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Abstract

Background: Human globin gene expression is precisely regulated by a complicated network of transcription factors and
chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of
the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study
was to examine the role of Eos in globin gene regulation.

Methodology/Principal Findings: Western blot and quantitative real-time PCR detected a gradual decrease in Eos
expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/
progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression
of Eos significantly represses the expression of c-globin, but not other globin genes, in K562 cells and CD34+ HPCs.
Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter
assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the b-globin locus control region
(LCR), the promoter regions of the Gc- and Ac- globin genes, as functional binding sites of Eos protein. A chromosome
conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the c-globin gene
promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs.

Conclusions/Significance: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the
c-globin gene during erythroid differentiation.
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Introduction

The human b-globin locus consists of five functional globin genes

(e, Gc, Ac, d, and b) within a 70 kb domain. During development

expression of these genes displays two switches, the embryonic (e-) to

fetal (Gc- and Ac-) globin switching, coinciding with the transition

from yolk sac to fetal liver, and the fetal to adult (b-) globin switching,

occurring near the parturient period with the establishment of bone

marrow as the main site of hematopoiesis [1,2]. During erythroid

differentiation the c- to b-gloin gene switching is also displayed and it

is called ‘‘compressed switching’’ [3]. The precise developmental

program of human b-like globin gene expression is governed by a

diverse array of regulatory mechanisms. Sequences within or

immediately flanking globin genes control expression in tissue-specific

or temporal patterns. High-level globin expression is directed by the

locus control region (LCR), a set of key regulatory sequences 6–20 kb

upstream of the e-globin gene, that are characterized by the presence

of five 59 DNase I hypersensitivity sites (HSs) [4]. Preferential

interactions between the LCR and individual globin promoters

during distinct developmental stages are pivotal to the strict

regulation of globin gene expression. These interactions are mediated

by erythroid tissue-restricted and ubiquitous transcription factors.

Because fetal c-globin gene reactivation in adults has potential

as an effective therapy for sickle cell anemia and b-thalassemia

[5], the detailed characterization of c-globin gene regulation

mechanisms is particularly significant. Several studies have

reported transcriptional activation of the c-globin gene by FKLF

[6], FKLF2 [7], NF-E4 [8] and NF-Y [9]. However, repressors

also play a critical role during c- to b-globin switching. The

repressors BCL11A [10], Ikaros [11], GATA-1 [12], the orphan

nuclear receptors TR2 and TR4 [13], and NF-E3/COUP-TFII

[14] have been associated with human c-globin gene silencing.

Despite avid research regarding c-globin gene regulation, the

mechanisms responsible for c-globin gene silencing are not fully

understood.

Eos, also known as IKZF4, is a member of the zinc finger

transcription factor Ikaros family characterized by the presence of

four DNA-binding N-terminal zinc fingers and two C-terminal

zinc fingers required for homo- and heterodimerization with other

Ikaros family members [15]. Ikaros family of genes consists of

several members: Ikaros (IKZF1), Aiolos (IKZF3), Helios (IKZF2),

Eos (IKZF4) and Pegasus (IKZF5). The Ikaros family of

transcription factors acts as key repressors of transcription during

the development and function of lymphocytes [16–19]. Ikaros is
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involved in regulation of human b-like globin gene switching by

binding to critical cis elements implicated in the gene switching

and facilitating long-distance DNA looping between the LCR and

a region upstream of d-globin. When the DNA-binding region of

Ikaros is disrupted by a point mutation in plastic mice,

concomitant marked downregulation of b-globin expression and

upregulation of c-globin expression are observed [20]. Eos is a 585

amino acid highly conserved zinc finger transcription factor that

binds typical WGGGAAT Ikaros recognition sites in DNA and

functions as a transcriptional repressor (Figure S1) [21]. Eos may

also play an important role in the development of the central and

peripheral nervous systems [22,23]. Eos can self-associate, form

heterodimers with other Ikaros family members, or interact with

C-terminal binding protein (CtBP2), PU.1, or microphthalmia-

associated transcription factor (MITF) to repress transcription of

cathepsin K and tartrate-resistant acid phosphatase (TRAP)

promoters [21,24]. Eos is expressed at low levels in kidney,

thymus, liver and heart and at high levels in skeletal muscle [23].

Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory

T cells by interacting directly with Foxp3 and inducing chromatin

modifications that result in gene silencing in CD4+ regulatory T

cells [19]. Although it has known that Eos protein is expressed in

lymphocytes and is implicated in the control of lymphoid cell

development, the function of Eos in the regulation of other

haemopoietic lineage has not been addressed.

In this study, we examined the effects of Eos on human globin

gene regulation and demonstrated its important role in c-globin

gene regulation during erythroid differentiation.

Results

Eos represses c-globin gene expression in K562 cells
during erythroid differentiation

Hemin-induced erythroid differentiation of K562 cells was

evaluated using the benzidine cytochemical test. Western blot and

quantitative real-time PCR indicated that the protein (Figure 1A)

and mRNA (Figure 1B) expression of Eos gradually decreased

during hemin-induced erythroid differentiation. Conversely, a

substantial increase in c-globin expression was observed during

erythroid differentiation of K562 cells (Figure 1A and 1C). The

reciprocal association of Eos and c-globin gene expression

following hemin induction in K562 cells supports the hypothesis

that the Eos protein might repress c-globin expression. To study

the effect of Eos on c-globin gene expression, K562 cells were

transfected with an Eos expression plasmid (pcDNA3.1-Eos), and

overexpression of Eos was confirmed by Western blotting

(Figure 1D). Northern blotting revealed that overexpression of

Eos significantly downregulated transcription of the c-globin gene

but had little effect on transcription of the a- and e-globin genes in

K562 cells before and after erythroid differentiation (Figure 1E).

