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Abstract

Stromal processing peptidase (SPP) is a metalloendopeptidase located in the stroma of chloroplasts, and it is responsible for
the cleavage of transit peptides from preproteins upon their import into the organelle. Two independent mutant
Arabidopsis lines with T-DNA insertions in the SPP gene were analysed (spp-1 and spp-2). For both lines, no homozygous
mutant plants could be detected, and the segregating progeny of spp heterozygotes contained heterozygous and wild-type
plants in a ratio of 2:1. The siliques of heterozygous spp-1 and spp-2 plants contained many aborted seeds, at a frequency of
,25%, suggesting embryo lethality. By contrast, transmission of the spp mutations through the male and female gametes
was found to be normal, and so gametophytic effects could be ruled out. To further elucidate the timing of the
developmental arrest, mutant and wild-type seeds were cleared and analysed by Nomarski microscopy. A significant
proportion (,25%) of the seeds in mutant siliques exhibited delayed embryogenesis compared to those in wild type.
Moreover, the mutant embryos never progressed normally beyond the 16-cell stage, with cell divisions not completing
properly thereafter. Heterozygous spp mutant plants were phenotypically indistinguishable from the wild type, indicating
that the spp knockout mutations are completely recessive and suggesting that one copy of the SPP gene is able to produce
sufficient SPP protein for normal development under standard growth conditions.
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Introduction

The chloroplast is a unique plant cell compartment which

harbours many essential processes such as photosynthesis, starch

metabolism, and the biosynthesis of lipids and secondary

metabolites [1,2]. Like all plastids, chloroplasts are derived from

an ancient free-living cyanobacterial ancestor that was incorpo-

rated into early eukaryotic cells through endosymbiosis [3]. As a

result of this evolutionary origin, modern chloroplasts contain

DNA and are able to synthesize roughly one hundred of their own

proteins [4]. Nonetheless, the bulk of the ,3000 different proteins

in chloroplasts are encoded in the nuclear genome and must be

imported post-translationally from the cytosol [5,6].

Soon after the emergence of the signal hypothesis to account for

the translocation of ER proteins, it was suggested that nucleus-

encoded chloroplast proteins are similarly synthesized with a

targeting tag that directs them to the organelle [7,8]. This tag is an

N-terminal extension of the protein called a transit peptide, and it

is cleaved off after organellar import, producing a smaller, mature

form of the chloroplast protein [9]. Chloroplast transit peptides

vary greatly in length and amino acid sequence, and while

secondary structural features have been reported in some cases the

general significance of such observations remains uncertain

[10,11]. Thus, it is not fully understood how different preproteins

are all targeted quite specifically to the same organelle. Transit

peptides do contain slightly more hydroxylated residues and fewer

acidic residues than average, giving them a net positive charge,

and it has been suggested that a lack of a secondary structure

might be necessary for their targeting properties [12].

The transit peptide is recognized by receptor components at the

chloroplast surface, and subsequently the preprotein is guided

through pores in the outer and inner envelope membranes. The

multiprotein assemblies responsible for these recognition and

translocation events are the TOC and TIC complexes (translocon

at the outer/inner envelope membrane of chloroplasts)

[13,14,15,16,17]. Upon reaching the stromal side of the envelope,

the transit peptide is removed by the stromal processing peptidase

(SPP), a metalloendopeptidase of the M16 family (members of

which include subunit b of the mitochondrial processing peptidase,

MPP, and Escherichia coli pitrilysin) which has a high specificity for

chloroplast transit peptides [18,19,20]. The SPP enzyme recog-

nizes a stretch of basic residues with weak sequence or

physicochemical conservation at the C-terminus of the transit

peptide [21,22,23]. Following recognition, it cleaves the transit

peptide from the mature sequence using the catalytic activity of its

zinc-binding domain, and subsequently proteolyses the C-terminal

binding site of the transit peptide which facilitates release of the

peptide fragments so that they may be degraded by the

presequence protease, PreP [22,24,25]. Homologues of SPP exist

in red and green algae as well as in the malaria parasite, Plasmodium
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falciparum, suggesting that the protein’s function is well conserved

amongst plastid-containing organisms [20]. An ancestral activity

was probably inherited with the original endosymbiont, as SPP-

related sequences even exist in cyanobacteria.

