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Abstract

17b-Hydroxysteroid dehydrogenase type 1 (17b-HSD1) catalyzes the reduction of estrone to estradiol, which is the most
potent estrogen in humans. Inhibition of 17b-HSD1 and thereby reducing the intracellular estradiol concentration is thus a
promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal
inhibitors of 17b-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17b-
HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-
based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values
obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and
differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor
classes toward marmoset 17b-HSD1 were determined and the data were compared with the values obtained for the human
enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenyl)naphthols. Using a
combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding
energy calculation, a reasonable model of the three-dimensional structure of marmoset 17b-HSD1 was developed and
inhibition data were rationalized on the structural basis. In marmoset 17b-HSD1, residues 190 to 196 form a small a-helix,
which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational
changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of
Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of
inhibitors toward highly conserved ortholog proteins might be an alternative to laborious x-ray or site-directed mutagenesis
experiments in certain cases. Additionally, it facilitates inhibitor design and optimization by offering new information on
protein-ligand interactions.
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Introduction

Human 17b-hydroxysteroid dehydrogenase type 1 (17b-HSD1)

catalyzes the NAD(P)H dependent reduction of the weak estrogen

estrone (E1) to the biologically most active estrogen estradiol (E2;

Fig. 1) [1]. This reaction, which represents the last step in E2

biosynthesis, takes place in target cells where the estrogens exert

their effects via the estrogen receptors a and b. Besides their

physiological effects, estrogens are involved in the development

and the progression of estrogen dependent diseases (EDDs) like

breast cancer, endometriosis and endometrial hyperplasia [2–4].

In the past few years, aromatase inhibitors have been intensively

investigated for the treatment of EDDs [5–7] but they lead to

unwanted side effects due to their strong reduction of estrogen

levels in the whole body. Therefore reducing local E2 levels by

inhibition of 17b-HSD1 is a promising therapeutic approach for

the treatment of EDDs. An analogous intracrine concept has

already been proved successful for the treatment of androgen

dependent diseases such as benign prostatic hyperplasia and

alopecia by using 5a-reductase inhibitors [8–11]. 17b-HSD2

catalyzes the reverse reaction (oxidation of E2 to E1; Fig. 1) and

inhibition of this enzyme must be avoided for the therapeutic

concept to work. However, specific inhibition of 17b-HSD2 in

bone cells may provide a novel approach to prevent osteoporosis

[12].

17b-HSD1 is a cytosolic enzyme that belongs to the super-

familiy of short-chain dehydrogenases/reductases (SDRs) [13]. It

consists of 327 amino acid residues (34.9 kDa) and the active form

exists as homodimer [14]. 17b-HSD1 comprises a Rossmann fold,

associated with cofactor binding, and a steroid-binding cleft [15].

The latter is described as a hydrophobic tunnel with polar residues

at each end: His221/Glu282 on the C-terminal side, and Ser142/

Tyr155, belonging to the catalytic tetrad, which is present in the

majority of characterized SDRs [16], on the other side [17]. To

date 22 crystal structures of 17b-HSD1 are available as apoform,

binary or ternary complexes [18–20]. All crystal structures show
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an overall identical tertiary structure, while major differences have

been identified only for the highly flexible bFaG’-loop. It is not

resolved in ten crystal structures, while the remaining twelve

showed high b-factor values for this area, which is an additional

hint for the flexibility of the bFaG’-loop. In some crystal structures

a short a-helix was observed in the loop region but its occurrence

seems not to be dependent on the presence of steroidal ligands,

cofactor or inhibitor. However, the position and length of the a-

helix changes: in the apoform (PDB entry 1bhs) the helix is limited

to the beginning of the loop while in presence of steroidal ligands

and/or cofactor it is shifted to the end (PDB entries 1dht, 1equ,

and 1iol). Further, dependent on the presence of cofactor and

ligands, the bFaG’-loop can occupy three possible orientations: an

opened, semi-opened, and closed enzyme conformation [21].

Several steroidal and non-steroidal inhibitors of 17b-HSD1

have been described [18,22–37], but only for the former cocrystal

structures exist. While several computational studies have been

performed in order to elucidate the interactions of non-steroidal

inhibitors with 17b-HSD1 [26,27,33,37,38], structural data

confirming the results are still missing.

However, a distinct knowledge of active site topologies and

protein-ligand interactions is a prerequisite for structure-based

drug design and optimization. To further increase this knowledge,

inhibition values obtained for one compound toward proteins,

differing only in few residues might be advantageous. For this

purpose, wild type proteins and their mutants carrying a set of

point mutations can be used. As alternative, proteins from various

species, which are highly conserved in sequence and differ only in

few residues, might be considered.

This latter approach was applied in the present study employing

human and marmoset monkey (callithrix jacchus) 17b-HSD1.

Selected human 17b-HSD1 inhibitors, representative of our

structurally diverse inhibitor classes, were tested toward the

marmoset 17b-HSD1. The resulting inhibitory potencies were

compared with those obtained for the human enzyme and

remarkable differences were only observed in the class of the

(hydroxyphenyl)naphthols. In order to rationalize the species-

specific inhibition profiles at the structural basis, a homology

model of the marmoset enzyme was built using a human 17b-

HSD1 x-ray structure as template. Further, the docking poses of

selected compounds into both the human crystal structure and the

modelled marmoset 17b-HSD1 were considered. Notably, the

marmoset homology model and the docking poses of the inhibitors

presented herein were validated by their ability to explain

inhibition data. Subsequently, the complexes of two representative

inhibitors, docked into the marmoset model and the human crystal

structure, respectively, were subjected to MD simulations to

investigate their conformational equilibrium. In addition, binding

energy calculations as well as energy decomposition analysis were

performed, with the aim to investigate the influence of the

marmoset amino acid variations on the inhibitory potencies. The

current work provides new insights into the marmoset 17b-HSD1

active site topology, reveals probable inhibitor binding modes in

human and marmoset 17b-HSD1, and identifies amino acids

responsible for species specificity in 17b-HSD1 inhibition.

Results

Comparison of 17b-HSD type 1 and type 2 sequences
To identify regions that are conserved through several species,

the sequences of rodent, cynomolgus, marmoset and human 17b-

HSDs 1 were aligned (Fig. 2A). The N-terminal region (residues 1–

190), which constitutes the common Rossmann fold as well as the

catalytic tetrad, is highly conserved for the analyzed species.