Quantitative real-time PCR results were consistent with Northern

blotting (Figure 1F and 1G). These results support a specific

repressive function of Eos on the human c-globin gene.

Eos represses c-globin gene expression in stable
m’LCRAcybdb/GM979 transformants

Because the b-globin gene is not expressed in K562 cells, the

effect of Eos on human b-globin cannot be examined in K562

cells. Thus, we used stable MEL GM979 transformants with

integration of human b-globin gene cluster. GM979, a MEL cell

line which expresses both murine embryonic and adult globins, is

an appropriate model system to study human globin gene

expression [25]. The human Eos protein is not detected by

human Eos antibody in GM979 (Figure S2). A linearized cosmid

construct m’LCRAcybdb (Figure 2A), which contained a 3.1 kb

m’LCR cassette, a subset consisting of the impact core sequences of

four of the DNaseI hypersensitive sites, linked to a 29 kb fragment

from the human Ac- to b-globin genes with the natural

chromosome arrangement, has been demonstrated a correct

developmental expression of human globin genes in transgenic

mice [12]. GM979 cells were cotransfected with the linearized

cosmid construct m’LCRAcybdb and the pTKneo plasmid by

electroporation. Stable transformant cells were elected in medium

containing G418. Stable m’LCRAcybdb/GM979 transformants

were subsequently transfected with pcDNA3.1-Eos or control

vector (pcDNA3.1) respectively. Eos expression then was analyzed

by Western blot (Figure 2B). The levels of human Ac- and b-

globin transcripts as well as endogenous murine a-globin

transcripts were measured by Northern blot (Figure 2C) and

quantitative real-time PCR (Figure 2D). A significant decrease in

transcription of human c-globin was observed in m’LCRAcybdb/

GM979 cells overexpressing Eos, whereas human b-globin and

murine a-globin transcripts were not significantly affected. These

results further supported a specific repressive function of Eos on

the expression of human c-globin gene.

Identification and validation of functional Eos binding
sites within the human b-globin gene cluster

To investigate whether Eos represses c-globin expression by

direct association with the human b-globin locus, we searched the

human b-globin locus for matches to the Eos binding motif

(WGGGAAT). Thirty-two putative Eos binding sites were

identified in the b-globin locus (Figure 3A). Chromatin immuno-

precipitation (ChIP) was performed using an anti-Eos antibody.

Using DNA fragments precipitated with anti-Eos as templates,

twenty-eight pairs of primers were designed to amplify the regions

containing each of the putative Eos binding sites (Table S1). Of

these Thirty-two putative Eos binding sites in the human b-globin

cluster, only three discrete regions, which located in the HS3 of

LCR, the promoter regions of Gc- and Ac-globin genes, were

confirmed to be occupied by Eos protein (Figure 3B). A significant

reduction of Eos combination at these three binding sites was

observed in K562 cells following 48 h of hemin induction,

compared with uninduced cells, when the immunoprecipitated

DNA was quantified by real-time PCR and compared with the

relevant input DNA (Figure 3C). This is consistent with the

observed decrease in Eos protein and mRNA expression following

hemin induction of K562 cells (Figure 1A and Figure 1B).

To investigate the effect of Eos on the expression of c-globin

gene, a series of dual-luciferase reporter assays were performed in

K562 cells. Firstly, a recombinant plasmid including the 1.4-kb c-

globin promoter (pGL3-basic 21383/+49 Gc/Luc) was con-

structed and was cotransfected with various concentrations of the

Eos expression vector (pcDNA3.1-Eos). Dual-luciferase reporter

assays indicated that Eos repressed c-globin promoter activity in a

dose-dependent manner (Figure 4A). When 1 mg of the

pcDNA3.1-Eos plasmid was used in luciferase reporter assays,

the luciferase activity of pGL3-basic 21383/+49 Gc/Luc was

reduced to about 50% of the activity observed in the absence of

the pcDNA3.1-Eos vector. To validate precise sites of silencing

elements bound by Eos in the c-globin promoter, a series of

truncated c-globin promoters (21383/+49, 2998/+49, 2864/

+49, and 2562/+49) linked to a luciferase reporter gene

respectively were cotransfected with pcDNA3.1-Eos or pcDNA3.1

empty vector respectively. Deletion analyses revealed that the

region between 2998 and 2864 of the promoter was responsible

for the negative effect of Eos overexpression on c-globin promoter

activity (Figure 4B). Mutants containing 21383 to +49 or 2998 to
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Figure 1. Eos represses c-globin gene expression specifically in K562 cells. (A) Western blot analysis indicated a decrease in Eos protein
levels and a marked increase in c-globin levels during erythroid differentiation of hemin-induced K562 cells. (B–C) Quantitative real-time PCR analysis
of Eos and c-globin mRNA expression in K562 cells following hemin treatment for 0, 12, 24, or 48 h. (D) Western blot analysis of Eos protein levels in
untransfected, pcDNA3.1-transfected, and pcDNA3.1-Eos-transfected K562 cells. (E) Northern blot analysis of c-, e-, and b-globin gene expression in
K562 cells before and after 48 h treatment with hemin. K, C, and E represent K562 cells, K562 cells transfected with pcDNA3.1, and K562 cells
transfected with pcDNA3.1-Eos, respectively. (F) Relative globin mRNA levels in untransfected, pcDNA3.1- and pcDNA3.1-Eos-transfected K562 cells