Antisense mediated down-regulation of SPP gene expression in

Arabidopsis or tobacco plants resulted in chlorotic, albino or even a

seedling-lethal phenotypes, indicating that the SPP enzyme plays

an important role in chloroplast biogenesis [26,27]. Indeed, the

antisense lines displayed reduced numbers of chloroplasts per cell,

and those organelles that were present were structurally abnormal.

Both in vitro import experiments (using isolated chloroplasts and

radiolabelled preproteins) and an in vivo targeting assay (involving

expression of a transit peptide fusion to green fluorescent protein)

revealed defects in chloroplast protein import in the antisense lines

[26,27]. Such defects may reflect the fact that most components of

the TOC-TIC import machinery are themselves synthesized as

preproteins (with transit peptides that presumably must be

removed before those components can begin to operate), or

indicate that transit peptide cleavage is a fully-integrated step of

the translocation mechanism. More recently, a hypomorphic spp

allele was identified in a forward-genetic screen of ethyl

methanesulfonate-mutagenized rice plants [28]. The relevant

mutant lacks a conserved glutamate residue in a C-terminal

M16 domain of SPP, and it exhibits chlorosis associated with

small, underdeveloped chloroplasts as well as defective root

development.

The aforementioned in vivo studies all analysed the consequences

of reduced levels of SPP activity for plant development. To

determine the consequences of complete loss of SPP protein, we

identified and characterized T-DNA knockout mutants in the

Arabidopsis background.

Results and Discussion

To further assess the importance of SPP during plant

development, two different Arabidopsis lines with T-DNA insertions

in the SPP gene (At5g42390) were obtained from the Nottingham

Arabidopsis Stock Centre (NASC). These mutants were called spp-

1 (SALK_087683) and spp-2 (SAIL_242_H11). Firstly, both T-

DNA insertion sites were confirmed by genomic PCR, and by

sequencing the T-DNA/gene junctions at one or both sides, as

indicated (Figure 1A). In spp-1, the T-DNA disrupts the first exon

of the SPP gene, whereas in spp-2 the insertion lies in the

nineteenth exon (Figure 1A).

Next, we attempted to identify homozygous mutant lines in

each case, by genotyping 30 antibiotic-resistant plants for each line

in PCR reactions using gene- and T-DNA-specific primers.

However, when we did this, we found that all of the 60 tested

plants (30 for each allele) were hemizygous for the relevant T-

DNA insertion (Figure 1B), suggesting that the homozygous

genotypes are not viable. Consistent with this notion, when

segregation of the antibiotic-resistance marker associated with

each T-DNA insertion was analysed (by plating seeds from

heterozygous plants on medium containing either kanamycin [spp-

1] or phosphinothricin [spp-2]), significant deviations from

standard Mendelian inheritance were observed: only two antibi-

otic-resistant plants were observed for every one antibiotic-

sensitive plant, instead of the more normal 3:1 segregation ratio

(Table 1).

To investigate the possibility of embryo lethality, we carefully

examined the seeds within ripe siliques of heterozygous spp-1 and

spp-2 plants. Significant numbers of small, aborted seeds were

observed in both mutant genotypes (Figure 2A), but not within

wild-type siliques (data not shown). Amongst the fertilized seeds,

abortions occurred with a frequency of almost exactly 25%

(Figure 2B), strongly supporting the notion that the homozygous

mutant genotypes were responsible for developmental arrest.

