Users
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to be sufficiently sparse for the network metric calculation [27,34].

The higher bound T = 0.6 was selected to avoid fragmentation of

the voxel-based networks. A conservative threshold may destroy

the topological architecture of the network and make the following

analysis impractical.

2.6 Topological properties of the brain functional
networks

Small-world models are useful for connectivity studies of

nervous systems because they have high clustering and a short

path length which confers the capability for both specialized or

modular processing in local neighborhoods, as well as including

distributed or integrated processing over the entire network [18].

Several network metrics were calculated to assess small-world

properties. The key parameters of the small-world network are the

clustering coefficient C and the mean minimum path length L.

The clustering coefficient 0,Ci,1 is a ratio that defines the

proportion of possible connections that actually exist between the

nearest neighbors of a node [8,36]:

C~
1

N

XN

j~1

#Ej

#Vj(#Vj{1)=2

where N is the total number of nodes in the network, #Ej is the

number of edges connecting the neighbors of node j, and #Vj is the

number of neighbors of node j. The minimum path length L is the

average of the shortest path lengths over each possible pair of vertices:

L~
2

N(N{1)

XN{1

s~1

XN

k~sz1

minfLi,jg

where fLi,jg is the shortest path length between the ith node and the

jth node, and the path length is defined as the number of edges

included in the path. Corresponding parameters for a random graph

of C and L with the same number of nodes were also calculated, as

denoted by Crand and Lrand . These random networks were generated

by randomly reconnecting each edge in the original network an

average of 10 times to annihilate any local neighborhood structure

while preserving the original degree distribution [34,37]. Random

networks have a small average shortest path length, but with limited

local interconnections resulting in a small Crand and Lrand . A graph is

considered small-world if its average clustering coefficient C is

significantly higher than a random graph constructed on the same

number of nodes, and if the graph has a small average shortest path

length. We examined the ratio c~Cnet=Crand and the ratio

l~Lnet=Lrand in our voxel-based resting networks. The ratio

d~c=l could be summarized for small-world networks as typically

being .1 [18]. It has been shown that brain functional networks have

economical small-world properties with high global efficiency (Eglobal )

supporting efficient parallel information transfer at a relatively low

cost [8,38]. In GTA, Eglobal is defined by the inverse of the harmonic

mean of the minimum absolute path length between each pair of

nodes [38–40]:

E~
1

N(N{1)

X

i=j[G

1

Li,j

Degree (D) is another important statistical parameter under the

graph theoretical framework. The degree of a graph is the number

of edges incident to the vertex, and it is defined as the number of

nodes across the brain showing a strong correlation with the target

node. The brain regions showing a high value of degree in the

network were considered to be a cortical hub, which may play a

critical role in integrating diverse informational sources and

balancing the opposing pressure to evolve segregated, specialized

pathways [20].

In our study, we investigated the small-world properties of

CHUs’ and NDUs’ resting networks over the entire range of

threshold values, and statistical comparisons of C, L, c, l, and d
between the two groups were performed by using a two-sample

two-tailed t-test. For the most significant between-group difference

threshold value, the global efficiency of the CHUs’ resting network

was investigated by examining its association with the duration of

heroin use while controlling for age. Since each node has a 3D

voxel coordinate in the brain, every node in the voxel-based

network could be located in particular anatomical areas

[20,27,34]. To view all abnormal brain regions in normalized

space, the nodes’ degree was projected back to the original 3D

brain space. Comparing the degree differences between the two

groups, we could locate most significant brain regions after a two-

sample t-test.

2.7 Construction of the weighted region-based network
Voxel-based network analyses have the advantage of localizing

cortical hubs to particular anatomical areas since each node has a

3D voxel coordinate in the brain [20,27,34]. The visualization of a

graph helps identify key nodes as well as their topological and

spatial relationships with other brain regions [34]. However, since

the brain is organized into functional areas, which can be variable

in size but are generally larger than voxels in the voxel-based

network analysis, the oversampling of functional areas will lead to

voxels in larger functional areas that automatically have a

functional connection even though there may not be direct

functional connectivity. One concern in the voxel-based network

analysis is that local spatial correlations may affect the reliability of

the network analysis. To exclude potential effects of the local

correlation, voxel-based networks were converted into a region-

based network to provide a comprehensive assessment of the

difference between CHUs’ and NDUs’ resting networks.