Regulation of Human c-globin Gene by Eos
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+49 of the c-globin promoter and with a mutation in the Eos

binding motif (at approximately position 2930) were analyzed by

luciferase reporter assay in K562 cells, with cotransfected

pDNA3.1-Eos or pDNA3.1. When the Eos binding motif was

mutated, overexpression of Eos was not repressive to c-globin gene

expression compared with control (Figure 4C). We generated a

pGL3-basic m’LCR-c-globin promoter luciferase reporter con-

struct by fusing the 1.4-kb m’LCR linked to the c-globin promoter

with the luciferase reporter gene in the pGL3-basic vector

(Figure 4D). We also generated a series of mutants, including

single mutations in the Eos binding site of the LCR or c-globin

promoter and dual-mutations in two of the Eos binding sites. The

relative luciferase activity in the K562 cells transfected with the

reporter construct containing the m’LCR was 6.5 times greater

than that in the K562 cells transfected with the reporter construct

without m’LCR, and cotransfection with pDNA3.1-Eos reduced

luciferase activity significantly. The single mutation of the Eos

binding site in LCR partially restored luciferase activity of the

LCR-c-globin promoter construct. The single mutation of the Eos

binding site in the c-globin promoter significantly rescued of

luciferase activity. Mutations in both of these sites resulted in a

near complete restoration of the luciferase activity. These results

suggest that these sites were functional Eos binding sites required

for repressive effect of Eos on c-globin gene.

The interaction between LCR and the c-globin promoter
is inhibited by Eos

To ascertain the mechanisms by which Eos inhibits c-globin

gene transcription we performed a chromosome conformation

capture (3C) assay in the presence or absence of enforced Eos

expression to test if Eos affects the interaction between LCR and

the c-globin promoter in K562 cells. Restriction enzyme XbaI was

used and an XbaI-digested DNA fragment that includes LCR

HS2/3/4 was elected as fixed region, herein referred to as

fragment 1. The relative cross-linking efficiency between fragment

1 and other XbaI fragments then was measured by quantitative

real-time PCR. Fragment 1 exhibited significantly higher relative

cross-linking efficiencies with fragments 6 that includes Gc-globin

promoter and 7 that includes Ac-globin promoter than with the

other fragments (Figure 5), consistent with the predominant

were analyzed by quantitative real-time PCR. The relative level of each globin mRNA is shown as the fold value of the mRNA level in untreated K562
cells. (G) Relative globin mRNA levels before or after hemin-inducted K562 cells were analyzed by quantitative real-time PCR. The relative level of each
globin mRNA is shown as fold value of the level of e-globin mRNA in untreated K562 cells. Each experiment was performed in triplicate, and mRNA
levels were normalized to GAPDH or b-actin mRNA expression. Error bars represent one standard deviation. *P,0.05, #P,0.01.
doi:10.1371/journal.pone.0022907.g001

Figure 2. Overexpression of Eos reduces c-globin gene expression in m’LCRAcybdb/GM979 cells. (A) Structural diagram of the integrated
construct m’LCRAcybdb, in which a 3.1-kb m’LCR cassette is linked to a 29-kb fragment from the human Ac- to b-globin gene. (B) Eos protein level was
analyzed by Western blot in m’LCRAcybdb/GM979 cells that were untreated and transfected with pcDNA3.1 or pcDNA-Eos. (C) The expression levels
of human c-, b-, and murine a-globin genes were analyzed by Northern blot in stable m’LCRAcybdb/GM979 transformants. Each globin mRNA level
was normalized to murine b-actin mRNA. M, C, and E represent m’LCRAcybdb/GM979 cells that were untransfected, transfected with pcDNA3.1
(control), and transfected with pcDNA3.1-Eos, respectively. (D) Human c-, b-, and murine a-globin mRNA levels were measured by quantitative real-
time PCR. Each PCR analysis was performed in triplicate, and expression levels were normalized to murine b-actin mRNA. Error bars represent
standard deviation. *P,0.05.
doi:10.1371/journal.pone.0022907.g002
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expression of the c-globin gene compared with the other globin

genes in K562 cells. In the presence of enforced Eos, a significant

decrease in the interaction between the LCR and the c-globin

promoter was detected both before and after hemin induction

(Figure 5). The repressive effect of Eos on c-globin transcription

may be partialy attributed to the inhibition of Eos on the

formation of a physical and functional link between the LCR and

the c-globin promoter.

Eos overexpression reduces c-globin gene expression in
CD34+ HPCs derived from umbilical cord blood

Human CD34+ HPCs were isolated from human umbilical cord

blood (UCB) and were induced to erythroid differentiation using

Epo. The Eos mRNA level decreased gradually during Epo-induced

erythroid differentiation of CD34+ HPCs, as measured by

quantitative real-time PCR (Figure 6A). CD34+ HPCs were

infected with the lentivirus control (Lenti-control) and the lentivirus

with Eos overexpression (Lenti-Eos) respectively. The high lentivirus

transduction efficiency of the CD34+ HPCs was observed through

GFP expression (data not shown), and overexpression of Eos mRNA

in CD34+ HPCs infected with lenti-Eos was confirmed by

conventional RT-PCR (Figure 6B) and quantitative real-time

PCR (Figure 6C). Globin mRNA levels in lentivirus-infected

CD34+ HPCs at 3, 7, 11, and 15 day of erythroid differentiation

also were analyzed by quantitative real-time PCR (Figure 6D).

