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Abstract

Tumor-derived, circulating proteins are potentially useful as biomarkers for detection of cancer, for monitoring of disease
progression, regression and recurrence, and for assessment of therapeutic response. Here we interrogated how a protein’s
stability, cellular localization, and abundance affect its observability in blood by mass-spectrometry-based proteomics
techniques. We performed proteomic profiling on tumors and plasma from two different xenograft mouse models. A
statistical analysis of this data revealed protein properties indicative of the detection level in plasma. Though 20% of the
proteins identified in plasma were tumor-derived, only 5% of the proteins observed in the tumor tissue were found in
plasma. Both intracellular and extracellular tumor proteins were observed in plasma; however, after normalizing for tumor
abundance, extracellular proteins were seven times more likely to be detected. Although proteins that were more abundant
in the tumor were also more likely to be observed in plasma, the relationship was nonlinear: Doubling the spectral count
increased detection rate by only 50%. Many secreted proteins, even those with relatively low spectral count, were observed
in plasma, but few low abundance intracellular proteins were observed. Proteins predicted to be stable by dipeptide
composition were significantly more likely to be identified in plasma than less stable proteins. The number of tryptic
peptides in a protein was not significantly related to the chance of a protein being observed in plasma. Quantitative
comparison of large versus small tumors revealed that the abundance of proteins in plasma as measured by spectral count
was associated with the tumor size, but the relationship was not one-to-one; a 3-fold decrease in tumor size resulted in a 16-
fold decrease in protein abundance in plasma. This study provides quantitative support for a tumor-derived marker
prioritization strategy that favors secreted and stable proteins over all but the most abundant intracellular proteins.
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Introduction

Blood-based protein biomarkers indicative of the presence,

progression, and phenotype of a tumor are of significant clinical

interest for diagnostics and prognostics [1,2,3,4]. One common

approach to the discovery of such protein biomarkers is to

compare cancer tissues with control materials [5] and select

candidates from a list of proteins that are more abundantly

expressed in the cancer tissues; any selected candidate must be

then subsequently verified in serum or plasma. As there may be

dozens or hundreds of differentially abundant proteins identified in

such experiments [2] researchers must prioritize potential

candidates. In principle one should select those tumor proteins

that are most likely to find their way into peripheral blood at

detectable levels. Logical arguments regarding the need to give

higher priority to abundant tumor proteins, stable proteins, or

secreted or extracellular proteins are commonly made [1,6,7,8],

yet the absolute or relative values of these attributes have not been

quantified. In general, the attributes that allow cellular proteins to

find their way into the plasma in detectable levels are poorly

understood. In this study we sought to estimate the relative

importance of each of these three factors in predicting which

proteins derived from a tumor are observed in plasma and which

are not.

Ordinarily establishing what portion of a protein’s plasma

concentration originated in a tumor is challenging as plasma

abundance is affected by a combination of factors other than

tumor leakage, including endogenous host production. To

precisely measure tumor derived proteins in plasma we exploited

a mouse xenograft model where tumors are derived from human

cancer cell lines. Seventy-three percent of human tryptic peptides

are not contained in the murine tryptic peptide database. By

restricting our analysis to those peptide sequences that were

uniquely human, we were able to distinguish tumor from host
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proteins. We next annotated the proteins for cellular location,

protein stability, number of tryptic peptides, and spectral count in

tissue (a measure of relative protein abundance [9], and

determined the probability of the protein being identified in

plasma. The most readily observed proteins were extracellular and

stable ones. Although our primary goal was to determine the

properties of tissue proteins that are correlated with detection in

plasma, we also compared samples from mice with large and small

tumors in order to evaluate the effect of tumor size on the

likelihood of observation of particular proteins. Tumor size was

strongly, but non-linearly, related to protein abundance in plasma.

The characteristics we evaluated here represent only a small

number of factors that relate to the chance that a protein will make

a high quality biomarker for any given disease. Factors such as

tumor shape, vascularization, nutrient penetration, histology, and

location may impact detection of tumor-derived proteins in

plasma, and relative abundance and variation of a protein in

cancer-free plasma will also impact the utilization. Although this

model may not completely reflect what can be expected in human

disease, or even in other murine models, due to differences in

tumor burden and localization, the characteristics that determine

the likelihood of detecting a tumor protein in plasma should be

transferable to human systems and will serve as a guide for

biomarker prioritization.