The resting brain is organized into segregated systems of brain

areas, and these subsystems interact in a flexible manner to

support various cognitive functions [20,22]. Region-based network

analysis could provide excellent network visualization of the

functional connectivity between brain regions and identify

interacting brain subsystems. Region-based network analyses

detected a significant bilateral effect. If the group difference in

some brain regions were just subthreshold at one side in the voxel-

based network analysis, the differences were regarded as bilateral.

In our current study, building upon the degree metrics of CHUs’

and NDUs’ voxel-based networks, we investigated the distribution

of the voxels which showed significant differences for the degree of

connectivity for the networks. We then chose the MNI coordinates

of the maximally-abnormal voxel within an anatomical area

(minimum cluster size 3 voxels) as the center to draw a sphere with

a 12 mm diameter. Within each sphere, the voxels located in the

white matter and ventricles were removed to ensure the integrity

of its structure and function. In this way, we could gain several

regions of interest (ROIs). Isolated voxels showing significant

regional differences in degree were excluded from the final ROIs.

We considered these ROIs as network nodes and created fully

connected, weighted, region-based networks for the CHUs’ and

NDUs’ resting datasets. The correlation coefficient between the

two regions was preserved as the weight of the edges [35]. In our

region-based networks, we used a two-sample two-tailed t-test to

Rest-Task Interactions in Chronic Heroin Users
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determine if the intensity of functional connectivity (connection

weights) was significantly different between the two groups.

Furthermore, we performed partial correlation analyses between

the CHUs’ resting state functional connectivity intensity and

individual duration of heroin use across all subjects while

controlling for age.

2.8 Cue-reactivity task
The task datasets were filtered using a high pass filter and cut-off

at 128 sec. The statistical evaluation was based on a least-square

estimation using the general linear model for each run and across

each subject. To construct the task model, a set of delta functions

for each condition in the experiment was convolved with the

hemodynamic response in SPM. For each subject, heroin-related

images vs. neutral image contrasts were created and were then

entered into a second-level random-effects group analysis.

To test the hypothesis that abnormal resting state activity

affected drug-related cues induced activity in the CHUs’ brain

networks, the degree value of voxels in the CHUs’ voxel-based

networks exhibiting dysregulated functional connectivity (com-

pared with NDUs’) was correlated with the same region’s level of

BOLD activation during the cue-reactivity task (heroin-related

images.neutral images).

Results

The mean baseline subjective craving score prior to stimulus

presentation was 0.6 (61.4). The mean subjective craving score

post-stimulus presentation was 5.5 (63.2). There were significant

differences in CHUs’ craving scores before and after the

experimental session (p,0.001, paired t-test).

3.1 Abnormal topological properties in CHUs’ voxel-
based resting network at different correlation thresholds

Small-world network properties (C, L and d) were obtained at

different correlation thresholds T (Fig. 2 A, B and C) from 0.36 to

0.6 in 0.01 increments. In our results, the small-worldness ratio d
showed a significant difference (p,0.05, FDR corrected) in the

threshold range between 0.49 and 0.60 for the CHUs’ and NDUs’

resting networks. The most significant between-group difference

was found at threshold T = 0.56 (Fig. 2 C). Yuan et al. (2010) and

Liu et al. (2009) previously compared the small-worldness of the

brain functional networks between the two groups at a single

threshold value and explored abnormal topological properties in

the brain of chronic heroin users [7,8]. Here, we compared the

small-worldness between the two groups at a wide range of

thresholds and acquired more precise and comprehensive

descriptions of the topological properties of the networks.