Compared to untransfected and lenti-control-transfected CD34+
HPCs, a significant reduction of c-globin, but not b-globin, gene

expression was observed in CD34+ HPCs transfected with lenti-Eos

at each time point of erythroid differentiation (Figure 7A). This

suggested enforced Eos expression specifically and continuously

inhibited c-globin gene expression in vivo. Eos appeared to have a

minimal effect on c-globin gene expression prior to Epo induction.

This is probably because CD34+ HPCs are a mixture of cells

including HSCs and various progenitors, and c-globin mRNA has

minimal expression in CD34+ HPCs.

Additionally, after 7 d of erythroid induction culture when the

c- to b-globin switching appears, a slight increase in b-globin gene

expression and an obvious decrease in c-globin gene expression

were detected in lenti-Eos-infected cells compared with controls.

Concomitantly, lenti-Eos-infected cells exhibited a slightly more

rapid reduction in the ratio of c to [c+b]-globin mRNA compared

with controls (Figure 7B).

Enforced expression of Eos inhibits erythroid
differentiation

To examine the role of Eos in erythroid differentiation,

untransfected K562 cells and K562 cells transfected with

pcDNA3.1 or pcDNA3.1-Eos were induced by hemin. Erythroid

Figure 3. Identification of Eos-binding sites in the b-globin cluster. (A) A schematic representation of the human b-globin gene locus.
Putative Eos-binding sites (containing WTGGGAA sequence) are shown as vertical lines. Positive ChIP-PCR amplification was obtained using P1–P2,
P7–P8, and P9–P10, with P3–P4 and P5–P6 as negative controls. Eos-binding sites and flanking sequences are depicted, and mutated nucleotides are
indicated as red in mutation assays. (B) ChIP-PCR assays of Eos binding in K562 cells. Amplified fragments using the indicated primers and antibodies
demonstrated binding of Eos to the promoter regions of the Gc- and Ac-globin genes and to the LCR region in K562 cells. K and HK represent
untreated K562 cells and K562 cells treated with hemin for 48 h, respectively. (C) Quantitative ChIP analysis of Eos binding to the b-globin gene locus
before and after hemin induction in K562 cells. Experimental PCR products were normalized to the PCR products of relevant input DNA. The ‘‘K+IgG’’
and ‘‘K+Eos Ab’’ designations represent the relative occupancies of IgG and Eos antibody, respectively, in the b-globin gene locus before induction.
The ‘‘HK+IgG’’ and ‘‘HK+Eos Ab’’ designations indicate the relevant expression after hemin induction. The bar graphs represent averages of three
independent ChIP experiments. Error bars depict standard deviation.
doi:10.1371/journal.pone.0022907.g003

Regulation of Human c-globin Gene by Eos

PLoS ONE | www.plosone.org 5 July 2011 | Volume 6 | Issue 7 | e22907



differentiation then was evaluated by benzidine staining and flow

cytometric analysis of the erythroid markers transferrin receptor

(CD71) and anti–glycophorin A (CD235a). A marked decrease in

benzidine-positive cells was observed in K562 cells transfected with

pcDNA3.1-Eos compared with untransfected cells or cells trans-

fected with control vector (Figure 8A). Representative photos of

benzidine-stained K562 cells after 24 or 48 h of hemin induction

are showed in Figure 8B. In accordance with benzidine staining

results, lower expression levels of CD71 (Figure 8C) and CD235a

(Figure 8D) were observed in K562 cells transfected with

pcDNA3.1-Eos compared with cells transfected with control vector

when the cells were induced by hemin for 48 h.

CD235a also was examined by quantitative real-time PCR

and flow cytometric analysis during Epo-induced erythroid

differentiation of CD34+ HPCs. Cells infected with lenti-Eos

exhibited a reduction in CD235a at each time point during Epo

induction compared with controls (Figure 8E). The flow

cytometric analysis also demonstrated a decreased expression

in CD235a in the erythroid induction culture of CD34+ HPCs

infected with lenti-Eos compared with cells infected with

lenti-control at day 15 after Epo induction (Figure 8F). These

results suggest that overexpression of Eos inhibits erythroid

differentiation.

Discussion

In this study, we identified Eos as a repressor of the c-globin

gene during erythroid differentiation in K562 cells and in CD34+

Figure 4. Validation of functional Eos-binding sites in the b-globin cluster using luciferase reporter assays. (A) Eos represses c-globin
promoter activity in a dose-dependent manner. Luciferase reporter assays were performed in K562 cells. The recombinant pGL3-basic-1.4 kb c-globin
promoter (21383/+49) construct was cotransfected into K562 cells with increasing amounts of the pcDNA3.1-Eos expression vector. (B) Truncation
analysis of c-globin promoter activity in K562 cells. Cells were cotransfected with pGL3-basic-c-globin promoter constructs at various lengths and
either pcDNA3.1 (i.e., empty vector) or pcDNA3.1-Eos. Promoter/reporter gene constructs with different c-globin promoter lengths are depicted
along the left. (C) Mutation analysis of c-globin promoter activity in K562 cells. pGL3 constructs with different c-globin promoter regions (21383/+49
or 2998/+49) and with normal or mutated sequences were cotransfected with pcDNA3.1 (i.e., empty vector) or with pcDNA3.1-Eos into K562 cells.
(D) The luciferase reporter construct consists of the 3.1-kb m’LCR, the 1.4-kb c-globin promoter, and the luciferase reporter in the pGL3-basic plasmid
(see Materials and Methods). pGL3 constructs with normal or mutated sequences in the LCR or c-globin promoter were cotransfected with pcDNA3.1
or pcDNA3.1-Eos into K562 cells, and luciferase activities were determined. Luciferase reporter assay data are expressed as percentages of control (i.e.,
cells transfected with pcDNA3.1 alone) and represent the means 6 SE of three separate experiments after correcting for differences in transfection
efficiency by pRL-TK activities. Error bars represent one standard deviation. *P,0.05, #P,0.01.
doi:10.1371/journal.pone.0022907.g004
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HPCs. Previous reports have demonstrated that several genes