Results

Protein identification from tumor and plasma samples
In order to identify tumor-derived proteins detectable in blood

samples by mass-spectrometry-based proteomics, mice carrying

tumors of human cell origin were generated. A431 cells sensitive

(A431s) or resistant (A431gr derived in vivo as described in

Materials and Methods) to gefitinib were mixed with Matrigel and

subcutaneously injected into the flanks of nude athymic BALB/c

female mice. One group of animals with each tumor type (5 mice)

was treated with gefitinib and the other was not (vehicle control).

For the A431s model, the average size of tumors in untreated mice

was 2500 mm3, three times the volume of tumors from treated

mice (750 mm3) approximately 17 days post implant. In mice with

A431gr tumors, the tumor sizes in treated and untreated mice

were the same, around 1300 mm3 after 18 days of implantation.

Tumor tissue and plasma were harvested on day 17 or 18 post

injection. Pooled tumor and plasma samples from treated mice

were labeled with heavy acrylamide and samples from untreated

animals were labeled with light acrylamide as previously described

[10]. Equal masses of protein from the treated and untreated mice

were mixed. As a result, four samples were generated, each was a

mixture of either tumor or plasma samples from either gefitinib

treated or untreated mice. Tumor and plasma samples were

analyzed using mass-spectrometry-based proteomics techniques.

In order to minimize false positive detection of murine peptide

sequences, we employed a stringent set of peptide and protein

filters, using only peptides having PeptideProphet [11] probability

greater than 0.95 and requiring each protein group to have at least

2 unique peptides meeting that criteria (see Materials and

Methods). A total of 2,506 human proteins were identified,

including 2,487 from the tumor analysis and 138 from plasma

(Table 1). One hundred nineteen (119) proteins were observed in

both tumor and plasma. Thus, approximately 5% of tumor

proteins were detected in plasma. A total of 445 and 395 mouse-

specific proteins were identified in the A431s and A431gr

experiments, respectively. This indicates that human-specific

tumor proteins make up approximately 20% of all proteins

identified in plasma based on our strict filtering criteria. Less than

10% of the proteins characterized in plasma were ambiguously of

the mouse or human origin; these proteins were not included in

subsequent analyses. Protein identifications were subject to

Ontology analysis. Overall, about 90% of the proteins identified

had a cellular location annotation by GO. Of the tumor proteins

observed in plasma, 40% originated from the extracellular space.

In contrast, only 10% of all proteins identified in tumor tissue were

extracellular. Thus, there was a four-fold enrichment of extracel-

lular protein identifications in plasma compared to all identified

tumor proteins. A list of these proteins is provided in Supplemen-

tary Table S1.

Tumor protein levels depend on tumor burden
All plasma samples contained mixtures of plasma of treated and

untreated mice. In the resistant tumor the treated and untreated

tumors were the same size, but the sensitive tumor was one-third

the size of the untreated. This provides an opportunity to

investigate the relationship of tumor burden on the chance that

a protein is observed. MA plots in Figure 1 shows the distribution

of log2 (treated/untreated) ratios by ion intensity, revealing that

the relative tumor protein abundance in plasma from A431s-

tumor bearing mice treated with gefitinib was 16 fold (log2(-

treated/untreated) ratios of -4) lower than those from untreated

mice (red points in Figure 1A). However, mouse proteins (black

points in Figure 1A) showed no systematic changes in treated vs.

untreated samples, thus ruling out variation in loading volume or

other specimen processing artifacts as the cause of this difference.

This as well suggests that gefitinib treatment does not grossly

change the protein expression in host. We also compared the same

log2(treated/untreated) ratios of both tumor and mouse plasma

proteins from A431gr-tumor bearing mice treated and untreated

with gefitinib, which have the same size of tumors and found no

Table 1. Summary of human tumor proteins identified and quantified in each experiment and their cellular locations.