Remarkable differences were observed in the F/G segment

(residues 191–230), which is lining the steroid-binding site, and

the C-terminal region (residues 231–285). Sequence alignment of

human and marmoset 17b-HSD1 revealed that they share 80%

sequence identity and 85% similarity (Fig. 2A). Focusing on the

steroid-binding site (residues 94 to 196 and 214 to 284), the

identity increases to 87%, with five major amino acid variations

observed in the marmoset enzyme: A191P, E194Q, S222N, V225I

and E282N. In contrast, comparing cynomolgus and human 17b-

HSD1, which show even 91% identity, only one of the

aforementioned amino acid variations can be found (E282H;

Fig. 2A). With the exception of marmoset 17b-HSD1, Ala191 and

Glu194 are conserved through the analyzed species (Fig. 2A)

indicating the significance of the observed variations between

human and marmoset. 17b-HSDs 1 of mouse and rat are 83%

similar to the human enzyme in the first 287 amino acids. In both

analyzed rodent enzymes His221, which is involved in steroid

binding [17], is mutated into a glycine (H221G). Moreover, several

other amino acids of the substrate-binding site are replaced by

more bulky residues (L96F, N152H, M193Y/H, S222Y). Inter-

estingly, rat and mouse 17b-HSDs 1 are significantly less sensitive

to inhibition by steroidal inhibitors compared to the human

ortholog [39] and different classes of non-steroidal potent human

17b-HSD1 inhibitors turned out to be only weak inhibitors of E2

formation in rat liver preparations [40]. This might be partially

explained by the absence of His221 as interaction partner as well

as by the reduced volume of the active site (M193Y/H, S222Y).

Sequence identities between human 17b-HSD2 and 17b-HSD2

of the selected species range from 61% (mouse) to 93%

(cynomolgus) while the F/G segment and the C-terminal region

show the most pronounced variability (Fig. 2B). The comparison

of 17b-HSD1 with the correspondent type 2 enzymes of the

analyzed species revealed, that the type 2 enzymes have about 80

additional N-terminal residues relative to the type 1 enzymes.

Sequence comparison showed that they share a very low overall

sequence identity (#25%) with major differences in the F/G

segment and the C-terminal domain, which constitute the active

site. However, some amino acid motifs, characteristic for SDR

enzymes [18], are highly conserved: the T-G-xxx-G-x-G motif, the

Y-xxx-K sequence and the N-A-G motif (Fig. 2B). For marmoset

17b-HSD2 only a fragment of the primary sequence is available,

which is 143 amino acids in length and constitutes the Rossman

fold whereas the F/G segment and the C-terminal region are

missing (Fig. 2B). This segment is 29% identical to marmoset

17b-HSD1.

As human and marmoset 17b-HSD1 differ in few residues of

the active site, comparison of the inhibitory potencies of selected

inhibitors, observed toward both enzymes, is suitable to further

increase the knowledge of active site topologies and protein-ligand

interactions. In particular, the amino acid variations in the flexible

bFaG’-loop, which is suggested to play a crucial role in ligand

binding, will be used to elucidate the function of the loop in more

detail.

Figure 1. Interconversion of estrone (E1) and estradiol (E2).
doi:10.1371/journal.pone.0022990.g001

Structural Basis for 17b-HSD1 Species Specificity
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Inhibition of marmoset 17b-HSD1 and 17b-HSD2
Marmoset placental tissue was used as enzyme source and the

proteins were partially purified following a described procedure

[41]. Tritiated E1 was incubated with 17b-HSD1, cofactor and

inhibitor. The separation of substrate and product was performed

by HPLC. In an assay similar to the 17b-HSD1 test, marmoset

placental microsomes containing 17b-HSD2 were incubated with

tritiated E2 in the presence of NAD+ and inhibitor. Labelled

product was quantified after HPLC separation.

The inhibition values of compounds 1–20 (Fig. 3) are shown in

Table 1. The bis(hydroxyphenyl) substituted arenes 1–11 showed

comparable or even higher inhibitory potencies toward marmoset

17b-HSD1 compared to the human enzyme. For example,

compound 8, which is a potent inhibitor of human 17b-HSD1

(IC50 = 151 nM), showed a stronger inhibitory potency toward

marmoset 17b-HSD1 (IC50 = 4 nM). Comparable inhibition data

for human and marmoset 17b-HSD1 were also measured for the

bicyclic substituted hydroxyphenylmethanones 12 and 13. This

indicates that the binding of the two aforementioned inhibitor

classes is reinforced or at least not affected by the amino

acid variations in marmoset 17b-HSD1. In the class of the

(hydroxyphenyl)naphthols, the human 17b-HSD1 inhibitor 14
(IC50 = 116 nM) showed also a good inhibitory potency toward

marmoset 17b-HSD1 (IC50.50 nM). The introduction of space

filling substituents in position 1 of the naphthol core of 14 is

beneficial for the inhibition of the human enzyme (16,

IC50 = 26 nM), but for marmoset 17b-HSD1 no increase in

inhibitory potency was observed (16, IC50.50 nM) compared to

the unsubstituted 14. Interestingly, further enlargement of the

substituents in 1-position of 14 led to highly active human 17b-

HSD1 inhibitors (19, IC50 = 15 nM) while a reduced potency

toward marmoset 17b-HSD1 (19, IC50.50 nM) was found.

The inhibitory potencies of compounds 1–20 toward marmoset

17b-HSD2 were also determined to prove whether marmoset

monkey is a suitable species for in vivo evaluation of 17b-HSD1

inhibitors (Table 1). Remarkably, lower selectivity of compounds

toward non-target marmoset 17b-HSD2 was observed, when

comparing to human 17b-HSD2.

Homology modelling and MD simulations of marmoset
17b-HSD1

In order to obtain a more precise picture of the three-

dimensional structure of the marmoset 17b-HSD1, a homology

model was generated. A set of 100 models was built with

MODELLER 9v7 [42] using the ternary complex E1-NADPH-

human 17b-HSD1 as template. This complex was obtained by

docking E1 into human 17b-HSD1 employing the Protein Data

Bank (PDB) entry 1fdt with conformation B for residues 187–200

(in the following determined as 1fdtB). This 3D structure was

chosen as it represents a ternary complex with NADP+ and E2 in

the closed enzyme conformation, as the bFaG’-loop is resolved,

and as this protein structure was already successfully used in

previous docking studies with the investigated compound classes

[30,36]. The best model was chosen according to internal DOPE-

score [43] and PROCHECK [44] tests. Notably, it presents a

short a-helix (residues 190–196) in the region between the bF-

Figure 2. Multiple sequence alignment of 17b-HSD type 1 and type 2 from selected species. Species and subtype are indicated on the left,
followed by residue numbering. Residues are colored by percentage identity and red arrows indicate major amino acid variations in marmoset
compared to the other species. A) Multiple sequence alignment of 17b-HSD1 from selected species. B) Multiple sequence alignment of human 17b-
HSD1 with 17b-HSD2 from selected species.
doi:10.1371/journal.pone.0022990.g002

Structural Basis for 17b-HSD1 Species Specificity
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sheet (residues 178–186) and the aG’-helix (residues 209–227),

with Pro191 in the first turn of the helix (N1 position; Fig. 4), thus

differing from the secondary structure of the template.

