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Abstract

Over the past decade, investigators have attempted to establish the pathophysiological mechanisms by which non-
penetrating injuries damage the brain. Several studies have implicated either membrane poration or ion channel
dysfunction pursuant to neuronal cell death as the primary mechanism of injury. We hypothesized that traumatic
stimulation of integrins may be an important etiological contributor to mild Traumatic Brain Injury. In order to study the
effects of forces at the cellular level, we utilized two hierarchical, in vitro systems to mimic traumatic injury to rat cortical
neurons: a high velocity stretcher and a magnetic tweezer system. In one system, we controlled focal adhesion formation in
neurons cultured on a stretchable substrate loaded with an abrupt, one dimensional strain. With the second system, we
used magnetic tweezers to directly simulate the abrupt injury forces endured by a focal adhesion on the neurite. Both
systems revealed variations in the rate and nature of neuronal injury as a function of focal adhesion density and direct
integrin stimulation without membrane poration. Pharmacological inhibition of calpains did not mitigate the injury yet the
inhibition of Rho-kinase immediately after injury reduced axonal injury. These data suggest that integrin-mediated
activation of Rho may be a contributor to the diffuse axonal injury reported in mild Traumatic Brain Injury.
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Introduction

Blast-induced mild Traumatic Brain Injury (mTBI) is the most

frequent wound of the conflicts in Afghanistan and Iraq [1].

Approximately 60% of total combat casualties are associated with

blast events generated by improvised explosive devices, and recent

studies suggest that nearly 16% of US combatants have been

diagnosed with mTBI [2]. Although how blast energy is

transmitted to the brain is not well understood, in vivo studies

and clinical reports have shown that exposure to blast can cause

mTBI [2,3,4]. Interestingly, the neuronal injury observed in these

studies resembles diffuse axonal injury (DAI), a common pathology

observed following mTBI in vivo [5]. Diffusion tensor imaging

studies have identified structural alteration in white matter tracts

in military personnel who previously suffered blast-induced mTBI

[6,7], and experimental models have linked these structural

alterations to DAI [8]. However, the cellular mechanisms which

initiate this pathophysiological response are not well understood.

In vitro models of TBI may not fully recapitulate the complexity

of the brain, but they provide unique insight into its cellular

pathology. Previous models of mTBI have proposed that a

disruption in ion homeostasis initiates a sequence of secondary

events ultimately leading to neuronal death, however, membrane

poration can only account for a portion of injured neurons [9,10],

and excitotoxicity due to changes in ion channel homeostasis [11]

cannot account for observations of axonal retraction.

We hypothesized that mechanical perturbation of integrins in

the neuronal membrane may represent an injury pathway that

would account for DAI in mTBI. Integrins are transmembrane

proteins that couple the cytoskeleton in the intracellular space to

the matrix network in the extracellular space, providing mechan-

ical continuity across the membrane [12]. Mechanical forces

propagating through these coupled networks can activate signal

transduction pathways, alter ion channel currents, and initiate

pathological cascades [13,14]. In the brain, integrin signaling is

implicated in development and memory potentiation [15,16,17,

18,19,20], however, there are no reports on the role of integrin

signaling in mTBI.

To test our hypothesis, we built a high velocity tissue stretcher to

deliver an abrupt mechanical perturbation to cultured neonatal rat

PLoS ONE | www.plosone.org 1 July 2011 | Volume 6 | Issue 7 | e22899



cortical neurons. These experiments demonstrated that neuronal

injury is a function of focal adhesion size and density. Using

magnetic tweezers and coated paramagnetic beads bound to

neurons, we measured the difference in the failure strengths of focal

adhesions in the soma versus neurites, and found the latter to have

significantly weaker attachments to the substrate. Using the magnetic

tweezers, we applied an abrupt force to these neurons and found that

with fibronectin (FN)-coated beads neurite focal swelling, including

abrupt mechanical failure in neurites, occurred 100s of microns

away from the soma, suggesting that injury forces may propagate

through the neuronal cytoskeleton. Conversely, poly-L-lysine (PLL)-

coated beads attached to neurites induced only a local injury.

Membrane poration was only observed at extreme strains in a subset

of experiments, whereas at lower strains, integrin-induced focal

swelling was observed without membrane poration. The injury was

not mitigated with the use of a calpain inhibitor, suggesting a

calpain-independent injury mechanism. Treatment with a Rho-

kinase inhibiter decreased neuronal injury, suggesting a role for

downstream integrin-mediated cascade events in neuronal injury.