Xenograft mouse
model

Average size
of tumors

Tissue
type

Proteins
identified

Proteins
quantified Cellular location

Extracellular Non-extracellular Not annotated

A431s Treated: 2500 mm3

Untreated: 750 mm3
plasma 103 18 42 54 7

tumor 2314 1153 170 1882 262

A431gr Treated = untreated
= 1300 mm3

plasma 87 18 38 42 7

tumor 2099 979 163 1705 231

doi:10.1371/journal.pone.0023090.t001

Tumor-Derived Plasma Proteins
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systematic changes (Figure 1B). Thus it is reasonable to assume

that the consistent difference of tumor proteins in the plasma of

A431s-tumor bearing mice with and without treatment is

primarily resulted from differences in tumor size in treated and

untreated animals. As the ratio of tumor volume in A431s/A431gr

animals was 1:3, it is likely that factors in addition to tumor size

must convey a substantial influence on tumor protein levels in

murine plasma in order to result in a 1:16 factor in plasma. Several

potential factors could explain the non-linear relationship of the

tumor size and abundance in plasma. One could be the change of

protein constituents due to drug treatment, which cannot be ruled

out by the analyses presented above. However, when we

compared the treated and untreated A431s and A431gr tumors

of all proteins identified, we found that log2(treated/untreated)

ratios of both tumors are normally distributed around 0 (Figure 2),

which means on a proteome-wide scale there is no systematic

difference of protein abundance between treated and untreated

tumors (Figure 2). Moreover, protein level changes in plasma are

not associated with changes in tumor; that is, proteins that do not

decrease in tumor due to treatment had the same average decrease

in plasma. Another potential could be that treatment changes the

dynamics of protein secretion, or has an impact on the host ability

to remove proteins from circulation. Together this observation

suggests that the dynamics of protein production, secretion, and

degradation/elimination is not well understood and deserved

further attention.

Extracellular, stable and abundant tumor proteins are
more readily detected in plasma

Protein cellular location was annotated by Gene Ontology

database as described in Materials and Methods. While 8.7% of all

proteins were identified in solid tumors are extracellular, 44% of

the tumor proteins detected in plasma are extracellular proteins - a

five-fold enrichment. We then evaluated the association between

protein stability and the likelihood of detection. Protein stability

was estimated from the amino acid sequence using a commonly

used method (in the ExPASy proteomics tools) generated by

Guruprasad et al. [12], which is based on the correlation of protein

stability and its dipeptide composition. The stability of a protein

can be represented by a protein instability index score by

averaging the dipeptide instability weight values derived from

statistically analysis of unstable and stable proteins Guruprasad

Figure 1. MA plots of (A) A431s and (B) A431gr tumor and mouse proteins in plasma. X axis is the average intensity of MS peaks in treated
and untreated samples and Y axis represents the log2(treated/untreated) ratios. Treated samples were labeled with C13 acrylamide and untreated
samples were labeled with C12 acrylamide as described in methods. Red points are tumor proteins and black points are mouse proteins.
doi:10.1371/journal.pone.0023090.g001

Tumor-Derived Plasma Proteins
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et al. [12]. Here, we divided protein instability index scores into

four quantiles from low to high and count the number of proteins

in each category. We found that as instability index scores

increased (low protein stability), the likelihood of detection in

plasma decreased (Table 2). However, there was no correlation

between stability and probability of detection in tumor tissue. The

difference of these two patterns was statistically significant as

evaluated by the chi-square test (p,0.001). Next, we examined

how protein abundance influenced the detection of tumor proteins

in plasma. We re-coded the spectral counts observed into quantiles

representing low, medium-low, medium-high, and high abun-

dance proteins. Percentages of proteins observed in plasma are

plotted according to their respective quantiles in spectral counts

and color coded to represent different cellular locations in Figure 3.