The selected model was further refined both as holoenzyme

with NADPH and as ternary complex with NADPH and E1 by

MD simulations. The trajectories of the two MD simulations were

stable with a a-carbon root-mean-square deviation (RMSD) to the

starting structure below 3.0 Å (Fig. 5). No major structural

differences were observed when comparing the simulated

holoenzyme and the ternary complex. Therefore, the following

results, based on analysis of the ternary complex, also apply to the

holoform.

After an initial inward rotation in the MD simulation, the short

a-helix (residues 190–196) remained stable for the last 5 ns of the

Figure 3. Chemical structures of selected human 17b-HSD1 inhibitors. Representative structures of our three inhibitor classes: the
bis(hydroxyphenyl) substituted arenes (1–11), the bicyclic substituted hydroxyphenylmethanones (12, 13) and the (hydroxyphenyl)naphthols
(14–20).
doi:10.1371/journal.pone.0022990.g003

Table 1. Inhibition of human and marmoset 17b-HSD1 and 17b-HSD2 by compounds 1–20.

Human IC50 [nM] Marmoset IC50 [nM]c

compd X R1 R2 R3 17ß-HSD1a 17ß-HSD2b 17ß-HSD1d 17ß-HSD2e

1 CH F H 8 940 ,5f .50

2 N H H 50 4004 102 .50

3 CH H H 69 1953 31 .50

4 CH CH3 H 46 1971 ,50 .50

5 N CH3 H 143 2023 ,50 .50

6 CH H F 42 463 ,5f 85

7 CH F F 17 218 ,5f 43

8 4-OH OH H 151 1690 4f .50

9 3-OH H OH 77 1271 2f .50

10 3-OH CH3 OH 64 869 3f .50

11 3-OH F OH 64 510 ,50 72

12 H OH 33 478 ,50 43

13 OC2H5 78 502 ,50 59

14 116 5641 .50 .50

15 C OH 36 959 32 .50

16 N 26 1157 .50 .50

17 C H 20 540 52 .50

18 C NH2 53 1757 n.i. .50

19 C NHSO2CH3 15 403 .50 .50

20 C NHCOCH3 83 1239 .50 n.i.

aHuman placental, cytosolic fraction, substrate E1, 500 nM, cofactor NADH, 500 mM;
bHuman placental, microsomal fraction, substrate E2, 500 nM, cofactor NAD+, 1500 mM;
cLogit transformed values calculated from % inhibition at 50 nM inhibitor concentration, for inhibition values ,30% or .70%, a trend is given;
dMarmoset monkey placental, cytosolic fraction, substrate E1, 500 nM, cofactor NADH, 500 mM;
eMarmoset monkey placental, microsomal fraction, substrate E2, 500 nM, cofactor NAD+, 1500 mM;
fInhibitor concentration: 5 nM; n.i.: no inhibition; Human IC50 values were retrieved from literature (corresponding references are indicated with the structural formulas
in Fig. 3).

doi:10.1371/journal.pone.0022990.t001
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MD simulation, with an average backbone RMSD to the final

conformation of 1.03 Å. Remarkably, a similar behaviour cannot

be expected for the region between the bF-sheet and the aG’-helix

in the human enzyme. The differences in the crystal structures

suggest a high flexibility for the bFaG’-loop: it is not resolved in

ten crystal structures and the remaining twelve show high b-factor

values for this area. Some crystal structures present a short a-helix

in the loop region whose position and length varies dependent on

the presence of steroidal ligands, cofactor or inhibitor. In the

apoform (PDB entry 1bhs) the helix is limited to the beginning of

the loop, whereas in presence of steroidal ligands and/or cofactor

it is shifted to the end (PDB entries 1dht, 1equ, and 1iol). Further,

in the human enzyme, the bFaG’-loop axis occupies different

orientations dependent on the presence of cofactor and ligands. In

the marmoset however, both the holoform and the ternary

complex show a helix starting already at the beginning of the

bFaG’-loop with its axis in only one conformation.

The presence of the newly formed a-helix (residues 190–196)

induced a different orientation of the side chain of Met193.

Compared to the template structure, Met193 protrudes deeper into

the substrate-binding site and stabilizes E1 by hydrophobic

interactions (Fig. 4). Furthermore, during MD simulation a kink

in the loop between the bD-sheet and the aE-helix was observed.

Thereby the side chain of Leu96 was brought closer to E1 allowing

Van der Waals contacts (Fig. 4). Summarizing, in the final part of

the MD simulation E1 was stabilized by both lipophilic interactions

and hydrogen bonds: Leu96, Leu149, Met193, and Phe259

constrained the steroidal scaffold while Ser142/Tyr155 and

His221/Asn282 interacted with the carbonyl oxygen in 17-position

and the 3 OH-group, respectively. The latter residue took over the

H-bond acceptor abilities of Glu282, which is involved in forming

an H-bond with the 3 OH-group of E1 in the human enzyme.

Employing CASTp [45], the active site volumes of human and

marmoset 17b-HSD1 were calculated. The above-described

conformational changes of Leu96 and Met193 as well as the

S222N and V225I mutations resulted in a reduced volume of the

marmoset 17b-HSD1 active site (478 Å3) compared to that of the

human ortholog (627 Å3).

The stereochemical quality of the holoenzyme and the ternary

complex models obtained from MD simulations was checked with

PROCHECK [44]. The majority of the residues of the

investigated structures were found to occupy the most favoured

regions of the Ramachandran plots, while the other residues

occupied the additional allowed regions. In detail, in the ternary

complex 78.1% of the residues were placed in the most favoured

region, 20.2% in the additional allowed region, 1.2% in the

generously allowed region, and only 0.4% in the disallowed region

(for the holoform: 81.8%, 17.4%, 0.8% and 0%).

Molecular docking
As the potent inhibitors of human 17b-HSD1 12 and 19 are

structurally diverse and exhibit different potencies toward

Figure 4. Three-dimensional structure superimposition of marmoset and human 17b-HSD1. Low energy structure of marmoset 17b-
HSD1 (green) in complex with E1 and NADPH (orange) from MD simulation superimposed onto the x-ray structure of human 17b-HSD1 (grey, PDB
code: 1fdtB). When two residues are indicated, the first corresponds to marmoset 17b-HSD1 and the second to human 17b-HSD1.
doi:10.1371/journal.pone.0022990.g004

Figure 5. RMSD analysis of the MD simulations of the
marmoset 17b-HSD1 model. Time-dependent Ca-RMSD for all
residues of the secondary (orange) and ternary (green) complex.
doi:10.1371/journal.pone.0022990.g005

Structural Basis for 17b-HSD1 Species Specificity
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marmoset 17b-HSD1 they were chosen as representatives to

rationalize the observed species-specific inhibition profiles. Em-

ploying AutoDock 4 [46], both compounds were docked into the

active sites of marmoset and human 17b-HSD1 using the

equilibrated, ternary complex after 5537 ps and the x-ray

structure 1fdtB (see experimental part), respectively. The inhibitor

poses used for further investigation were selected considering

binding energy and statistical representativity (cluster population;

Table S1) and are shown in Figure 6.