Results

High Speed Stretch Induces Strain-Dependent Neuronal
Injury

The spatio-temporal profile of the mechanical perturbation,

such as a blast wave, in the brain is likely variable and, given the

timescale of blast wave propagation, quite rapid. In order to

mimic this sudden mechanical stimulus, we designed and built a

high speed stretcher (HSS) system to deliver an abrupt strain to a

population of neurons cultured on a flexible silicon elastomer

substrate coated with PLL (Fig. 1A), similar to previous in vitro

stretch models [21]. We seeded primary neonatal rat cortical

neurons on stretchable membranes five days before experiments

to allow dendritic and axonal extension. During experiments, the

Figure 1. High speed stretch model of neuronal cultures indicates a strain dependent injury response identified by focal swelling of
the neurites without porating the membrane. (A) Neurons were cultured on elastomer membranes that were quickly stretched, transferring
injurious forces to neurons. (B) Beta-3-Tubulin immunofluorescence imaging showed that prior to stretch, neurons exhibited a highly branched,
smooth neurite morphology. After stretch, many neurons developed widespread focal swellings along their neurites (red arrows) (Scale Bar = 20 mm).
(C) Quantification of neuronal injury showed an initial significant response between 0% and 10% strains (n$4). Neuron loss due to stretch also
increased with strain magnitude. (D) The percentage of neurons exhibiting signs of membrane poration, as indicated by the uptake of a membrane
impermeable dye, following stretch showed an initial significant increase between 25% and 40% strain (n$3). All bars SEM for all panels, * p,0.05.
doi:10.1371/journal.pone.0022899.g001
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substrates underwent an abrupt, uniaxial stretch (at 1% per ms) to

generate a strain field of defined magnitude (Fig. S1 and Video

S1). Neuronal injury was defined as the appearance of focal

swellings along neurites, neurite retraction, or abrupt mechanical

failure of the neurite (Fig. 1B), similar to injury morphologies

reported in previous in vitro fluid shear models of injury [9] and

similar to swelling observed in DAI in vivo [22]. We found that

neuronal response to stretch was heterogeneous and dependent

upon strain magnitude (Fig. 1C), similar to what has been

reported in vivo [10]. Few neurons were lost, defined as abrupt

failure of all attachment to the substrate, due to the stretch at

strain magnitudes less than 10% and a small increase in loss was

observed at 25% strain. At 10 minutes following stretch, a

significant increase in focal swelling was observed for strain

magnitudes greater than 5%. For all subsequent studies, we

focused on strain magnitudes of 0–10%, as this range captured

the threshold of inducing neuronal injury. Also, in this strain

range only a small percentage of neurons exhibited signs of

mechanoporation, as indicated by the uptake of membrane

impermeable dye from the extracellular solution (Fig. 1D), or

apoptosis, as indicated by TUNEL staining (Fig. S2). Thus, we

identified a strain dependent injury response in our neuronal

populations that is not explained by membrane poration.

Stretch Injury is Focal Adhesion Complex (FAC) Density-
Dependent

The cytoskeleton of the neuron is anchored to the substrate

through FACs [23] providing a link for force propagation in the

cell (Fig. 2A). We reasoned that we could control FAC density by

culturing neurons on microcontact printed lines (10 mm wide) of

PLL or FN to guide neurite extension. On PLL surfaces,

extracellular matrix (ECM) deposition from media serum provides

specific attachment sites for neuronal FACs (Fig. 2B, S3). By using

vinculin as a marker for FACs, we measured total FAC area in

each cell and found that neurons cultured on FN-coated substrates

formed significantly more FACs per cell (181630 mm2) than PLL-

coated substrates (58618 mm2) (Fig. 2C). Furthermore, analyzing

individual regions (puncta) of FACs revealed that FACs were also

smaller and less dense per unit area on PLL-coated substrates as

compared to those in neurons on FN-coated substrates (Fig. 2C–

D).

We asked how neuronal focal adhesion density affected the

neuronal injury. We coated the culture wells of the stretchable

substrates with either FN or PLL prior to seeding them with

neurons to regulate the density and number of FACs. After five

days in culture, we subjected the neuronal networks to an abrupt

strain with the HSS system. We observed an increase in the

Figure 2. Substrate coating influences neuronal FAC formation and injury progression. (A) Neurons are mechanically coupled to the
substrate via FACs that couple the intracellular cytoskeleton to the ECM. (B) Immunofluorescent imaging of vinculin puncta indicated the presence of
FACs. Scale bars correspond to 8 and 10 mm, for PLL and FN respectively. Quantification of (C) total vinculin puntca area (n = 8) (D) indicated that a FN
coated substrate induced FAC formation over a larger area and with greater average cluster size compared to a PLL coated substrate (n = 5). (E) The
percentage of neurons that exhibited widespread focal swelling following stretch injury was greater on a FN coated substrate compared to a PLL
coated substrate at 10 minutes (n$4 for PLL and n$8 for FN). All bars SEM for all panels, * p,0.05.
doi:10.1371/journal.pone.0022899.g002
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proportion of neurons exhibiting focal swellings on FN-coated

substrates when compared to neurons cultured on PLL at both 5%

and 10% strains (Fig. 2E). Since PLL-coated substrates induce the

formation of smaller and less dense FACs when compared to

neurons cultured on FN, the difference in injury rates as a function

of FAC size and density suggests a role for an integrin-mediated

injury mechanism. In this case, abrupt stretch of the cell substrate

uniformly injures the more robust focal adhesion architectures of

the FN-seeded neurons because they are more rigidly adhered at

networked points throughout the neuron’s soma and neurites.