Small numbers (,3–5%) of what appeared to be failed ovules were

also apparent in the spp siliques (data not shown), suggesting that

there might be an additional effect of the mutations on

gametophytic transmission [29,30]. To assess this possibility, we

conducted reciprocal crossing experiments, between both spp

alleles and wild-type plants, analysing transmission of the

mutations to the resulting F1 progenies by plating on selective

media. However, the results revealed essentially normal transmis-

sion of both mutations through both male and female gametes

(Figure 2C) [31]. This indicated that the spp-mediated block in

development is exclusively post-fertilization, occurring during

embryogenesis, and that the presumed failed ovules observed in

ripe siliques (mentioned earlier) were perhaps very early seed

abortions and/or the consequences of environmental stresses.

It is well documented that the disruption of chloroplast

functions can lead to a block in embryogenesis [32]. In fact, it

has been estimated that a disproportionately large number (,25–

30%) of non-redundant, embryo-lethal mutations in Arabidopsis

affect chloroplast proteins [33,34]. Prominent amongst the

chloroplast functions that lead to embryo arrest, when disrupted,

are: plastid gene expression (including RNA and protein synthesis);

non-photosynthetic metabolism (including amino acid, vitamin

and nucleotide biosynthesis); and, protein modification, transport

and degradation [32,34]. Of the previous reports linking

chloroplast function to embryogenesis, those pertaining to two

core components of the chloroplast protein import machinery,

atToc75-III and atTic110, are most relevant [35,36,37,38]. The

aborted seeds observed in the spp mutant siliques (Figure 2A)

appeared to be somewhat larger than those in toc75-III [35], and

smaller in size than those in tic110 siliques [37], suggesting that the

spp mutations may affect embryo development at a stage

intermediate between toc75-III and tic110.

To precisely determine the stage of embryogenesis during which

the spp mutations arrest growth, we conducted a detailed

examination of developing embryos in both mutants as well as

in the wild type, using Nomarski optics microscopy (Table 2).

Figure 3 shows equivalent developmental series for normal (i–iv)

and mutant (v–viii) embryos within immature siliques of self-

pollinated spp-1 (Figure 3A) and spp-2 (Figure 3B) heterozygotes.

Typically, when normal embryos were at the 16-cell stage

(Figure 3, i panels), mutant embryos were delayed at the 2- to 8-

cell stages (Figure 3, v panels). As the normal embryos progressed

to the globular and heart stages (Figure 3, ii and iii panels), the

mutants were retarded at the 8- to 16-cell stages (Figure 3, vi and

vii panels). In fact, the mutant embryos were never seen to develop

normally beyond the 16-cell stage, even when the other embryos

had reached the torpedo stage (Figure 3, iv and viii panels). Cell

boundaries in the most mature mutant embryos were frequently

indistinct, and such embryos often had an irregular or swollen

appearance. As the normal seeds reached the cotyledon stage,

significant numbers of aborted seeds (with degenerated structures

containing no discernable embryo) became apparent within the

mutant siliques (Table 2). In contrast with the situation in spp

siliques, where two distinct classes of embryos could be observed

(normal and mutant; the latter corresponding to ,25% of the

total), embryos within individual wild-type siliques rarely spanned

more than three consecutive developmental stages (Table 2).