In the human enzyme both inhibitors are placed in the

substrate-binding site and they occupy an apolar subpocket

consisting of the following amino acids: Gly94, Leu95, Leu96,

Asn152, Tyr155, and Phe192 (Fig. 6A). While the carbonyl group

of compound 12 mimics the D-ring keto function of E1, forming

H-bonds with Ser142 and Tyr155, its para-OH group resembles

the 3-OH of E1, which interacts with His221 via an H-bond. The

meta-hydroxyphenyl moiety is projecting into the subpocket, where

it forms an additional H-bond with Asn152 and is stabilized by p-

p-interactions with Tyr155 and Phe192.

The (hydroxyphenyl)naphthol-core of compound 19 occupies

the substrate-binding site and is stabilized by three H-bonds: the 2-

OH group interacts with Ser142 as well as with Tyr155 and the

OH group in meta position of the phenyl ring in 6-position interacts

with His221. In this case, the sulfonamide substituted phenyl ring

in 1-position of the naphthol core protrudes into the subpocket,

where it is stabilized by H-bonds with Asn152 and with the -NH-

of the backbone of Leu95 (Fig. 6A).

Also in the marmoset enzyme both compounds occupy the

substrate-binding site, but only 12 protrudes into the apolar

subpocket (Fig. 6B). Due to the altered side chain conformation of

Leu96 in the marmoset enzyme, compound 12 is slightly displaced

toward the C-terminus (Fig. 6C). Regarding the interaction

Figure 6. Hypothetical binding modes of compounds 12 and 19. A) Superimposition of lowest energy structures of 12 (orange) and 19
(cyan) obtained by docking into the x-ray structure of human 17b-HSD1 (magenta, PDB code: 1fdtB). B) Superimposition of lowest energy structures
of 12 (light green) and 19 (yellow) obtained by docking into the marmoset 17b-HSD1 homology model (green). C) Superimposition of lowest energy
structures of 12 (light green) docked into the marmoset 17b-HSD1 model (green) and of 12 (orange) docked into the x-ray structure of human 17b-
HSD1 (magenta, PDB code: 1fdtB). D) Superimposition of lowest energy structures of 19 (yellow) docked into the marmoset 17b-HSD1 model (green)
and of 19 (cyan) docked into the x-ray structure of human 17b-HSD1 (magenta, PDB code: 1fdtB).
doi:10.1371/journal.pone.0022990.g006

Structural Basis for 17b-HSD1 Species Specificity
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pattern, only minor changes were observed: the carbonyl group

forms only an H-bond with Ser142 but for the para-OH group a

second H-bond with Asn282 was observed (Fig. 6C).

Interestingly, compound 19 resulted in a completely different

binding mode when docked into the homology model of marmoset

17b-HSD1 with respect to its position in the human crystal

structure 1fdtB (Fig. 6D). The OH-group in meta position of the

phenyl ring makes an H-bond with the backbone carbonyl oxygen

of Cys185 and the 2-OH function forms H-bonds with His221 and

Asn282 in a bifurcated fashion. The sulfonamide substituted

phenyl ring is located in the C-terminal gate and might be

stabilized by p-p-interactions with Phe259 and an H-bond with

the backbone -NH- of Leu262.

Validation of the docking complexes by means of MD
simulations and free energy calculations (MM/PBSA)

With the aim to validate the docking results and to unravel

possible induced-fit mechanisms, different MD simulations were

run in explicit aqueous solution. Distance restraints were applied

to inhibitors only in the first ns of the MD simulations with the aim

of maintaining their proper orientation. For the rest of the MD

simulation no restraints were used and the whole complexes were

left free to move. This was done in order to avoid trapping the

inhibitor in an unstable conformation, which could bias the results.

The RMSD values of the heavy atoms of the inhibitors and of the

Caatoms of the enzymes were analyzed as a function of time to

assess the degree of conformational drift, as shown in Figure 7.

In the simulation of 12 bound to human 17b-HSD1 the

CaRMSD of the protein as well as the RMSD of the heavy atoms

of 12 showed a stable plateau (,2.2 Å) from 1.0 to 2.5 ns (Fig. 7A).

After 2.5 ns the CaRMSD of the protein increased and a minor

fluctuation of the heavy atom RMSD of 12 was observed. The

latter finding could be related to a slight shift of the inhibitor

toward the C-terminal end of the enzyme. Notably, the hydrogen

bonds between 12 and 17b-HSD1, which were observed in the

initial structure, were conserved during the 4 ns simulation

suggesting that both protein and 12 fluctuations do not impact

the inhibitor binding.

Both human 17b-HSD1 and compound 19 were stable in the

simulation of their complex (Fig. 7B). During the simulation (after

1.5 ns) the hydrogen bond of the meta-OH group with His221 is

replaced by an H-bond with Glu282. However, after 2.1 ns, this

hydrogen bond is interrupted for 0.2 ns allowing the hydro-

xyphenyl ring to rotate freely around the axis of the bond to the

naphthol core thereby inducing a minor fluctuation of the heavy

atom RMSD of 19. After this short interruption the H-bond

interaction with Glu282 is re-established. On the other side, the

hydrogen bonds between the 2-OH group and Ser142/Tyr155 as

well as between the sulfonamide moiety and Asn152/Leu95

endured constant.

During the MD simulation of 12 in complex with marmoset

17b-HSD1, the meta-hydroxyphenyl moiety of 12 moved further

out of the subpocket. This was reflected by the minor fluctuation of

the RMSD of the heavy atoms of 12 after 1.4 ns (Fig. 7C). While

this motion caused the break of the H-bond with Asn152, it also

placed the meta-OH group in an appropriate distance to Asn222,

thus allowing a new H-bond formation.

The analysis of the MD simulation of the marmoset 17b-HSD1-

19 complex revealed an overall stable CaRMSD of the protein.

However, after 1.8 ns, a ,0.5 Å fluctuation of the heavy atom

RMSD of 19 was observed (Fig. 7D) corresponding to the rotation

Figure 7. Time dependent RMSD analysis of Ca of 17b-HSD1 and of the heavy atoms in the ligands. A) Ca-RMSD of human 17b-HSD1 is
colored in magenta and the heavy atoms RMSD of compound 12 in light green. B) Ca-RMSD of human 17b-HSD1 is colored in magenta and the
heavy atoms RMSD of compound 19 in yellow. C) Ca-RMSD of marmoset 17b-HSD1 is colored in green and the heavy atoms RMSD of compound 12
in light green. D) Ca-RMSD of marmoset 17b-HSD1 is colored green and the heavy atoms RMSD of compound 19 in yellow.
doi:10.1371/journal.pone.0022990.g007
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around the axis of the bond between the hydroxyphenyl ring and

the naphthol core. Thereby the H-bond with the backbone amino

group of Leu262 was lost.