Neurites Are More Susceptible to Injury
Given the focal nature of axonal swelling in DAI [22], it is

reasonable to assume that there is heterogeneous vulnerability to

injury within the various structures of a neuron, such as the

dendrites, axons, and soma. Examination of FAC density in

immunostained neurons led us to hypothesize that the larger, more

numerous FACs of the soma would endow it with a higher

threshold for mechanical failure than those in neurites. We used

magnetic tweezers to apply nanoNewton (nN) forces to 4.5 mm

FN-coated paramagnetic beads bound to specific segments of

individual neurons (Fig. 3A). By increasing the applied force with

time (Fig. 3B), we peeled neurons from the PLL and FN coated

substrates. After correcting for displacement of the paramagnetic

bead position relative to the magnetic tweezer tip, we found a

linear behavior in the speed with which neurons were peeled from

PLL-coated substrates whereas neuronal peeling on FN-coated

substrates was represented by a sigmoidal curve (Fig. 3C). These

differences can be directly related to the FAC density (see Fig. 2B)

and thus suggest adhesion strengthening on FN-coated substrates.

We sought to determine the relative vulnerabilities of the soma

versus the neurite to strain injury and compared the failure

strengths of FACs in these different regions. We reasoned that a

relative difference in FAC failure strength between the soma and

its neurites would serve as an indicator of vulnerability to

mechanical injury. We used the magnetic tweezers to measure

the maximum force required to break the FACs that bound the

soma and neurites to the substrate. The force required to detach

the soma was found to be higher than that required to detach the

neurite for both coatings, and significantly larger for FN-coated

substrates (Fig. 3D). The contribution of vinculin-containing FACs

in the adhesion strengthening of the soma versus the neurite is

illustrated by the linear relationship between mean unbinding

force and focal adhesion size (Fig. 3E). The differences in adhesion

strength suggest that axonal and dendritic extensions have a

vulnerability to integrin-mediated mechanical injury in axons.

Injury Extent Depends on Integrin Binding
Integrins provide mechanical continuity between the ECM and

the cytoskeleton, thus mediating the possible propagation of

mechanical forces bidirectionally across the membrane. The

cytoskeleton is an integrated polymer network that propagates

mechanical forces throughout a cell. We asked whether a brief,

traumatic pull to simulate injury forces via integrins (FN-coated

paramagnetic beads), versus a nonspecific (PLL-coated paramag-

netic beads) administration of the force to the cell, would result in

different injury modalities (Fig. 3F). We reasoned that this

experiment would reveal an injury threshold, similar to the force

thresholds previously reported for integrin-mediated neurite

formation [24]. Using magnetic tweezers, we administered abrupt

(100 msec), 0.5–5.5 nN forces to FN-coated paramagnetic beads

attached to the surfaces of cultured neurons and established an

injury force dose response curve. These data revealed a focal

adhesion injury threshold of 4nN (Fig. 3G). Consistent with an

integrin-mediated injury mechanism, 62% (n = 13) of neurons

were injured with FN-coated beads, while 33% (n = 12) of neurons

were injured with PLL-coated beads (Fig. 3H), in agreement with

the results reported in Fig. 2E with the HSS. In neither case was

membrane poration observed (Fig. S4). The ability of PLL-coated

beads bound to the apical surface of the axon to injure despite

their inability to specifically bind integrins was likely due to the fact

that neurons attach to the substrate through integrins on the basal

surface and local stretching of the cell membrane may activate

these integrin complexes and induce injury, albeit at a lower rate.

Furthermore, abrupt pull of bound FN-coated beads consistently

induced formation of focal swellings on neurites extending from

the opposite side of the soma, generating a global injury (100% of

injured neurons, Fig 3I and Video S2), where focal swellings

appeared up to 150 mm away from the bead pull site (Fig 3J and

Fig. S5). Similar perturbations of PLL-coated beads tended to

injure near the point of attachment, generating a local injury

(Fig. 3K and Video S3). We also tested a 1 sec bead pull and noted

similar injury morphologies (Fig. S6). It should be noted that

neither the magnetic field alone, attached beads alone, nor

Acetylated-LDL-coated beads were able to induce injury (Figs.