The results exhibited that global efficiency was negatively

correlated with the duration of heroin used by applying a linear

partial correlation model controlling for the patients’ age when the

threshold was below 0.56 in the CHUs’ resting networks (r = 0.68,

p,0.05) (Fig. 2 D). Such a correlation analysis between the ability

of the information transform (Eglobal ) of the network and the

duration of heroin use could contribute to revealing brain

Figure 2. Measures for brain networks topological organization on the whole-brain level. The mean and standard deviation of small-
world statistical parameters from voxel-based networks at different correlation coefficient thresholds T. The parameters are: (A) shortest path length
L, (B) clustering coefficient C, and (C) small-worldness d~c=l. The horizontal dotted line in panel C indicates the significant difference of the small-
worldness between the two groups among all of the thresholds. The most significant between-group difference was found at threshold T = 0.56. (D)
The correlation between the global efficiency of CHUs’ resting networks and the duration of heroin use while controlling for patients’ age was at
threshold T = 0.56.
doi:10.1371/journal.pone.0023098.g002
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impairment for prolonged heroin dependence. The network

pattern at threshold T = 0.56 for CHUs’ and NDUs’ networks

was shown as being typical in the following analysis.

3.2 Dysregulation of brain regions in CHUs’ voxel-based
resting networks

Based on each nodal degree, we performed a two-sample two-

tailed t-test to determine if the degree of the brain voxels was

significantly different between the CHUs’ and NDUs’ resting

networks (p,0.05, corrected). As can be seen from Fig. 3, several

brain regions during heroin dependence exhibited functional

dysregulation in the resting networks, including the PFC , insula

(INS), parahippocampal (PH), thalamus (THA), ACC, posterior

cingulate cortex (PCC) , amygdala (AMY), hippocampus (HIP),

caudate (CAU), putamen (PUT), pallidus (PAL), temporal cortices,

and the anterior/posterior part of the cerebellum (Fig. 3 and

Table 2).

3.3 Dysfunctional connectivity of brain regions in CHUs’
region-based resting networks

While voxel-based network visualization provided strong hints

of dysregulated brain regions in the CHUs’ networks, local spatial

correlations could influence the results of our network analysis. In

order to avoid local correlations, we chose abnormal brain regions

as the ROIs from the voxel-based network analysis to reconstruct

the resting network for a region-based network analysis. Thirty-

eight brain regions were considered as network nodes in our

analysis. The time course of each ROI was correlated to every

other ROI to obtain a 38638 matrix of correlation coefficients in

the CHUs and NDUs groups respectively. A total of 703

connections were obtained in each group. Comparisons of

functional connectivity between the two groups’ region-based

networks were made using a two-sample two-tailed t-test. In our

results, many pairs of connections were prominently altered

(p,0.05, corrected). Furthermore, these resting state functional

connectivities between brain regions presented a significant

correlation with the duration of heroin use. Specifically, ten

connections showed a marked difference (CHUs.NDUs) and a

positive correlation was present with dependence duration in the

CHUs’ networks, predominantly involving the PH-PCC, PH-PFC,

striatum-PFC, striatum-ACC and a connection within the PFC

(red lines in Fig. 4, p,0.05). Sixteen connections exhibited

decreased intensity in the CHUs’ resting networks, including the

HIP/PH-striatum, THA-PFC, ACC-INS and a connection within

the striatum (blue lines in Fig. 5). These connections showed

significant negative correlation with the duration of heroin use

(p,0.05).

3.4 Functional abnormality in cue-reactivity paradigms
To detect the BOLD signal changes between heroin-related

cues and neutral cues, a GLM model was calculated across each

subject with regressors for the difference from these two conditions

(p,0.01, FDR corrected, cluster size .20 voxels as shown in

Fig. 6). The heroin-related images and neutral images contrast

showed brain activities in the meFG, (BA9, 10), ACC, PCC/

precuneus, middle cingulate cortex (MCC), THA, caudate,

inferior parietal lobule (IPL), fusiform, occipital cortices, temporal

cortices, and the anterior/posterior part of the cerebellum. In

contrast, we did not find any area which was more activated for

the neutral images than heroin-related images trials.