Furthermore, for each of the four MD trajectories absolute free

energy (DG) and relative binding affinity (DGbind) were calculated

applying MM/PBSA methods and NMODE analysis (Table 2). This

was done for the following stable sectors: 1000 to 2500 ps for 12 in

complex with human 17b-HSD1 (Fig. 7A), 2300 to 4160 ps for 19
in complex with human 17b-HSD1 (Fig. 7B), 1500 to 4160 ps for 12
in complex with marmoset 17b-HSD1 (Fig. 7C) and 1800 to 4160 ps

for 19 in complex with marmoset 17b-HSD1 (Fig. 7D). All

four complexes showed favourable DG values, ranging from

27.3 kcal mol21 to 23.2 kcal mol21. The free energies observed

for compound 12 in complex with human (DG = 24.7 kcal mol21)

and marmoset 17b-HSD1 (DG = 25.8 kcal mol21) are in the same

range. This is in accordance with the inhibitory activities of 12, which

are comparable for both species (see Table 1). Regarding compound

19, the complex with human 17b-HSD1 shows a more favourable

free energy (DG = 27.3 kcal mol21) than the one with marmoset

17b-HSD1 (DG = 23.2 kcal mol21). This is mainly due to poor

entropic contributions in the latter case. Remarkably, this finding is in

concert with the experimentally determined inhibition data:

compound 19 is a highly potent human 17b-HSD1 inhibitor

(IC50 = 15 nM) with reduced activity toward the marmoset enzyme

(IC50.50 nM).

Analysis of the binding interactions using MM/GBSA methods
Focusing on the specific interactions, which mediate the binding

of 12 and 19 to human and marmoset 17b-HSD1, we have

analyzed the interaction energies of both inhibitors with the

residues of the binding sites, employing a pairwise per-residue

energy decomposition analysis.

Inspection of the interaction energies with human 17b-HSD1

(Table 3) showed that the hydrogen bonds of 12 (24.1 kcal mol21)

and 19 (25.7 kcal mol21) with Asn152 contributed most to the

interaction energies. Besides Asn152, further residues of the

subpocket (Gly94, Leu95, Leu96) interact with both inhibitors

revealing energies from 20.3 kcal mol21 to 21.8 kcal mol21. The

energies of the hydrogen bonds between 12 and the catalytic

residues Ser142 as well as Tyr155 are 21.3 kcal mol21 and

21.5 kcal mol21, respectively. In case of compound 19 the

interaction energies are 21.3 kcal mol21 for the H-bond with

Ser142 and 21.3 kcal mol21 for the H-bond with Tyr155. Further

binding site residues, which significantly contribute to the binding of

compounds 12 and 19 (Leu149, Pro187, Phe192, Met193, Val225,

and Phe259) show interaction energies from 20.9 kcal mol21 to

22.2 kcal mol21. Regarding the polar amino acids at the C-

terminal end of the binding site, His221 takes primarily part in the

binding of 12 (21.8 kcal mol21 for 12 vs. 20.2 kcal mol21 for 19)

while Glu282 is mainly involved in binding compound 19
(20.1 kcal mol21 for 12 vs. 24.3 kcal mol21 for 19).

The interaction energies of 12 and 19 with marmoset 17b-

HSD1 are listed in Table 4. Remarkably, for inhibitor 12, the

energy contribution of the H-bond with the marmoset Asn152

(21.6 kcal mol21) is 2.6 fold reduced compared to the human

enzyme, while for compound 19 it is almost lost (20.2 kcal -

mol21). Both for 12 and 19 reduced energies were also observed

for interactions with Gly94, Leu95, and Leu96. Interestingly,

inhibitor 12 showed an interaction with Asn222 in the marmoset

enzyme (23.3 kcal mol21), which was not observed for Ser222 in

Table 2. Free energy calculations for the MD simulations of the four docking complexes.

comp ELEC VDW GAS PBSOL PBTOT (DGbind) TSTOT DG

mean mean mean mean (±SE) mean (±SE) mean (±SE)

Human x-ray structure (1fdtB)

12 215.4 240.4 255.7 35.1 220.663.8 215.966.6 24.767.6

19 236.7 250.1 286.8 64.2 222.665.0 215.366.8 27.368.4

Marmoset monkey homology model

12 224.5 238.1 261.3 40.0 221.364.9 215.465.3 25.867.2

19 242.2 234.4 276.5 50.3 226.364.4 223.164.3 23.266.1

DG and DGbind values correspond to the longest stable plateau for each MD. (DG) free binding energy; (PBTOT) (DGbind) relative binding energy; (ELEC) electrostatic
contribution in gas phase; (VDW) Van der Waals contribution in gas phase; (GAS) free energy in vacuum; (PBSOL) solvation energy; (TSTOT) (TDS) entropic
contribution; (mean) mean value; (SE) standard error of the mean; all energies expressed in kcal mol21.
doi:10.1371/journal.pone.0022990.t002

Table 3. Interaction energies between the inhibitors 12 and 19 and the proximal (4.0 Å) binding site residues of human 17b-HSD1.

comp Gly94 Leu95 Leu96 Ser142 Leu149 Asn152 Tyr155 Cys185 Gly186 Pro187

12 21.8 20.3 21.2 21.3 22.2 24.1 21.5 20.2 20.4 21.3

19 20.7 20.7 21.7 21.3 22.0 25.7 22.6 20.3 20.8 22.0

comp Phe192 Met193 Tyr218 His221 Ser222 Val225 Arg258 Phe259 Leu262 Glu282

12 21.2 21.0 20.7 21.8 20.8 21.7 20.1 21.2 20.4 20.1

19 21.8 21.9 20.1 20.2 20.4 21.9 20.5 20.9 20.3 24.3

All energies are expressed in kcal mol21.
doi:10.1371/journal.pone.0022990.t003
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human 17b-HSD1 (20.8 kcal mol21). This is not the case for 19,

as the interaction with Asn222 (20.3 kcal mol21) does not

contribute significantly to the interaction energy. In addition to

Leu149, Pro187, Met193, Ile225, and Phe259, which interact with

both compounds in the human enzyme, Gly186, His221, and

Asn282 significantly contribute to the binding of 12 and 19 to

marmoset 17b-HSD1 with interaction energies in the range from

20.4 kcal mol21 to 23.6 kcal mol21. Interestingly, in marmoset

17b-HSD1 the interaction energy between 12 and Asn282

(23.2 kcal mol21) is 32 fold increased compared to that with

Glu282 in the human enzyme (20.1 kcal mol21). In marmoset

17b-HSD1 an increased energy is also observed for the interaction

of compound 19 with His221 (22.6 kcal mol21) compared to the

human enzyme (20.2 kcal mol21).