Thus, the spp mutations indeed arrest embryogenesis at a stage

(the 16-cell stage) intermediate between those during which toc75-

III (two-cell stage) and tic110 (globular stage) block growth

[35,36,37,38]. These differences in phenotype severity may partly

Arabidopsis SPP Knockout Mutants
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Figure 1. Molecular characterization of the SPP T-DNA insertion mutants. (A) Schematic diagram of the SPP gene showing the location of
each T-DNA insertion. Protein-coding exons are represented by black boxes and untranslated regions by white boxes; introns are represented by thin
lines between the boxes. The gene model shown is based on the RIKEN full-length cDNA clone, RAFL07-08-B09; it is separated over two lines (with
the division at an arbitrary point near the middle, after intron 11; dotted lines) to aid presentation. Positions of T-DNA insertions are indicated
precisely, but the insertion sizes are not to scale. ATG, translation initiation codons; Stop, translation termination codon; p(A), polyadenylation site. (B)
Mutant genotype analysis by PCR. Genomic DNA samples extracted from wild-type and mutant plants (spp-1 and spp-2) were analysed by PCR.
Appropriate T-DNA- and SPP-gene-specific primers were employed in two different combinations: the first (T) comprised one T-DNA primer (LB) and
one gene-specific primer (forward for spp-1; reverse for spp-2); the second (G) comprised two gene-specific primers flanking the T-DNA insertion site.
The results shown for spp-1 and spp-2 are representative of those obtained for all antibiotic-resistant plants tested; amplification using both T and G
indicated the presence of both mutant and wild-type alleles, respectively, and demonstrated that the plants were heterozygous. Amplicon sizes are
indicated at right (in kb).
doi:10.1371/journal.pone.0023039.g001

Table 1. Segregation of the T-DNA-borne antibiotic resistance markers in the spp mutant lines.

Parental genotype Plant number Antibiotic Resistant (R) Sensitive (S) R:S ratio P-valuea

+/spp-1 1 Kanamycin 87 37 2.35 0.41

2 82 44 1.86 0.71

3 99 42 2.36 0.37

4 69 46 1.50 0.13

sum 337 169 1.99 0.97

+/spp-2 1 Phosphinothricin 74 38 1.95 0.89

2 105 43 2.44 0.27

3 78 43 1.81 0.61

4 100 45 2.22 0.56

5 83 40 2.08 0.85

sum 440 209 2.11 0.54

aGoodness of fit of the observed ratios to 2:1 was assessed by x2 analysis. P-values are the probabilities that the observed ratios differ from 2:1 due to random chance
only.

doi:10.1371/journal.pone.0023039.t001
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reflect the differing expression patterns of the genes during

embryogenesis: publicly-available microarray data show that

atTOC75-III expression peaks at a much earlier stage in

embryogenesis than that of either atTIC110 or SPP (Figure S1)

[39,40,41]. The phenotypic differences may also be linked to the

roles of the proteins, as has been discussed [34]. Toc75 is the

channel component of the outer membrane through which the

vast majority of chloroplast proteins gain entry, including many

envelope proteins, while Tic110 is thought to play roles in

channel formation and/or the coordination of chaperones at the

inner membrane, and is likely to be utilized by a smaller subset

of chloroplast-destined proteins [16,17]. The proteins that are

dependent upon SPP for proper targeting may be intermediate

in number and/or importance. An alternative explanation is

that the differing phenotypes are a reflection of differing

stabilities of the proteins, and the extent to which they can

persist at functional levels during embryogenesis following the

segregative loss of a functional gene. Irrespective of the basis for

these differences in severity, the data leave no doubt that all

three proteins play crucial roles in protein transport, and that

efficient protein transport into plastids is essential during

embryogenesis.

While toc75-III mutations are completely recessive [35],

heterozygous tic110 plants are clearly chlorotic with quantifiable

defects in chloroplast biogenesis [37]. In this respect, the spp

mutations are more similar to toc75-III, as spp heterozygotes

were visibly indistinguishable from wild type throughout

development (Figure 4, A and B), and accumulated normal

Figure 2. Embryo lethality of the spp-1 and spp-2 mutations. (A) Appearance of aborted seeds within mature siliques of heterozygous spp-1
and spp-2 plants. Aborted seeds indicative of embryo lethality (see black arrows) are smaller in size than normal seeds, and have a darker, shrivelled
appearance. (B) Frequencies of normal and aborted seeds within ripe siliques of spp-1 and spp-2 heterozygotes. The data shown are means (6SD)
derived from analyses of six different siliques per genotype, each one from a different plant. Values shown refer to fertilized seeds only. (C) Reciprocal
crossing analysis. Transmission of the spp-1 and spp-2 mutations through the male and female gametes was assessed by crossing heterozygotes of
both mutants to wild type, in both directions, multiple times (28–50 crosses using 3–4 different plants were conducted per direction, per allele).
Inheritance of the spp mutations in the F1 progeny was assessed by determining antibiotic resistance of the F1 plants (kanamycin for spp-1;
phosphinothricin for spp-2). Transmission efficiencies were calculated for each plant as described previously [31], and then these values were used to
derive the means shown (6SD).
doi:10.1371/journal.pone.0023039.g002