could negatively regulate c-globin gene expression, whereas stem

cell factor (SCF) induces c-globin gene expression by decreasing

COUP-TFII expression [14]. Cohen-Barak et al. reported that

Sox 6 binds to the ey-globin gene promoter and represses gene

transcription in mice [26]. BCL11A, a multi-zinc finger transcrip-

tion factor, was originally linked to c-globin levels in humans by a

genome-wide association strategy [27]. The knockdown of

BCL11A with small interfering RNA resulted in an increase in c-

globin without affecting the expression of other erythroid-specific

proteins, such as GATA-1, FOG-1, NF-E2, or EKLF. BCL11A

was significantly recruited at HS3 of the LCR and at two sites

between the Ac- and d-globin genes that were previously

implicated in developmental silencing of the c-globin gene [10].

As a member of the Ikaros family, Ikaros protein is recruited to the

human b-globin locus and targets the histone deacetylase,

HDAC1, and the chromatin remodeling protein, Mi-2, to the

human c-gene promoters, and thereby contributing to c-globin

gene silencing at the time when the c- to b-globin gene switching

happens [11].

Because a high level of Eos protein expression was detected in

K562 cells (Figure S2) and K562 cells have been widely used as a

model for the study of globin gene regulation and erythroid

differentiation, we examined the effects and mechanisms of Eos on

globin gene expression in K562 cells. Since K562 cells do not

endogenously express b-globin, we also stably transformed

m’LCRAcybdb/GM979 with the human b-globin gene cluster

and used erythroid induction cultures of CD34+ HPCs to examine

the effects of Eos on globin gene expression. A specific, negative

regulatory effect of Eos on the c-globin gene was demonstrated in

all of the three experimental systems.

ChIP-PCR indicated a reduction in Eos proteins bound to the

three positive Eos binding sites in the b-globin cluster in the

hemin-induced K562 cells compared with uninduced K562 cells

(Fig. 3B). This phenomenon could be relevant to the gradual

decrease in Eos protein during erythroid differentiation, and it is

consistent with the increase in c-globin gene expression owing to a

decrease in Eos repression following hemin induction. Promoter

truncation analyses suggested the present of a silencing element

between 2998 and 2864 of the c-globin promoter that could bind

Eos protein. Mutation (TCCC to GAAA) of the Eos binding motif

from 2929 to 2933 in a 1.4-kb of the c-globin promoter resulted

in the nearly complete restoration of luciferase activity in K562

cells expressing a reporter construct and overexpressing Eos. The

LCR’s influence on c-globin gene expression was displayed by

dual-luciferase reporter assay using a pGL3-basic m’LCR-c-globin

promoter luciferase reporter construct (Figure 4D). The enforced

expression of Eos significantly decreased the luciferase activity.

Either a mutation in the Eos binding site in the LCR, or a

mutation in the binding site in the c-globin promoter region

resulted in a partially restoration of the luciferase activity.

Mutations in both of the two sites resulted in a near complete

restoration of the luciferase activity. In the dual-luciferase reporter

assays, we speculated that Eos bound to the sites is involved in

formation of a repression complex with other protein and the

repression complex also reduces the interaction between the LCR

and the c-globin promoter.

We also detected expression of some transcription factors

(BCL11A, Ikaros, TR2, TR4, NF-E3, GATA1, EKLF and

FKLF), which had been reported to play important roles in c-

globin gene regulation, before and after hemin induction of K562

cells. Real-time PCR assay did not detect significantly change in

the expression of these transcription factors when Eos was

overexpressed in K562 cells (Figure S3). The results suggested

that the c-globin gene regulation by Eos is not a consequence of

the modification in expression of these transcription factors by Eos.

Our 3C assay revealed that HS4, HS3, and HS2 in LCR

function as a whole to interact with the c-globin promoter and

regulate gene expression. This is consistent with the previous

finding that individual HS core elements interact with the

transacting factors bound to the HSs to form a higher-order

structure referred to as the LCR ‘‘holocomplex’’ [28]. The

repressive effect of Eos on the interaction between the LCR and

the c-globin promoter in K562 cells after hemin induction is more

noticeable than before hemin induction (Figure 5). This might be

an indirect consequence of Eos influence on K562 cell

differentiation.

Our results demonstrated that enforced Eos expression reduced

the proportion of benzidine-positive cells compared with control

during erythroid differentiation of hemin-induced K562 cells. This

was accompanied by decreased expression of CD235a and CD71

(Figure 8), suggesting that Eos may inhibit erythroid differentiation

of K562 cells. The increased c-globin gene expression is an

indicator of erythroid differentiation of hemin-induced K562 cells

and Epo-induced CD34+ hematopoietic stem/progenitor cells. So

the dual effect of Eos on erythroid differentiation and the c-globin

Figure 5. Eos decreases the interaction between the LCR and
the c-globin region promoters. (A–B) The human b-globin locus
was analyzed by 3C assay in K562 cells that were (A) untransfected or
transfected with pcDNA3.1-Eos, or (B) that were untransfected or
transfected with pcDNA3.1-Eos and hemin-induced for 48 h. The
relative positions of b-like globin genes are represented as black
arrows along the top of each graph. The thick line (1) indicates the
position and size of the fixed fragment 1 (LCR HS2/3/4), and the thin
lines (2–11) show the position and size of other XbaI fragments. Data
are presented as mean 6 SEM (n = 3) cross-linking frequencies between
the LCR (HS2/3/4) and differentiation fragments, Error bars represent
one standard deviation. *P,0.05.
doi:10.1371/journal.pone.0022907.g005
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gene regulation are simultaneous and concurrent. However the