Discussion

When the three-dimensional structures of marmoset and human

17b-HSD1 are compared, one of the most striking features is the

small a-helix including the residues 190 to 196. It is formed in the

segment between the bF-sheet and the aG’-helix starting from the

interface residue Thr190, which is half in and half out of the helix

(N-cap position). In contrast to the human enzyme, where this

region is highly flexible, as suggested by the different crystal

structures, the a-helix stayed stable during the MD simulation in

both the holoform and the ternary complex. The observed

conformational stability might be explained by the presence of a

proline in position 191 instead of an alanine. Proline is a

favourable candidate for N1 position because of its own

conformational properties: with only one rotatable angle it loses

less entropy than other amino acids in forming an a-helix and

thereby it should have some stabilizing influence [47]. Further-

more, in an analysis of sequence-structural characteristics in

protein crystal structures, proline was found to be a favoured

residue at N1 position. Especially the residue pair involving

threonine at N-cap and proline at N1 position, which is observed

for marmoset 17b-HSD1, has a high prevalence [48].

In order to analyse the influence of the conformational changes

in marmoset 17b-HSD1 on ligand binding, docking studies with

subsequent MD simulations, free energy calculations, and energy

decomposition analyses were carried out. While the conforma-

tional differences between the marmoset and the human enzyme

did not affect the binding mode of 12 remarkably, the suggested

binding mode of 19 differed strongly in 17b-HSD1 of both species.

One possible explanation for that might be the lower sterical

demand of 12 compared to 19. However, the energy contribution

of the interaction between 12 and the marmoset Asn152 is

reduced, whereas it was outstanding in complex with the human

enzyme. Due to the minimal shift of 12 in the marmoset binding

pocket, the geometric parameters for the H-bond with Asn152 are

no longer optimal. Interestingly, in the marmoset enzyme an

additional interaction of 12 with Asn222 is observed, which seems

to compensate the deficit in interaction energy due to the absent

interaction with Asn152 resulting in comparable binding energies

for 12 in complex with human and marmoset 17b-HSD1. The

latter finding is in accordance with the inhibition data observed for

compound 12 and validates the marmoset 17b-HSD1 model.

Considering compound 19, no particular interactions with the

subpocket residues of the marmoset enzyme exist. Although weak

interactions between 19 and the C-terminal region of marmoset

17b-HSD1 are observed, the binding free energy is less favourable

compared to that calculated for the human 17b-HSD1-19
complex. As the C-terminal part of the enzyme has already been

discussed as a potential product exit gate of the enzyme [21],

inhibitor 19 might be solvent exposed. This is consistent with the

unfavourable entropy term of this complex resulting in the least

favourable free energy.

Obviously, the presence of a proline in the flexible loop region

and the thereby induced conformational changes in marmoset

17b-HSD1 are decisive for the species specific inhibition of 19. On

one hand interactions with subpocket residues like Asn152,

recently discussed as relevant interaction partner [49], are

prevented and on the other hand the inhibitor is forced in an

unfavourable solvent exposed conformation.

The bis(hydroxyphenyl) substituted arenes (compounds 1–11)

show similar or increased inhibitory potencies toward marmoset

17b-HSD1 when comparing to human 17b-HSD1. Recently

performed docking experiments proposed a steroidal binding

mode when the human crystal structure 1fdtB was used [33]. The

high inhibitory potencies toward marmoset 17b-HSD1 are in

concert with the modelled structure of marmoset 17b-HSD1 as

steroid-like binding is not affected by the proposed conformational

changes. Obviously, they even stabilize the bis(hydroxyphenyl)

substituted arenes in the marmoset 17b-HSD1 binding pocket as

indicated by the observed inhibitory potencies.

Differing inhibitory potencies toward human 17b-HSD1 and

17b-HSD2 may arise from sequence variations in the regions 94–

196 and 214–284 (numbering according to 17b-HSD1), which

might lead to differences in the active sites of the two human

subtypes. A lower selectivity of compounds toward non-target

marmoset 17b-HSD2 was observed, when comparing to human

17b-HSD2. Obviously, the differences in the active sites of

marmoset 17b-HSD1 and 17b-HSD2 are less pronounced

compared to the human orthologs. However, as the available

marmoset 17b-HSD2 sequence is missing the F/G segment and

the C-terminal part this hypothesis cannot be proved.

Table 4. Interaction energies between the inhibitors 12 and 19 and the proximal (4.0 Å) binding site residues of marmoset
monkey 17b-HSD1.

comp Gly94 Leu95 Leu96 Ser142 Leu149 Asn152 Tyr155 Cys185 Gly186 Pro187

12 20.0 20.1 20.8 22.1 22.0 21.6 20.8 20.3 20.7 22.0

19 20.0 20.1 20.2 20.9 21.1 20.2 20.3 23.5 22.0 22.0

comp Phe192 Met193 Tyr218 His221 Asn222 Ile225 Arg258 Phe259 Leu262 Asn282

12 20.4 21.3 21.4 20.8 23.3 21.9 20.1 21.3 20.9 23.2

19 20.0 20.4 20.0 22.6 20.3 22.6 23.7 21.9 21.0 23.6

All energies are expressed in kcal mol21.
doi:10.1371/journal.pone.0022990.t004
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The validity of the presented homology model is further

substantiated by its ability to explain the reduced inhibitory

potency of C-15 substituted estrone derivatives toward marmoset

17b-HSD1 [39]. The substituents in 15-position of the steroid

were designed to occupy the hole between the flexible bFaG’-loop

and the aG’-helix in the human enzyme [50]. Together with the

helix formation and the conformational changes in the bD/aE-

segment, the S222N mutation limits the size of the hole in

marmoset 17b-HSD1 and thereby might reduce the inhibitory

potency toward the marmoset enzyme.

Conclusion
An elegant strategy to gain more knowledge of active site

topologies and, in particular, of protein-ligand interactions is to

compare inhibition values obtained for one compound toward

ortholog proteins from various species, which are highly conserved

in sequence and differ only in few residues. Thereby, such an

approach can be a valid alternative to site-directed mutagenesis.

As human and marmoset 17b-HSD1 enzymes meet these criteria,

selected human 17b-HSD1 inhibitors were assessed for their

inhibitory potencies toward marmoset 17b-HSD1. While a species

specific inhibition profile was observed in the class of the

(hydroxyphenyl)naphthols, representatives of the other evaluated

compound classes showed similar or even higher inhibition

compared to those observed for the human enzyme. Using a

combination of computational methods, including homology

modeling, molecular docking, MD simulation, and binding energy

calculation, a reasonable model of the three-dimensional structure

of marmoset 17b-HSD1 was developed and inhibition data were

rationalized on the structural basis. In the marmoset 17b-HSD1,

residues 190 to 196 form a small a-helix, which is obviously

stabilized by the presence of a proline in N-cap position (residue

191) and induces conformational changes that affect ligand

binding. Furthermore energy decomposition analysis highlighted

the important role of Asn152 as interaction partner for inhibitor

binding.