Table 2. Distribution of embryo phenotypes in single siliques of wild type and spp mutant heterozygotes.a

Genotype
Silique
numberb 1-cell 2-cell 8-cell 16-cell

Aborted
seedc EG LG EH Heart Torpedo Cotyledon

Total
scored

Fraction
delayed or
abnormal

WT 2 - - 9 22 - 5 - - - - - 36 -

4 - - - 4 - 11 23 6 - - - 44 -

6 - - - - - 4 33 10 - - - 47 -

8 - - - - - - 20 18 9 - - 47 -

10 - - - - - - - 17 33 - - 50 -

12 - - - - - - - - 37 18 - 55 -

14 - - - - - - - - 1 19 33 53 -

16 - - - - - - - - - - 53 53 -

spp-1 2 2 15 22 5 - - - - - - - 44 -

4 - 2 12 25 - 2 - - - - - 41 -

6 1 3 7 17 - 17 - - - - - 45 -

8 - - 3 12 - 3 15 15 - - - 48 0.31

10 - 2 2 8 - - 5 4 21 - - 42 0.29

12 - - - 8 8 - - - 5 22 2 45 0.36

14 - - - 6 6 - - - - 3 26 41 0.29

spp-2 2 - 2 12 6 - 4 - - - - - 24 -

4 - - 12 11 - 7 1 1 - - - 32 -

6 - - 4 6 - 12 5 3 - - - 30 -

8 - - 8 2 - 2 10 13 - - - 35 -

10 - - 2 5 1 9 5 6 10 - - 38 0.21

12 - - 2 8 2 - - - 15 21 - 48 0.25

14 - - - 2 7 - - - 2 30 - 41 0.22

16 - - - 1 9 - - - - 6 26 42 0.24

aEmbryo developmental stage names refer to the cell number or morphology of the embryo proper. Abbreviations are defined as follows: EG, early globular; LG, later
globular; EH, early heart.

bSiliques were numbered consecutively from the top of the inflorescence, such that the oldest siliques have the highest numbers.
cAborted seed were shrivelled with no visible embryo or endosperm development.
doi:10.1371/journal.pone.0023039.t002
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levels of chlorophyll pigment (Figure 4C). This indicates that a

single copy of the SPP gene is able to produce sufficient

quantities of the peptidase for normal growth under standard

conditions. The phenotypic difference between tic110 heterozy-

gotes and toc75-III or spp heterozygotes cannot easily be

explained in terms of mRNA or protein levels, as quantitative

RT-PCR and immunoblot experiments did not reveal more

severe deficiencies in +/tic110 plants (Figure S2). As was

discussed previously [42], the greater dosage dependency of

the tic110 mutation may reflect the absence of excess expression

capacity for atTic110 in the wild type.