3.5 Nodal degree metrics in the resting network and
BOLD activation in task correlations

In the current study, we only found two regions showing

association between resting connectivity and task-related activity

(p,0.05) in CHUs. The meFG (BA 9, MNI coordinate: 23, 42,

31) showed more functional connectivities (high degree value) at

rest in the heroin-addicted group and the degree value of the

meFG was positively correlated to the heroin-addicted individual’s

craving responses in the meFG (r = 0.74, p,0.05) (Fig. 7 A2). The

degree value of the ACC (BA 24, MNI coordinate: 23, 30, 12) in

the patients’ resting state network was significantly lower in the

CHUs’ networks and was negatively correlated with the heroin-

related activity in the ACC (r = 20.76, p,0.05) (Fig. 7 B2).

Furthermore, these resting deregulations of the meFG and the

ACC were relevant to cue-induced craving scores (Fig. 7 A3, B3).

Discussion

Certain studies pointed out that the fundamental function of

resting state networks could serve as an indicator for dysregulation

in brain connectivity [41], allowing for prediction of task-induced

activity in a variety of psychiatric and neurological disorders

[13,14]. Previously, our research group shed light on both local

and integrative systems’ perspective and detected the CHUs’

abnormal resting network characteristics and their associations

with the duration of heroin use [5–8]. Although different

approaches have been used, these studies converge on the

observation that the PFC and ACC-related resting networks

exhibited abnormal connectivity patterns in the heroin-addicted

brain. We inferred that it may lead to the abnormality of the PFC

and ACC-related brain functions under a specific task and cause

remarkable performances in heroin-dependent individuals. How-

ever, this inference needs further investigation.

In the current study, we examined the patterns on how the

CHUs’ functional connectivity during the resting state interacted

with their brain performance on an associative heroin cue-reactivity

task. We found a cumulative effect in heroin-addicted individuals

that the longer the heroin use, more functional abnormality existed

in the resting networks and the greater the craving activity was

Figure 3. Significant degree differences between CHUs’
unweighted voxel-based resting networks and NDUs’ resting
networks were at a threshold of T = 0.56. A two-sample two-tailed
t-test was performed (p,0.05, corrected). All clusters contain at least
three contiguous voxels.
doi:10.1371/journal.pone.0023098.g003
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related to drug cues. Specifically, in patients with heroin addiction,

the small-world property and information processing efficiency of

the resting networks were prominently disrupted on a whole-brain

level (Fig. 2). From a local view, we confirmed that long-term heroin

dependence impaired several brain regions’ connectivity patterns

during the resting state (Fig. 3), and some pivotal interaction among

these brain regions showed a significant correlation with the

duration of heroin use (Fig. 4 and Fig. 5). Furthermore, stronger

dysfunctional connectivity patterns at rest were associated with

greater drug-related cues-induced activities (Fig. 7).

The major finding of our study is that the addicted individual

differences in dysregulated functional connectivity of the PFC

(meFG, BA9) and ACC at rest correlated with individual

differences in the magnitude of the same region’s drug-related

craving activities and patients’ self-report craving scores (Fig. 7).

The PFC was largely considered to be involved in cognitive

control of goal-directed behavior and rewarded tasks [42–45], and

referred to the management of integrating cognitive and

motivational information [45]. For drug addiction studies, several

researchers observed dysfunctional activity of the PFC in decision-

Table 2. Foci with significant changes in degree differences from non-drug users(NDUs) versus chronic heroin users(CHUs).