This work could not only offer a better understanding of the

active site topologies and of the protein-ligand interactions, but

also provides novel structural clues that will help to design and

optimize potent human 17b-HSD1 inhibitors with improved

inhibitory potency toward marmoset 17b-HSD1. This is an

important step to turn compounds, which show a promising

pharmaceutical profile, into candidates for in vivo evaluation. Thus,

our combined computational approach could also be considered

as a valuable tool to achieve this goal.

Methods

Sequence Alignment and Model Building
The amino acid sequences of rat (accession number P51657),

mouse (P51656) cynomolgus (Q4JK77) and marmoset 17b-HSD1

(Q9GME2) as well as human (P37059), cynomolgus (Q4JK76),

marmoset (Q9GME5), mouse (P51658) and rat (Q62730) 17b-

HSD2 were obtained from the uniprot webpage. These sequences

were pairwise aligned with human 17b-HSD1 (PDB code: 1fdt)

using MAFFT version 5 [51]. Using this alignment, a set of 100

comparative models of marmoset 17b-HSD1 was built employing

Modeller9v7 [42], with the ternary complex E1-NADPH-human

17b-HSD1 as template. This complex resulted from docking of E1

to human 17b-HSD1 (PDB code: 1fdtB) (see below). The best

homology model was then selected according to the Modeller

energy score, DOPE score [43] and PROCHECK [44] tests. The

reliability of the built homology models was checked by Prosa2003

[52] (Fig. S1), ERRAT [53], and Verify3D [54] (Fig. S2).

MD Simulations
MD simulations were performed using the AMBER 9.0 suite

program [55]. The partial atomic charges for E1 and the inhibitors

were derived from the molecular electrostatic potential (MEP)

previously calculated using GAMESS [56], according to the RESP

methodology [57]. For the protein, partial atomic charges were read

from the AMBER 9.0 libraries. The AMBER99SB force field [58]

was employed to define atom types and potentials for the protein,

while the general AMBER force field (gaff) [59] was used to define

all needed atom types and parameters for E1 and the inhibitors. For

NADPH (charge 24), the parameters previously reported by Ulf

Ryde were applied (http://www.teokem.lu.se/,ulf/).

The input files for the MD simulation were prepared with the xLEaP

module of AMBER. Each system was solvated with an octahedral box of

TIP3P water molecules of 10 Å radius and neutralized by the addition of

Na+ ions. Finally, for each complex the topology and the coordinate files

were written and used in the MD simulations.

Before starting the production-run phase, the following equilibra-

tion protocol was applied to all systems. At the beginning the system

was energy-minimized in two stages: firstly, the solvent was relaxed

while all the solute atoms were harmonically restrained to their

original positions with a force constant of 100 kcal mol21 Å22 for

1000 steps; and secondly, the whole molecular system was minimized

for 2500 steps by conjugate gradient. Subsequently, the system was

heated during 60 ps from 0 to 300 K at constant volume conditions

(NTV, PBC conditions), and then equilibrated keeping both

temperature and pressure constant (NTP, PBC conditions, 300 K,

1 atm) during 100 ps. Electrostatic interactions were computed using

the Particle Mesh Ewald method [60], and the SHAKE [61]

algorithm was employed to keep all bonds involving hydrogen atoms

rigid. NADPH, E1 and the inhibitors were constrained during the

equilibration with a force constant of 20 kcal mol21 Å22. After

equilibration, a MD production stage (NTP, PBC conditions, 300 K,

1 atm) was performed. The total simulation length differed for the

various complexes ranging from 4 to 6 ns. Distance restraints were

applied to substrate/inhibitor with the aim of maintaining their

proper orientation at the beginning (first ns) of production stage.

For the ternary complex of marmoset 17b-HSD1 with E1 and

NADPH, two additional distance restraints were used: between

the keto-oxygen of E1 and the side chain oxygen of Ser142

(d = 2.40–3.00 Å; force constant: 10 kcal mol21 Å22) and be-

tween the oxygen of the OH-group in 17-position of E1 and the

NE2 nitrogen of the His221 side chain (d = 2.70–3.40 Å; force

constant: 10 kcal mol21 Å22).

For the ternary complex of human 17b-HSD1 with 12 and

NADPH, three additional distance restraints were used: between

the keto-oxygen of 12 and the side chain oxygen of Tyr155

(d = 2.80–3.40 Å; force constant: 10 kcal mol21 Å22), between

the oxygen of the OH-group in meta-position of 12 and the OD1

oxygen of the Asn152 side chain (d = 2.70–3.30 Å; force constant:

10 kcal mol21 Å22), and between the oxygen of the para OH-

group of 12 and the NE2 nitrogen of the His221 side chain

(d = 2.70–3.30 Å; force constant: 10 kcal mol21 Å22).

For the ternary complex of marmoset 17b-HSD1 with 12 and

NADPH three additional distance restraints were used: between

the keto-oxygen of 12 and the side chain oxygen of Ser142

(d = 2.50–3.10 Å; force constant: 10 kcal mol21 Å22), between

the oxygen of the OH-group in meta-position of 1 and the OD1

oxygen of the Asn152 side chain (d = 2.40–3.00 Å; force constant:

10 kcal mol21 Å22), and between the oxygen of the para OH-

group of 12 and the OD1 oxygen of the Asn282 side chain

(d = 2.50–3.10 Å; force constant: 10 kcal mol21 Å22).

For the ternary complex of human 17b-HSD1 with 19 and

NADPH three additional distance restraints were used: between
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the oxygen of the OH-group in 2-position of the naphthol core

and the side chain oxygen of Tyr155 (d = 2.80–3.40 Å; force

constant: 10 kcal mol21 Å22), between the oxygen of the OH-

group in meta-position of the phenyl ring and the NE2 nitrogen

of the His221 side chain (d = 3.00–4.20 Å; force constant:

10 kcal mol21 Å22), and between the nitrogen of the sulfonamide

moiety of 19 and the OD1 oxygen of the Asn152 side chain

(d = 2.70–3.40 Å; force constant: 10 kcal mol21 Å22).

For the ternary complex of marmoset 17b-HSD1 with 19 and

NADPH two additional distance restraints were used: between the

oxygen of the OH-group in 2-position of the naphthol core and

the NE2 nitrogen of the His221 side chain (d = 2.70–3.40 Å; force

constant: 10 kcal mol21 Å22) and between the oxygen of the OH-

group in meta-position of the phenyl ring of 19 and the backbone

carbonyl oxygen of Cys185 (d = 2.40–3.00 Å; force constant:

10 kcal mol21 Å22).