Conclusion
While it was evident from earlier studies that SPP is an important

chloroplast protein, the phenotype of homozygous knockout plants

had not previously been reported. In this study, we employed

Arabidopsis T-DNA insertion lines to demonstrate that SPP is

indispensable in vivo. Homozygotes were absent from the progeny of

plants carrying spp mutations, while a quarter of the seeds in the

siliques of such plants were aborted, consistent with an embryo

lethal phenotype. The mutant embryos exhibited delayed develop-

ment, with cell divisions not terminating properly after the 16-cell

stage. This work further emphasizes the importance of plastid

Figure 3. Analysis of embryo development in the spp mutants using Nomarski optics. Equivalent developmental series for normal (i–iv)
and mutant (v–viii) embryos within immature heterozygous siliques of spp-1 (A) and spp-2 (B). Normal embryos: i, 16-cell stage; ii, early globular stage;
iii, heart stage; iv, torpedo stage. Corresponding mutant embryos from the same siliques: v, 2- to 8-cell stages; vi, 8- to 16-cell stages; vii and viii,
arrested or abnormal 16-cell stages. Embryo developmental stage names refer to the cell number or morphology of the embryo proper. Images i–iii
and v–viii are all at the same magnification (406objective); images iv are at lower magnification (206 objective). Bars = 50 mm.
doi:10.1371/journal.pone.0023039.g003
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functions during seed development, and extends the list of protein

transport components known to be essential for plant viability.

Materials and Methods

Plant growth and chlorophyll analysis
All Arabidopsis thaliana plants were of the Columbia-0 ecotype.

For in vitro growth, seeds were surface sterilized, sown on

Murashige and Skoog agar medium containing 0.5% (w/v)

sucrose in petri plates, cold treated at 4uC, and thereafter kept

in a growth chamber, as described previously [43]. To select for

the presence of T-DNA insertions, the following antibiotics were

added to the medium: kanamycin monosulfate, 50 mg/ml (spp-1);

phosphinothricin, 10 mg/ml (spp-2). All plants were grown under a

long-day cycle (16 h light, 8 h dark).

Chlorophyll content was measured using a SPAD-502 meter

following the manufacturer’s instructions (Konica-Minolta, Osaka,

Japan). Conversion from SPAD units to chlorophyll concentration

values (nmol chlorophyll a+b per mg fresh weight) was done using

a validated calibration curve [44].

Figure 4. Phenotypic analysis of the spp heterozygotes. (A, B) Plants of the indicated genotypes were grown in vitro on selective medium
(non-selective in the case of wild type) for 7 days, and then photographed (A). Additional similar plants were transferred to soil on day 7, and then
allowed to grow further until they were 21 days old prior to photography (B). Representative plants are shown in each case. (C) Chlorophyll
concentrations in 21-day-old plants grown as described above were determined using a SPAD-502 meter. Values shown are means (6SD) derived
from six independent measurements per genotype, each one taken using a different plant. Units are nmol chlorophyll a+b per mg fresh weight of
tissue.
doi:10.1371/journal.pone.0023039.g004
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Identification of the spp mutants
The spp-1 mutant was from the Salk Institute Genomic Analysis

Laboratory (line number SALK_087683) [45], while the spp-2

mutant was from Syngenta (line number SAIL_242_H11) [46].

Mutant genotypes were assessed by PCR (Figure 1B). Genomic DNA

was extracted from Arabidopsis plants using a published protocol [47]

and PCR was conducted using standard procedures. The primers

used were as follows: spp-1 forward, 59-CTTCAAACCCTTTGC-

TACAAA-39; spp-1 reverse, 59-GACGATGGATTAAACC-

TAACT-39; spp-1 T-DNA LB, 59-GCGTGGACCGCTTGCTG-

CAACT-39; spp-2 forward, 59-AAACTGTGTATAGGTCTG-

GTT- 39; spp-2 reverse, 59-GGAGACGAGAGATGAGTATAGA-

TAATGGGG-39; spp-2 T-DNA LB, 59-TAGCATCTGAATTT-

CATAACCAATCTCGATACAC-39. Amplification products were

resolved by agarose gel electrophoresis and stained with SYBR Safe

(Invitrogen). The location of each T-DNA insertion was determined

precisely (Figure 1A) by sequencing PCR products spanning both

junctions (except in the case of spp-2, where only one junction was

identified).