Regions of interest Brodmann MNI NDU Degree CHU Degree p

Area x y z mean ± sd mean ± sd value

Inferior Frontal Gyrus (IFG) L 10/46/47 215 18 224 17.4622.8 80.9668.5 0.008

R 39 25 6 42.2645.4 116.1688.9 0.03

Medial Frontal Gyrus (medFG) L 32/9 23 42 31 47.8633.4 127676.8 0.007

R 3 42 31 41.4627 103.6667.9 0.01

Middle Frontal Gyrus (MFG) L 10/9/6 245 54 26 25.1622.2 176.6679.3 0.002

R 27 212 48 25.5636.7 133695 0.004

Superior Frontal Gyrus (SFG) L 10 227 60 6 32636 140.76131.3 0.012

R

Anterior Cingulate Cortex (ACC) L 24/25 23 30 12 98.3657.6 28.3639 0.004

R 3 30 12 97.5643.8 25630.2 0.0003

Middle Cingulate Cortex (MCC) L 24/32/31 215 24 36 2.162.4 43635.2 0.002

R 21 218 41 7.8613.6 58.3638.7 0.001

Posterior Cingulate Cortex (PCC) L 23/30/31 221 266 6 337.96297.6 108.9693.8 0.02

R 3 266 12 332.36299.3 100.8657.8 0.02

Parahippocampal (PH) L 221 254 0 255.76188.5 65.5658.1 0.004

R 27 248 26 273.66215.3 78653.7 0.008

Hippocampus (HIP) L

R 27 212 219 184.66170.6 25626.9 0.006

Amygdala (AMY) L

R 21 0 218 1236140.7 31.1629.4 0.048

Insula (INS) L 239 212 12 37.2633.1 131.26129.2 0.038

R 39 236 18 16.9626.8 86.9689.2 0.028

Thalamus (THA) L 215 230 11 47.7637.4 11.5619.1 0.01

R

Caudate (CAU) L 215 18 12 20.3626.7 93661 0.002

R 9 12 12 62.4629.2 24.7626.5 0.006

Putamen (PUT) L 221 6 6 35.8616.2 97.7670.2 0.01

R 27 212 12 25622.8 102.9661.7 0.001

Pallidus (PAL) L 215 26 26 39.3645.3 90648.2 0.02

R 21 26 6 18615.5 90.5673.8 0.006

Fusiform (FFG) L 251 242 224 278.96181.6 102.3691.7 0.01

R 51 260 218 336.16217.1 101.6686 0.003

Temporal Cortex L 263 236 218 220.26157.3 60.6656 0.005

R 57 12 224 235.76179.5 29625.2 0.001

Occipital Cortex L 239 296 0 2.766 44.9631.7 0.0005

R 15 290 12 290.36195.1 65.3648.3 0.001

Cerebellum L 29 248 0 278.1670.6 83.5660.3 0.01

R 9 248 0 272.86108.3 89.5654.1 0.01

doi:10.1371/journal.pone.0023098.t002
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making tasks [43], which need heroin dependence patients to

integrate cognitive and motivationally relevant information [45].

In our results, patients presenting more abnormal functional

connections in the meFG during the resting state tended to have

greater neural activity in the meFG for heroin-related cues (Fig. 7).

Therefore, our results indicated that the decision-making network

is involved in processing an increase in the craving response for

heroin-related cues in CHUs. Similarly, our results showed that

less functional connections of the ACC during the resting state

were associated with greater neural activity between heroin-related

cues and neutral cues (Fig. 7). Previous studies have disclosed

deactivation of the ACC in a GO/NOGO task in CHUs [2,46],

suggesting the ACC’s important role in response inhibition and

inhibitory control behavior [3,6,47,48]. The irregularity of the

ACC may lead the inhibitory control to become weaker in CHUs

[8], therefore, the negative correlation of the ACC between rest

and the task may reveal the role of the inhibitory network for

heroin-related cue processing.

Heroin addiction was characterized by uninhibited behavior

and loss of self-control for drug seeking, which far exceeded the

desire for other non-drug-related goals [49]. It suggested that long-

term heroin use aggravated drug craving and arousal, and

‘‘wanting’’ of the drug turned these brain functions of addicted

individuals into an ill-motivated state [1]. In our results, when

considering the rest-task interactions, functional dissociations were

apparent during the heroin-related craving task. Functional

connection of the meFG and ACC showed different correlation

patterns with activity to heroin cues in CHUs (Fig. 7). Our findings

provided direct evidence for making inferences about the presence

of multiple brain circuits in enhancing salience of the cues to

heroin dependent patients. We postulated that the abnormal

interaction of these brain regions may be indicative of a trend of

the deterioration of monitoring and inhibitory controls for the

long-term duration of heroin dependence, thus possibly leading to

maladaptive craving responses in heroin dependent patients’ daily

lives [1,8,17].