enforced Eos expression did not significantly reduce transcription of

other globin genes during erythroid differentiation in either K562

cells or CD34+ HPCs, which demonstrated a specific negatively

regulation effect of Eos on the c-globin gene. These also suggested

that the increase of c-globin expression during erythroid differen-

tiation is not only a consequence of the effect of Eos on erythroid

differentiation. There may be different mechanisms for the

repression from Eos on erythroid differentiation and the c-globin

gene expression. In this study, we examined mainly the mechanisms

for which Eos regulates the c-globin gene transcription.

The mammalian b-globin gene locus is a very well-characterized

model system for studying long-range chromosomal interactions

during erythropoiesis. The LCR is the major structural component

of the human b-globin locus, and it is required for high-level globin

gene transcription [29]. The human b-globin LCR contains binding

sites for several transcription factors, including NFE2, EKLF,

GATA-1, and Sp1 [30]. Other reports strongly suggested that

contacts between the LCR and various genes of the b-globin locus

are developmentally controlled and are required for the LCR to

influence the expression rates of individual globin genes [31,32].

The results of our 3C assay indicated that Eos regulates c-globin

gene expression by inhibiting the interaction between the LCR and

the c-globin promoter (Figure 5). Keys and colleagues examined the

role of Ikaros in the assembly of the human b-globin active

chromatin hub and subsequent globin gene transcription [20].

Ikaros was involved in human globin gene switching through Ikaros-

Eos heterodimers or homodimers [20].

In this study we measured the kinetics of c- and b-globin genes

expression during Epo-induced erythroid maturation of CD34+
HPCs. As shown in Figure 7A, the levels of c-globin mRNA

exhibited marked decreases on the whole and the b-globin mRNA

levels exhibited slight increases in the lenti-Eos-infected CD34+
HPCs after day 7 of erythroid induction culture when the

conversion of c- to b-globin gene expression occurs. At the same

time, the decline in the ratio of c to [c+b]-globin mRNAs also

appeared to be a little more rapid in the Eos-virus-infected cells

compared with controls (Figure 7B). These results suggest that

enforced Eos expression had a minor effect on c- to b-globin

switching during erythroid differentiation of HPCs.

In conclusion, the present study suggests that Eos contributes

significantly to the transcriptional regulation of c-globin during

erythroid differentiation of K562 cells and UCB-derived CD34+
HPCs.

Materials and Methods

Cell lines, cell culture, and erythroid induction of K562
cells

Chronic myelogenous leukemia cell line K562 was purchased

from the Cell Center of The Institute of Basic Medical Science,

Chinese Academy of Medical Science. Human embryonic kidney

Figure 6. Enforced expression of Eos inhibited the rise in c-globin gene expression during erythroid differentiation of CD34+ HPCs.
(A) The Eos mRNA level was analyzed by quantitative real-time PCR during Epo-induced erythroid differentiation of UCB-derived CD34+ HPCs. (B–C)
The Eos mRNA level was analyzed by (B) RT-PCR and (C) quantitative real-time PCR in the erythroid induction culture of CD34+ HPCs that were
untreated, infected with lentiviruses carrying the pWPXL vector, or infected with recombinant pWPXL-Eos lentiviruses. (D) Histograms illustrating
globin expression as determined by quantitative real-time PCR in CD34+ HPCs induced into erythroid differentiation for 3, 7, 11, or 15 d. Quantitative
real-time PCR experiments were performed in triplicate and were normalized to b-actin mRNA levels. The relative expression of each mRNA is
depicted as the fold value in mRNA level compared to untreated CD34+ HPCs. Error bars represent one standard deviation. *P,0.05, #P,0.01.
doi:10.1371/journal.pone.0022907.g006
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cell line 293TN was purchased from System Biosciences (SBI, CA,

USA). The mouse erythroleukemia cell line MEL GM979 was a

gift from Dr. Stamatoyannopoulos at University of Washington.

All of the cells were cultured at 37uC and 5% CO2 in RPMI 1640

medium or Dulbecco’s Modified Eagle Medium (GIBCO, NY,

USA), supplemented with 10% fetal bovine serum (GIBCO),

2 mM L-glutamin, 100 U/mL penicillin, and 100 mg/mL strep-

tomycin (Invitrogen, CA, USA). K562 cells were induced into

erythroid differentiation by incubation in medium containing

50 mM hemin (Sigma-Aldrich, Germany). Cells were harvested at

each desired time point (0, 24, 48, and 72 h).

RNA isolation and quantitative real-time PCR analysis
Total RNA was isolated from cells harvested using TRIzol reagent

(Invitrogen) according to the manufacturer’s instructions. RNA was

reverse-transcribed to cDNA using the M-MLV reverse transcriptional

system (Invitrogen). Quantitative real-time PCR were performed using

an iQ5 Real-Time PCR Detection System (Bio-Rad, California, USA)

and SYBR Premix Ex Taq kit (Takara, Dalian, P. R. China). Primers

used in quantitative real-time PCR are listed in Table S2.