More than 8% of tumor proteins with spectral counts greater than

75% quantile were observed, but less than 3% of proteins

identified in plasma fall in each of the lower spectral counts

quantiles (Figure 3A and 3B). This demonstrates that highly

abundant proteins (quantile . = 75%) were identified more

readily in plasma than lowest abundance proteins. Plasma proteins

with low spectral counts (quantile .25%) showed an equal ratio of

extracellular proteins to non-extracellular proteins. However,

proteins with high spectral counts (quantile . = 75%) were

enriched for non-extracellular proteins. This suggests that the

probability that a non-extracellular protein will be present in

plasma is more dependent on the protein abundance than that of

extracellular proteins.

Prediction of protein cellular location, stability, and
abundance association with the probability of
observation of tumor proteins in plasma

We used a logistic regression model to estimate how the cellular

location, stability, and abundance associate with the presence of

Figure 2. Histograms of (A) A431s and (B) A431gr tumor protein treated/untreated ratios. Ratios are in log2 scale.
doi:10.1371/journal.pone.0023090.g002

Table 2. Numbers of human tumor proteins observed or not observed in plasma by instability index.

Observed in plasma Not observed in plasma Chi-square test

instability index , = 25% 25-50% 50-75% .75% , = 25% 25-50% 50-75% .75%

A431s 37 20 12 11 542 558 566 568 7.3e-05

A431gr 32 22 12 11 493 503 512 514 0.001

doi:10.1371/journal.pone.0023090.t002

Tumor-Derived Plasma Proteins
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tumor proteins in plasma. This method revealed the impact of

each parameter on probability of protein detection. The

coefficients and significance (p values) are listed in Table 3; the p

values and magnitudes from individual analyses and the joint

analysis for all of the respective features are shown. For a low

probability event, the increase in probability is close to the

exponential value of the regression coefficients. Our data indicate

that cellular location had the largest single impact on the

probability that a protein will be detected in the plasma:

Extracellular proteins were 7 (e1.95,7) times more likely to be

observed in plasma than non-extracellular proteins, assuming all

other factors are the same. Protein stability and abundance also

influenced the likelihood of protein detection. Stable proteins

(those with instability scores of less than 40, see Materials and

Methods) were about twice as likely to be detected in plasma as less

stable proteins (e0.87,2.4 times for A431s data and e0.51,1.7

times for A431gr data). In addition, the probability of detection of

a tumor protein was higher by 50% (e0.44,1.55) if its spectral

count was doubled, all else similar. The number of tryptic peptides

was not significantly associated with the likelihood of detection;

this was surprising given that proteins that have more tryptic

peptides have more chance of being sampled by MS/MS. Neither

coefficients nor p values changed significantly when the logistic

regression was performed in the marginal mode rather the

multivariate mode.

To validate the use of a logistic regression model in predicting

factors that affect tumor proteins to be detected in plasma, receiver

operating characteristic (ROC) curve was used. ROC curves were

plotted for our classification model, using one data set (A431s/

A431gr) as training set to predict which proteins would be

observed in plasma for the other (A431gr/A431s) [13], area under

curves (AUCs) (Figure 4) of both curves were close to 0.8,

suggesting that these tests were valid. Selection of 10% of all tumor

proteins using the model would capture 60% of all plasma

proteins.

Discussion

Plasma, rather than tissues or other bodily fluids, is the most

common source for biomarker discovery [14]. However, only a

small fraction of proteins detected in blood are cancer related

because most cancer-specific proteins from the tumor tissue are

diluted as they leak into the interstitial or proximal fluid and

lymph, and are diluted further when they enter the blood [15].

During the course of biomarker exploration using high-through-

put, large scale studies such as mass-spectrometry based proteomic

techniques, knowledge of which tumor-specific proteins are likely

to be observed in plasma will be important for data interpretation

and pathway analyses. One approach to identifying plasma

biomarkers is to identify proteins that are over-abundant or

unique to cancer tissues. Because development of blood-based

assays can be time-consuming and costly, often only a subset is

then selected for further validation.