While dysregulation of the meFG and ACC in the resting

network was related to behavioral variability within and across

heroin-dependent individuals, several brain regions concomitantly

showed dysregulated functional connectivity in CHUs’ resting

networks, but had no significant correlation with the same brain

regions’ craving activities (p.0.05). In the current study, abnormal

topological properties were explored in the major parts of the

striatum (CAU, PUT, and PAL), PH, HIP and PCC/precuneus

(Fig. 4 and Fig. 5). While connections between the striatum and

PFC and the PH and PFC were reinforced with long-term heroin

use (Fig. 4), the functional links were weakened within the striatum

and its connection to the PH and HIP (Fig. 5). Some animal

studies demonstrated that intermittent footshock stress could

induce heroin seeking in rats after prolonged drug-free periods

[50]. Pruessner et al. (2004) pointed out that increased dopamine

release in the striatum was associated with stressful experiences

Figure 4. Significant differences in the intensity of the functional connection between the two groups’ weighted region-based
networks. Ten connections (red lines) showed increased intensity in the CHUs’ resting networks (CHUs.NDUs), and a positive correlation with
dependence duration in the CHUs’ networks while controlling for the patients’ age.
doi:10.1371/journal.pone.0023098.g004
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and reward processing [51]. The PH and HIP were considered to

be involved in the mesolimbic dopamine circuit and were referred

to as being the memory response for drug reinforcement [49].

These abnormal functional organizations in our results may

indicate maladjusted, stress-related brain activation and memory-

related activities during the dependent state. However, we failed to

assess the relationship between these regions’ resting connections

and drug-related cues-induced activities in CHUs. Further

evidence needs to be investigated using a more integrated and

comprehensive task design to study behavioral and neuropsycho-

logical deficits in heroin-dependent individuals.

There is a methodological limitation to the present study. In our

voxel-based analysis, the most significant between-group small-

worldness difference was chosen as a typical one for ROI selection.

It is plausible that any single threshold T may influence the

topological properties of the resting network, which may yield

different results of ROI selection for the region-based network

analysis. In our analysis, results of degree comparisons were similar

for other threshold values (0.49 to 0.6). Although the number of

voxels within an anatomic brain region changed quantitatively for

different thresholds, no additional brain regions were found. The

sample size used was fairly minute and all abstinent heroin-

dependents were male, which may have resulted in a non-

significant correlation between the network parameter and the

performance mentioned previously. A larger sample size is

pertinent in future studies to be statistically significant in validating

these results.

In summary, drug addiction is characterized as a complex brain

disease [1,49]. In this study, we were able to combine the analysis

of functional connectivity measures obtained at rest and during

addiction-induced brain performance for a heroin-related craving

task. Our results may suggest that there exist two brain systems

interacting simultaneously in the heroin-addicted brain for heroin-

related cues. These findings may help us better understand the

issues of heroin-related behavioral and addicted mental states.

Figure 5. Significant differences in the intensity of the functional connection between the two groups’ weighted region-based
networks. Sixteen connections (blue lines) exhibited decreased intensity in the CHUs’ resting networks (CHUs,NDUs), and a negative correlation
with dependence duration in the CHUs’ networks while controlling for the patients’ age.
doi:10.1371/journal.pone.0023098.g005

Figure 6. Group results of brain activation contrast for heroin-
related images and neutral images (p,0.01, FDR corrected,
cluster size .20 voxels).
doi:10.1371/journal.pone.0023098.g006
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Further research is needed to apply integrated and comprehensive

task design to determine whether or not impaired functional

connectivity between two brain regions will serve as a predictor to

heroin-related brain activities.
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