Trajectories were analyzed using the AMBER ptraj module, the

MMTSB toolset [62] and the molecular visualization program VMD

(Visual Molecular Dynamics) [63]. The resulting low energy structures

were extracted for the homology model (apoform and ternary complex)

and subjected to a subsequent minimization of 1000 steps (500 steps of

steepest descent followed by 500 steps of conjugate gradient), using the

sander module of AMBER. The modified generalized Born solvation

model (IGB = 2) [64] was used. Active site volumes of low energy

structures were calculated using the CASTp [45].

Molecular docking
The three-dimensional structures used for docking studies were

either retrieved from the PDB (1fdt, conformation B for residues

187–200) or from the homology modelling with subsequent MD

simulation (equilibrated ternary complex after 5537 ps). The

cocrystallized E2 and water molecules were removed from the

PDB file. Hydrogen atoms and neutral end groups were added,

NADP+ was turned into NADPH and correct atom types were set.

Ionization states and hydrogen positions were assigned using the

Protonate 3D utility of MOE2009.10 (Chemical Computing

Group Inc., Montreal, Canada). Ligand structures were built in

MOE and RESP charges were assigned as described above. The

17b-HSD1 three-dimensional structures and ligand structures

were prepared for docking studies through the graphical user

interface AutoDockTools4 [46]. For the ligands, non-polar

hydrogen atoms were deleted, rotatable bonds were defined and

RESP charges were kept. For the protein, non-polar hydrogen

atoms were deleted and charges were added to the structure.

Autodock4.2 [46] was used to dock the ligands in the steroidal

binding site of the processed protein structures. A box, centered on

the steroid-binding site, was set to define the docking area. Grid

points of 90690690 with 0.250 Å spacing were calculated around

the docking area for all the ligand atom types using AutoGrid4.2.

For each inhibitor, 50 separate docking calculations were

performed. Each docking calculation consisted of 256105 energy

evaluations using the Lamarckian genetic algorithm local search

(GALS) method. Each docking run was performed with a

population size of 250. A mutation rate of 0.02 and a crossover

rate of 0.8 were used to generate new docking trials for subsequent

generations. The docking results from each of the 50 calculations

were clustered on the basis of root-mean-square deviation

(RMSD = 2.0 Å) between the Cartesian coordinates of the ligand

atoms and were ranked on the basis of the free binding energy.

Free energy calculations using the MM/PBSA method
The calculation of binding free energy was evaluated using the

MM/PBSA (Molecular Mechanics/Poisson Boltzmann Surface

Area) method as implemented in AMBER11 [65]. The electronic

and Van der Waals energies were calculated using the sander

module in AMBER11. The solvation free energy contributions

may be further decomposed into an electrostatic and hydrophobic

contribution. The electrostatic portion is calculated using the

linearized PB equation. The hydrophobic contribution is approx-

imated by the LCPO method [66] implemented within sander.

The changes in entropy upon ligand association DS are estimated

by normal mode analysis. For stable plateaus of the MD

trajectories, snapshots were collected every 20th frame (every

20 ps) and used to calculate relative binding affinity (DGbind) and

absolute free energy (DG).

Energy decomposition using the MM/GBSA method
A free energy decomposition of the protein ligand complexes

was performed on a pairwise per-residue basis using the MM/

GBSA (Molecular Mechanics/Generalized Born Surface Area)

method as implemented in AMBER11. The GBSA implicit-

solvent solvation model was used in order to avoid the retarding

effect of the PBSA method.

Inhibition assay
[2, 4, 6, 7-3H]-E1 and [2, 4, 6, 7-3H]-E2 were bought from

Perkin Elmer, Boston. Quickszint Flow 302 scintillator fluid was

bought from Zinsser Analytic, Frankfurt. Marmoset 17b-HSD1

and 17b-HSD2 were obtained from marmoset placenta according

to previously described procedures [41]. Fresh marmoset placenta

was homogenized and cytosolic and microsomal fractions were

separated by centrifugation. For the partial purification of 17b-

HSD1, the cytosolic fraction was precipitated with ammonium

sulfate. 17b-HSD2 was obtained from the microsomal fraction.

Inhibition of 17b-HSD1. Inhibitory activities were evaluated

by an established method with minor modifications [41]. Briefly,

the enzyme preparation was incubated with NADH [500 mM] in

the presence of potential inhibitors at 37uC in a phosphate buffer

(50 mM) supplemented with 20% of glycerol and EDTA (1 mM).

Inhibitor stock solutions were prepared in DMSO. The final

concentration of DMSO was adjusted to 1% in all samples. The

enzymatic reaction was started by addition of a mixture of

unlabelled- and [2, 4, 6, 7-3H]-E1 (final concentration: 500 nM,

0.15 mCi). After 10 min, the reaction was stopped by the addition

of HgCl2 (10 mM) and the mixture was extracted with

diethylether. After evaporation, the steroids were dissolved in

acetonitrile. E1 and E2 were separated using acetonitrile/water

(45:55) as mobile phase in a C18 reverse phase chromatography

column (Nucleodur C18 Gravity, 3 mm, Macherey-Nagel, Düren)

connected to an HPLC-system (Agilent 1200 Series, Agilent

Technologies, Waldbronn). Detection and quantification of the

steroids were performed using a radioflow detector (Agilent 1200

Series, Agilent Technologies, Waldbronn). The conversion rate

was calculated after analysis of the resulting chromatograms

according to the following equation: %conversion~
%E2

%E2z%E1
|100. Each value was calculated from at least three independent

experiments.

Inhibition of 17b-HSD2. The 17b-HSD2 inhibition assay

was performed similarly to the 17b-HSD1 procedure. The

microsomal fraction was incubated with NAD+ [1500 mM], test

compound and a mixture of unlabelled- and [2, 4, 6, 7-3H]-E2 (final

concentration: 500 nM, 0.11 mCi) for 20 min at 37uC. Further

treatment of the samples and HPLC separation was carried out as

mentioned above. The conversion rate was calculated after analysis

of the resulting chromatograms according to the following equation:

%conversion~
%E1

%E1z%E2
|100.
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Supporting Information

Figure S1 Energy profile drawn for the marmoset 17b-
HSD1 model using PROSA. Energy profiles of marmoset 17b-

HSD1 in complex with NADPH (orange) and of marmoset 17b-

HSD1 in complex with NADPH and E1 (green).

(TIF)

Figure S2 Verify3D results for the marmoset 17b-HSD1
model. Verify-3D results are shown for the secondary complex of

marmoset 17b-HSD1 (orange) with NADPH and for ternary

complex (green) with NADPH and E1; residues with positive score

are reasonably folded.

(TIF)

Table S1 Cluster analysis of molecular docking results.
All energies are expressed in kcal mol21. The lowest energy

conformation of each cluster, which is marked in bold was used for

further investigation.

(DOC)
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