We analyzed LC-MS/MS data of tumor tissue and plasma from

mice xenografted with human A431 cells that were either sensitive

or resistant to gefitinib. Because of sequence heterogeneity, this

model allowed us to readily distinguish tumor proteins, which were

of human origin, from the host mouse proteins. We found that

Table 3. Association of cellular location, protein stability,
abundance, and number of tryptic peptides of human tumor
proteins with presence in plasma using logistic regression.

multivariate marginal

Coefficient P value Coefficient P value

A431s Extracellular 1.95 7.1e-13 1.91 1.2e-13

Stability 0.87 0.001 1.06 9.8e-06

Spectral counts 0.44 9.4e-13 0.43 3.8e-15

# of tryptic
peptides

-0.008 0.05 -0.0008 0.82

A431gr Extracellular 2.01 9.9e-12 2.00 8.2e-13

Stability 0.51 0.076 0.81 0.002

Spectral counts 0.45 3.8e-12 0.41 3.9e-13

# of tryptic
peptides

-0.007 0.098 0.001 0.74

doi:10.1371/journal.pone.0023090.t003

Figure 3. Percentage of (A) A431s and (B) A431gr tumor
proteins observed in plasma shown by spectral count in
quantile scale and different cellular locations. X axis is spectral
counts plotted in quartile scales and increase from left to right. Y axis is
the percentage of all tumor proteins identified in plasma. Black bars:
non-extracellular; grey bars: extracellular proteins; empty bars: not
annotated. Spectral counts were plotted in quartile scale and increase
from left to right.
doi:10.1371/journal.pone.0023090.g003
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20% of the mouse plasma proteins identified are from the tumor,

higher than the mass of the tumor to the whole mouse which

ranges from 4–10%. However, based on spectral count, the total

spectral count of tumor proteins is only 4.5% of all plasma

proteins. And it should be noted that certain abundant mouse

proteins have been removed prior to the mass spectrometry

analysis. The high presence of protein IDs from tumor may result

from the abnormal active states of cancer cells. Our analysis

revealed that the probability of detection of a tumor protein in

plasma was associated with the extracellular location of the

protein, higher stability and abundance, and the larger tumor size.

Of these factors, cellular location contributed most, i.e. extracel-

lular proteins, even those of low abundance, were often observed

in plasma. In contrast, only highly abundant nuclear proteins were

observed in plasma. Our findings suggest that researchers should

have a strong preference for proteins that are secreted, stable, and

avoid proteins that are intracellular unless they are highly

abundant. As shown in Figure 4, we used the weights on each of

these factors to compute a linear classifier score capable of

capturing 60% of the detectable tumor proteins while selecting

only 10% of other proteins identified in tissues. The exact weights

may differ based on tumor occurring site and other factors, but the

relative magnitude of these factors may provide a means for

researchers to select a small set of markers from among all possible

candidates. The instability index scores of proteins identified

formed a normal distribution with a mean value of approximately

40 (Supplementary Figure S1), the cutoff chosen to distinguish the

stable and unstable proteins. The distribution of tumor proteins in

plasma was left shifted (green), compared to those not detected in

plasma (black). This is consistent to the result shown above

(Table 2). When we standardized the score and implemented

logistic regression, the coefficient became 0.48 with a p value of

0.001. This suggests that proteins with scores below 1 standard

deviation from the mean (about 16% of the total proteins) were

62% more likely to be detected in the plasma than were less stable

proteins.

Tumor protein abundance in plasma was lower in samples from

mice with smaller tumors than in those with larger tumors

(gefitinib-treated vs. untreated mice with sensitive tumors);

however, the ratio of tumor volumes in treated vs. untreated mice

was smaller than the ratio of protein abundances. We suspect that

this discrepancy is due to the sensitivity of the mass spectrometer.

Or it may be that proteins derived from larger tumors with higher

stability may be non-linearly enriched or that necrosis within the

tissue is volume related. An experiment with plasma and tissues

collected from animals with a range of tumor sizes would allow

testing of these hypotheses. In this analysis, tumor size difference

was result from drug treatment, which may raise the concern of

altering protein expression. Our analysis found that although that

a small number of protein abundances did vary, drug treatment

did not grossly alter protein expression levels of both tumor (see

Results and Figure 2) and its host. An alternative way to acquire

different sizes of tumor without drug treatment is to collect tumors

at different time, which has other uncertain factors such as

different mouse ages, too. Proteins varied from the drug treatment

warrant further investigation but are not within the scope of this

study.