Plasmid constructs
The sequences encoding Eos were amplified by PCR from

cDNA derived from K562 cells and cloned into the pcDNA3.1(+)

expression vector (Invitrogen) or the pWPXL retroviral expression

vector (Addgene). The primers Eos-F (59- TGCCTGCGAAAT-

GACGG -39) and Eos-R (59- AGGGCACAAGAGGTATG-

GAGTA -39) were used for PCR amplification.

Promoter region of the c-globin gene (21383 to +49 relative to

the transcription start site) was amplified from human genomic

DNA and cloned into the luciferase reporter vector pGL3-basic

(Promega, Madison, WI, USA). A series of truncated c-globin

promoter regions including 2562 to +49, 2864 to +49, and 2998

to +49, were cloned into the pGL3-basic vector as described

previously [33]. The 3.1-kb micro-LCR (m’LCR) sequence was

amplified from the cosmid construct m’LCRAcybdb [34] by PCR

and was inserted upstream of the c-globin promoter in the pGL3-

basic plasmid. Mutations in the putative Eos binding sequence of

the construct plasmid were introduced using PCR-based site-

directed mutagenesis. The bases TTTC replaced GGGA at LCR

region and GAAA replaced TCCC in the approximately position

2930 of the c-globin gene promoter (Fig. 3A). All plasmids were

prepared using the Plasmid Maxi Kit (Qiagen, CA, USA). All

constructs were sequence-verified.

Northern blot and Western blot
Northern blot analysis of globin mRNAs was performed as

described previously [35]. Briefly, T4 polynucleotide kinase and

c-32P ATP were used to 59 end-label ssDNA probes (NEB). Probe

sequences are listed in Table S3. Western blot analysis was

performed as described previously [24]. The following primary

antibodies were used: anti-Eos (Santa Cruz Biotechnology, Inc.,

CA, USA), anti-c-globin (Santa Cruz), anti-b-actin (Proteintech,

Group Inc., Chicago, IL), and anti-GAPDH (Proteintech). HRP-

conjugated secondary antibodies were used. Immunoblots were

quantified using AlphaEaseFC software.

Cell transfection and luciferase reporter assay
GM979 cells were stably transformed with m’LCRAcybdb as

described previously [36]. Briefly, 26107 cells were cotransfected

with linearized cosmid m’LCRAcybdb and linearized plasmid

pTKneo in HEPES buffered saline by electroporation at 250 V

and 960 mF. Stable GM979 transfectants were selected in medium

containing 130 mg/mL G418 for 2 weeks.

For the dual-luciferase reporter assay, K562 cells were seeded in

24-well plates and cotransfected with plasmid pcDNA3.1-Eos or

with pcDNA3.1 and the luciferase reporter plasmid (pGL3-basic-

based construct and pRL-TK plasmid), respectively, using

Lipofectamine LTX reagent (Invitrogen) according to the

manufacturer’s instructions. The transfection medium was re-

placed with complete medium after 6 h, and cells were cultured

for 48 h. Cells then were lysed using Passive Lysis Buffer

(Promega), and luciferase activities were measured with a Modulus

Microplate Luminometer (Turner Biosystems, CA, USA) using the

Dual-Luciferase Reporter Assay System (Promega) according to

the manufacturer’s instructions.

Chromatin immunoprecipitation-PCR (ChIP-PCR)
Chromatin immunoprecipitation (ChIP) assays were performed

essentially as previously reported [37]. Briefly, uninduced and

hemin-induced K562 cells were harvested and fixed in 1%

formaldehyde (Sigma-Aldrich, Deisenhofen, Germany) at room

temperature for 10 min and quenched for 5 min with glycine.

Cells were lysed and sonicated to obtain chromatin fragments

that were approximately 500–1000 bp in length. ChIP was

performed using the EZ-ChIP Chromatin Immunoprecipita-

tion Kit (Millipore, MA, USA) with minor modifications to

the manufacturer’s instructions. A rabbit polyclonal anti-Eos

Figure 7. The effect of Eos on c- to b-globin gene switching
during erythroid differentiation. (A) Kinetics of c- and b-globin
gene expression during the erythroid maturation of CD34+ HPCs. ‘‘Eos’’
represents CD34+ HPCs infected with lentiviruses carrying Eos. (B) Ratio
of c to [c+b] mRNA during the erythroid maturation of CD34+ HPCs.
Quantitative real-time PCR assays were performed in triplicate and were
normalized to b-actin mRNA levels. Data were obtained from three
independent experiments, and error bars represent standard deviation.
*P,0.05, #P,0.01.
doi:10.1371/journal.pone.0022907.g007
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antibody (Santa Cruz) was used as the immunoprecipitating

antibody, and rabbit IgG (Santa Cruz) was used as the control.

Input and immunoprecipitated DNA were amplified by PCR

using primers listed in Table S1. Quantitative real-time PCR was

performed as described previously [38,39]. Immunoprecipitated

DNA was amplified using SYBR green dye on a Bio-Rad iQ5

Real-Time PCR Detection System, and experimental PCR

products quantified by comparison with the PCR products of a

dilution series of relevant input DNA.