Seed and embryo analyses
The phenotypes of seeds in ripe siliques were determined by

dissecting siliques held on double-sided sticky tape using a stereo

microscope (Zeiss Stemi 2000). The analysis of cleared wild-type

and spp mutant embryos using Nomarski optics was performed as

described previously [35,48], using a microscope equipped for

differential interference contrast (Nikon Eclipse 80i).

Supporting Information

Figure S1 Expression patterns of essential chloroplast
protein import apparatus genes during embryogenesis.
Publicly-available Affymetrix microarray data corresponding to

defined tissues and developmental stages of Arabidopsis embryo-

genesis [39,40] were accessed using an electronic fluorescent

pictograph (eFP) browser online [41]. Data for atTOC75-III

(At3g46740), atTIC110 (At1g06950) and SPP (At5g42390) are

shown. Values are means (6SE) derived from three or six

independent measurements. SAM, shoot apical meristem.

(TIF)

Figure S2 Analyses of mRNA and protein expression in
the toc75-III, tic110 and spp heterozygotes. (A) Quantita-

tive RT-PCR analysis of mRNA levels. Total-RNA samples were

extracted from ,10–30 whole seedlings of the indicated genotypes

(and wild type) that had been grown in vitro for 14 days under

standard conditions. RNA was isolated using an RNeasy Plant

Mini Kit (Qiagen, Hilden, Germany), and was then treated with

DNAse I (DNA-free; Ambion, Texas, USA). Quantitative RT-

PCR was performed using an MJ Research Chromo4 Gradient

Cycler (Bio-Rad, Hercules, CA, USA) and SYBR Green Jump

Start Taq Ready Mix (Sigma, St. Louis, MO, USA) for high-

throughput quantitative PCR. Relative quantification was deter-

mined according to published methods [49,50]. Reactions were

characterized by comparing threshold cycle (CT) values; CT is a

unit-less value defined as the fractional cycle number at which the

sample fluorescence signal passes a fixed threshold. The relative

amount of transcript was calculated by subtracting the control

gene (ACTIN 2; At3g18780) CT-value from the gene-of-interest

(atTOC75-III, atTIC110, SPP) CT-value (DCT). Then, DCT values

for the wild type were subtracted from those for the mutants to

yield DDCT values, and these were used to estimate expression

levels as 2{DDCT . Data shown are means (6SE) derived from four

independent amplifications performed on three biological repli-

cates. The ACTIN2 primers have been described previously [51];

the other primers used were: atTOC75-III sense 59-TCG CAT

CTC CAC TCA ATC-39; atTOC75-III antisense, 59-GTC TCT

GTA TCT CGG TTA GG-39; atTIC110 sense, 59-CTC CTC

AGG TGC CTT ATC AGA AG-39; atTIC110 antisense, 59-CGA

GCA AGA GCA GCC GAG AAC-39; SPP sense, 59-AAG CTA

GCC ATG ATT CTG CAA-39; SPP antisense, 59-CAT CAT

GAG CAA CAG GAA GTT-39. (B) Immunoblot analysis of

protein levels. Total-protein was extracted from plant material

samples equivalent to those employed in panel A, using previously-

described procedures [51]. Three different protein amounts (80,

60 and 40 mg) of each genotype were analysed by immunoblotting,

as described previously [51], using primary antibodies against

atToc75-III, atTic110 and the plasma membrane H+-ATPase,

PMA2 [51,52,53]; unfortunately, an SPP antibody was not

available for this work. The secondary antibody was anti-rabbit

IgG conjugated with horseradish peroxidase (Santa Cruz Biotech-

nology, Santa Cruz, CA, USA), and the detection reagent was

ECL Plus (GE Healthcare, Chalfont St. Giles, UK). Chemilumi-

nescence detection employed a Fujifilm LAS-4000 imager.

Quantification of all images was performed using Aida software

(Raytest, Straubenhardt, Germany). The atToc75-III and at-

Tic110 data were normalized using equivalent PMA2 data. Values

shown are means (6SE) derived from three independent

measurements.

(TIF)
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