There are many other potential considerations for prioritizing

cancer biomarkers, such as proteins that are abundant and

endogenous in ordinary human plasma will not be good

Figure 4. Receiver operating Characteristic (ROC) curves showing the prediction of tumor proteins detected in plasma by using
A431s data to predict proteins in A431gr xenograft model (red) or using A431gr data to predict proteins in A431s xenograft model
(blue).
doi:10.1371/journal.pone.0023090.g004
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candidates. The guideline we provided in this analysis is what

tumor proteins are most likely to be detected in plasma. Obviously,

not all tumor proteins detected in plasma can be satisfying

candidates since some of them may have endogenous counter-

parts. In our list of tumor proteins detected in plasma, 64 out of

138 have endogenous mouse homologues and for some proteins,

the mouse homologues are highly abundant. These abundant

proteins will not be good markers; the low abundant ones require

further analysis and validation of significance of changes in the

human plasma under disease condition. In summary, it is

important to interrogate as many necessary factors for the

selection of a good candidate. Our study suggests that stable

proteins excreted by tumor cells should be given highest priority in

further studies.

Materials and Methods

In vivo xenografts and tumor and plasma samples
Matrigel (BD Biosciences, Sparks, MD) was mixed 1:1 with

26109 A431 cells (ATCC, Manassas, VA) and subcutaneously

injected into the flanks of nude athymic BALB/c female mice

obtained from Charles River Breeding Laboratories (Wilmington,

MA). The A431 gefitinib-resistant tumor cells were selected by

serial passage of A431 subcutaneous xenografts in presence of

50 mg/kg of gefitinib (AstraZeneca, London, UK) for nine

months. Animals were maintained in pressurized ventilated cages

at the Cedars-Sinai Medical Center Vivarium. All animal

experiments were performed as per the institutional guidelines

and were approved by the Institutional Animal Care and Use

Committee at Cedars-Sinai Medical Center (CSMC) (IACUC

Number 001276). Gefitinib was administered orally daily to

twenty animals at around 10–12 weeks old. Control animals

received vehicle alone (20 animals). The tumor volumes were

measured twice a week with a digital vernier caliper and were

calculated as: p/6 x (larger diameter)6 (smaller diameter). Tumor

tissue and plasma were harvested after 17 or 18 days post injection

At this time, for the A431s model, the average size of tumors in

untreated mice was 2500 mm3, three times the volume of tumors

from treated mice (750 mm3). In mice with A431gr tumors, the

tumor sizes in treated and untreated mice were the same, around

1300 mm3. The mass ratio of tumor to whole mouse ranges from

4–12%. Frozen tumor pieces from 5 mice were individually

ground in liquid nitrogen with the aid of a ceramic mortar and

equal masses of individual tumor homogenate were pooled and

suspended in RAF buffer. The homogenate was centrifuged for

5 min at 2006 g. The supernatant was sonicated on ice for 2

minutes and centrifuged for 1 hr at 12,0006 g. The supernatant

(soluble fraction) was cleared through a 0.22-mm filter. Sera from 5

mice were pooled and depleted using two MARS-3 columns

(Agilent, Santa Clara, CA) connected in tandem with HPLC. The

unbound fraction was concentrated to a final concentration of

2 mg/ml. Tumor and plasma samples from animals untreated vs.

treated with gefitnib were labeled with C12 vs. C13 acrylamide

respectively as described in Faca et al. [10].