Chromosome conformation capture (3C) assay
The 3C assay was performed as described previously [40,41]

with minor modifications. K562 cells (16108) were harvested and

crosslinked with 1% formaldehyde at room temperature for

Figure 8. Overexpression of Eos inhibits erythroid differentiation of K562 cells and CD34+ HPCs. (A) Benzidine staining of K562 cells that
were untransfected, transfected with the control vector (pcDNA3.1), or transfected with the Eos overexpression vector (pcDNA3.1-Eos). The
percentage of benzidine-positive cells in each group was counted following hemin induction periods of 0, 12, 24, 36, or 48 h. Data were obtained
from three independent experiments, and error bars represent standard deviation. *P,0.05. (B) Representative benzidine staining of untransfected
and transfected K562 cells that were hemin-induced for 24 or 48 h. (C–D) Flow cytometric analysis of K562 cells transfected with control or pcDNA-
Eos and treated with (C) anti-transferrin receptor (CD71) or (D) anti-glycophorin A (CD235a) antibodies after 48 h of hemin induction. (E) Quantitative
real-time PCR analysis of CD235a mRNA level during Epo-induced erythroid differentiation of CD34+ HPCs. Error bars represent one standard
deviation. *P,0.05. (F) Flow cytometric analysis of CD235a in K562 cells transfected with lenti-Eos or lenti-control after Epo induction for 15 d.
doi:10.1371/journal.pone.0022907.g008
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10 min and quenched with glycine to a final concentration of

0.125 M. After cells were lysed, SDS was added to a final

concentration of 0.1%, and the reaction was incubated at 37uC for

10 min. Triton X-100 then was added to 1%. DNA was digested

with XbaI (NEB) overnight at 37uC. The restriction enzyme was

inactivated with the addition of 1.6% SDS, and the digested DNA

was incubated at 65uC for 20 min. The reaction was diluted to

2.5 ng/mL DNA, and Triton X-100 was added to 1%. DNA was

ligated for 4–5 h at 16uC using T4 ligase (NEB). Cross-links were

reversed by overnight incubation in 5 mg/mL proteinase K at

65uC. DNA was purified by phenol-chloroform extraction and

ethanol precipitation. DNA concentrations were measured using

the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific

Inc., Bremen, Germany) and were diluted for quantitative real-

time PCR.

To generate the control template with detectable amounts of

randomly ligated DNA fragments, PCR fragments from ligation

products, which spanned each restriction sites, were purified from

the agarose gel to enrich for the ligation products of interest.

Equimolar concentrations of the PCR fragments were mixed,

digested with XbaI, and ligated. The ligated fragments were

purified by phenol extraction and ethanol precipitation and

diluted to an appropriate concentration. Purified fragments

(300 ng) were mixed with the same amount of digested and

randomly ligated genomic DNA. The mixture was used as control

sample for quantitative real-time PCR. The experimental PCR

products were quantified by comparison with the PCR products of

relevant control. The 3C primers used in this study are listed in

Table S4.

Assay of erythroid differentiation: benzidine staining and
flow cytometry

Erythroid differentiation of K562 cells was scored by benzidine

staining as reported previously [42]. Flow cytometry was carried

out according to standard protocols, and samples were analyzed

using a C6 flow cytometer (Accuri Cytometers, MI, USA).

Isolation and erythroid induction of CD34+ HPCs and
recombinant lentivirus generation/infection

Human UCB samples were obtained with informed consent

from normal, full-term deliveries. CD34+ HPCs were purified

from normal UCB using magnetic-activated cell sorting (MACS)

technology according to the manufacturer’s recommendations

(Miltenyi Biotec, Bergisch-Gladbach, Germany). CD34+ HPCs

were cultured in IMDM supplemented with 30% fetal bovine

serum (GIBCO), 1% BSA, 100 mM 2-mercaptoethanol (2-ME)

(Sigma), 2 ng/mL recombinant human interleukin-3 (IL-3),

100 ng/mL recombinant human stem cell factor (SCF) (Pepro-

Tech, London, UK), 2 U/mL recombinant human Epo (R&D

Systems, MN, USA), 60 mg/mL penicillin, and 100 mg/mL

streptomycin. Cells were harvested every 2 d during erythroid

induction.

The expression plasmid pWPXL-Eos was cotransfected with

packaging plasmids into 293TN cells using Lipofectamine with

Plus Reagent (Invitrogen). The packaging kit was purchased from

System Biosciences and operated according to the manufacturer’s

instructions. Recombinant lentivirus particles (i.e., lenti-Eos and

lenti-control) were harvested and added to the medium of CD34+
HPCs in culture. Lentivirus-infected CD34+ HPCs were washed

with PBS and induced to erythroid differentiation with Epo for 2

weeks.

Statistics
Each set of experiments was repeated at least in triplicate, and

standard error values were calculated. Data were analyzed using

Student’s two-tailed t-test, and P-values less than 0.05 were

considered significant.

Supporting Information

Figure S1 Schematic representation of Eos protein
structure. The black ovals represent the zinc finger regions,

and N-terminal DNA-binding zinc fingers can bind to DNA

binding motif sequences (WGGGAAT).

(TIF)

Figure S2 Western blot analysis of Eos expression in
some human cell lines and MELGM979.

(TIF)

Figure S3 Quantitative real-time PCR analysis of mRNA
levels of eight transcription factors in untransfected,
pcDNA3.1-transfected and pc3.1-Eos-transfected K562
cells. (A) Before hemin treatment. (B) After 48 h with hemin

treatment. Each real-time PCR experiment was performed in

triplicate and mRNA level was normalized to b-actin mRNA

expression. The relative expression of each mRNA was shown as

the fold values of mRNA levels in untreated K562 cells.

(TIF)

Table S1 Primers used for ChIP-PCR.

(DOC)

Table S2 Primers used for real-time PCR.

(DOC)

Table S3 Probes used for Northern blot.

(DOC)

Table S4 Primers used in the 3C assay.

(DOC)
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