Fractionation of A431 tumor and mouse plasma samples
Tumor samples were fractionated by reversed-phase chroma-

tography using 1 mg of total protein. All samples were reduced

with DTT (0.6 mg DTT/mg protein) and alkylated with

iodoacetamide (3 mg IA/mg protein) prior to chromatography

as described elsewhere [16]. Separation was performed in a

POROS R1/10 column (4.6650 mm, Applied Biosystems, Foster

City, CA) at a flow rate of 2.7 ml/min using a linear gradient of 10

to 80% of organic solvent over 30 minutes. The aqueous solvent

was 5% acetonitrile/95% water/0.1% trifluoracetic acid; the

organic solvent was 75% acetonitrile/15% isopropanol/10%

water/0.095% trifluoracetic acid. Fractions were collected at a

rate of 3 fractions/minute and 72 fractions were collected. Each

fraction was individually digested in solution with trypsin (400 ng/

fraction) [17]. Adjacent fractions were combined based on protein

chromatography features, resulting in a total of 25 fractions for

mass spectrometry analysis. Plasma samples were subjected to two-

dimensional fractionation based on previously described Intact-

protein Analysis System (IPAS) approach [17,18,19,20]. Basically,

the sample was diluted to 10 ml with 20 mM Tris (pH 8.5) in 6%

isopropanol, 4 M urea and immediately injected on an anion

exchange, Mono-Q 10/100 column (Amersham Biosciences,

Piscataway, NJ, USA) for the first dimension of the protein

fractionation. The buffer system consisted of solvent A (20 mM

Tris, pH 8.5, in 6% isopropanol, 4 M urea pH 8.5) and solvent B

(20 mM Tris in 6% isopropanol, 4 M urea, 1 M NaCl). The

separation was performed at a flow rate of 4.0 ml/min in a

gradient of 0–35% solvent B in 44 minutes; 35–50% solvent B in 3

minutes; 50–100% solvent B in 5 minutes; and 100% solvent B for

an additional 5 minutes. A total of 12 pools were collected. Each

pool was then subjected to a second dimension of separation by

reversed-phase chromatography. The reversed-phase fractionation

was carried out on a Poros R2 column (4.6650 mm; Applied

Biosystems) using trifluoroacetic acid/acetonitrile as a buffer

system (solvent A, 95% H2O, 5% acetonitrile, 0.1% trifluoroacetic

acid; solvent B, 90% acetonitrile, 10% H2O, 0.1% trifluoroacetic

acid) at a flow rate of 2.7 ml/min. The gradient was 5% solvent A

until the absorbance reached baseline (desalting step) and then 5–

50% solvent B in 18 minutes; 50–80% solvent B in 7 minutes; and

80–95% solvent B in 2 minutes. During the run, 72 900-ml

fractions were collected. Each fraction was individually digested in

solution with trypsin (400 ng/fraction) and the fractions were

grouped into 8 pools based on chromatographic features,

corresponding to a total of 96 fractions for analysis from each

experiment.

Protein identification and quantification by LC-MS/MS
Protein identification by LC-MS/MS was performed as

described previously [17]. Briefly, pools of fractions were

individually analyzed by LC-MS/MS in a LTQ-FTICR or

LTQ-ORBITRAP mass spectrometer (Thermo-Finnigan, Wal-

tham, MA) coupled to a nanoflow chromatography system

(Eksigent, Dublin, CA) using a 25-cm column (Picofrit 75 mm

ID, New Objectives, Woburn, MA) packed in-house with

MagicC18 resin (Michrome Bioresources, Auburn, CA) over a

90-minute linear gradient. Acquired data was automatically

processed using default parameters, except where noted, using

the Computational Proteomics Analysis System (CPAS), V8.2

[21]. The tandem mass spectra were searched against version 3.44

of the human IPI (71,884 protein entries) and mouse (version 3.44

with 55,078 protein entries) databases. The searches were

performed with X!Tandem (2008.02.01). The mass tolerance for

precursor ions was set to 1.5 Daltons. The mass tolerance for

fragment ions was set to 0.5 Daltons. A fixed modification of

71.0371 mass units was added to cysteine residues for database

searching to account for the acrylamide modification and 3.01

Daltons were used as variable modification to account for the

heavy cysteine isotope. All identifications with a PeptideProphet

[11] probability greater than 0.95 were submitted to ProteinPro-

phet [22] and each of the subsequent protein identifications were

required to have at least two unique peptides with tryptic

fragments (1 missed cleavage) with allowance for variable

modifications on E = 218.011, K = 6.020, M = 15.995, and
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Q = 217.027. In order to assign a species, we required at least

one unique human peptide for identification as a human protein,

referred to throughout this manuscript as ‘‘tumor proteins’’. One

unique mouse peptide was required for identification as a ‘‘mouse

protein’’. The Q3 algorithm [10], developed to accommodate a

three-Dalton mass shift in heavy and light peptides, was used to

compute the ratios between the light and heavy isotopic pairs (i.e.,

the untreated vs. treated changes). A spectral count method [9]

was used to estimate the relative abundance of proteins. More

specifically, peptide spectra with PeptideProphet [11]probability of

greater than 0.95 or an error rate of 1% were counted for each IPI

entry identified.

Comparison of human and mouse database entries
Protein sequences in human database (human IPI v.3.44) and

mouse database (mouse IPI v. 3.44) were computationally digested

with trypsin and a minimum of seven residues was used to match

the X! Tandem default search parameter of the minimum parent

fragment. A total of 673,735 human peptides were found and

490,809 (73%) peptides were uniquely in the human database;

182,926 (27%) peptides were also observed in the mouse database.

Data processing and integration
To facilitate comparisons of protein groups among samples,

data were aligned by tracking all proteins that were members of a

single ProteinProphet group as described by Fang et al. [23]. This

provided an analytic data set with one row for each protein group

and specifically a column with values indicating the spectral count

for proteins in each sample consistent with that group. The cellular

location for each protein sequence was determined using the

March 2008 generic GO slim from the GO consortium (http://

www.geneontology.org/GO.slims.shtml). GO slim files are re-

duced ontologies with significantly fewer categories than the

complete GO ontology. For example, there were about 2400

distinct cellular component categories in the full ontology as of

March 2008. The generic March 2008 GO slim file has only 37

categories, several of which are not present in mammalian cells.

The script ‘‘map2slim’’ (available from GO) was used to assign

proteins to their nearest GO category and to identify those that are

located in the extracellular or plasma membrane. Based on GO

definition, the term ‘‘extracellular’’ in this study refers to space

outside the plasma membrane and is intended to annotate gene

products that are not tightly attached to the cell surface.

Therefore, proteins annotated with ‘‘extracellular’’ are basically

proteins ‘‘secreted’’ into the medium. In cases that an IPI had

multiple locations, the protein was considered extracellular as long

as one annotation was ‘‘extracellular space’’.

Protein stability was estimated by calculating the Instability

Index (II) based on its primary sequence [12]. The instability index

for a given protein was calculated by the summation of the

dipeptide instability weight values (DIWV) and then normalized to

the length of the sequence. As recommended by Guruprasad et al.

[12] , proteins with values less than 40 were defined as stable,

whereas those with values greater than 40 were annotated as

unstable.

Statistical analysis
We used logistic regression to estimate or predict the probability

that a protein observed in tissue will be observed in plasma. The

equation relates the log odds ratio to one or more predictors.

Specifically, variations estimated were spectral count (reflective of

protein abundance), cellular location (whether it is extracellular),

protein stability, and number of theoretical tryptic peptides

(reflective of the protein length). We also tested an interaction

term among cellular location, the stability score and spectral

count, but those terms were not statistically significant and so were

removed. The final equation is given by:

Log(p=(1-p))~b0 z b1 � Log(spectral count z 1)

z b2 � Extracellular z

b3 � Stability z

b4 �Number of Tryptic-Peptides

The value b0 represents the baseline probability and is generally

not of interest given the relatively large tumor burden in the mouse

model used here compared to humans. Other coefficients

represent the increase (decrease) in log-odds of being detected

based on the value; for practical purposes one can interpret

exponential of these values as the increase in probability for the

low probability events.

Supporting Information

Figure S1 Density plots of protein instability index scores of tumor

proteins detected or not in plasma. X axis is the protein instability index

scores and y axis is density. The green line is the distribution of tumor

proteins observed in plasma and black one is tumor proteins not

detected in plasma. Proteins with instability score of ,40 are stable

proteins as suggested by Guruprasad et al. [12].

(TIF)

Table S1 Proteins identified in the tumor and plasma of the

A431 human cell lines xenografted mouse model.

(XLS)
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