S6–S8). That integrin-bound beads were able to injure neurons

globally, while PLL-coated beads tended to injure cells only

locally, suggests that despite the local nature of the insult, integrin-

mediated forces result in injury at a distance, leading to a global,

cellular response propagated through the CSK.

Injury is ROCK-Dependent
Integrin signaling may activate secondary signaling cascades

which cause neuronal injury. Previous reports suggest that cysteine

proteases, such as calpains, actively degrade the cytoskeleton and

that their inhibition can reduce neuronal injury [10,25]. Others,

however, have suggested the involvement of additional or multiple

pathways leading to different forms of neuronal injury [26,27]. We

asked if a calpain inhibitor would reduce the instance of focal

swelling in our model. Using the HSS system with neuronal

cultures seeded on PLL substrates, we observed that the

application of MDL-28170 to inhibit calpain activation either

before (Fig. S9), or immediately following, abrupt stretch yielded

no significant change in neurite focal swelling, suggesting that

calpain activation cannot explain neuronal injury in our model

(Fig. 4A). Previous work has shown that integrin mediated RhoA

activation may cause cytoskeleton reorganization, stiffening, and

contraction in other cell types [28,29]. Since increased RhoA

activity has been noted in previous in vivo TBI models [30], and

more recently inhibition of ROCK, a downstream effector of

RhoA, has been shown to be an important therapeutic target in

various neurodegenerative disease [31], we asked whether

integrin-activated Rho-ROCK signaling may contribute to

neuronal injury in our model. Immediate application of HA-

1077, a ROCK inhibitor, following stretch with the HSS system

resulted in a dose-dependent decrease in the percentage of

neurons exhibiting focal swellings (Fig 4B). This apparent

neuroprotective effect of HA-1077 was observed at both 5% and

10% strain magnitudes (Fig 4C). These studies suggest that an

integrin-mediated signaling cascade may be converging on a

ROCK-mediated pathway, identifying a series of potential targets

for future in vivo therapeutic studies.

Discussion

Here we have shown that an acute mechanical perturbation of

neuronal integrins is sufficient to induce neuronal focal swelling,

reminiscent of DAI in vivo. Previous studies have attributed this

Integrin Signaling in Diffuse Axonal Injury
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Figure 3. Role of integrins in adhesion strengthening and injury. (A) Paramagnetic beads, as shown by SEM, were bound to neurons. (B) The
failure strength of neuron/substrate adhesions was measured using either FN-coated (red) or PLL-coated (blue) substrates. The beads were pulled
with an ascending ramp in force as indicated by the inset. (C) The speed at which neurons detached from the substrate (Peeling Speed) during the
ascending pull was plotted as a function of the applied force for PLL-coated (blue) and FN-coated substrates (red) (n$4). (D) The maximum force
required for complete detachment (Mean Unbinding Force) for soma (dashed) and neurite (plain) was plotted for PLL-coated substrates (blue) and
FN-coated substrates (red) (n$4). (E) Mean unbinding forces for the soma (circles) and neurites (triangles) of cells on PLL or FN coated substrates was
plotted as a function of mean vinculin area (n$4). (F) Magnetic Tweezers were used to deliver a 100 ms pulse (inset) to neurons with either FN (red)
or PLL (blue) coated beads. (G) FN-coated beads were used to establish an injury dose response curve. (H) FN-coated beads were able to injure cells
more often than PLL-coated beads and the extent of injury (I) depended upon bead coating. (J) FN-coated beads always caused global cellular injury
(focal swellings indicated by black arrows extended throughout the cell), while (K) PLL-coated beads tended to injure locally to the bead-pull site
(n = 13 for FN-coated beads and n = 12 for PLL-coated beads). Inverted fluorescence images from neurons loaded with Fluo-4 calcium dye. All bars
SEM for all panels, * p,0.05.
doi:10.1371/journal.pone.0022899.g003
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injury to a loss of ionic homeostasis caused by either a disruption

of the cell membrane [9,10,32] or changes in ion channel function

[11,33]. However, we have shown that injury can be induced by

applying small strains, less than what can disrupt the cell

membrane, at high rates directly through mechanically sensitive

FACs. A recent in vitro study directly linked focal swelling to the

pathological influx of calcium and activation of calpains which

degrade the cytoskeleton [9]. Other studies have shown that not all

neuronal injury is dependent on membrane disruption and calpain

activity [10,26], but offer little evidence for an alternative

mechanism to account for the calpain-independent injury. Our

in-vitro study indicates that integrin mediated Rho-ROCK

activation may account for calpain independent pathways of

injury.

Integrins are expressed heterogeneously throughout the brain

and have been shown to be differentially expressed in the adult rat

brain [15,34]. Integrins are highly expressed in synaptic regions

[35,36] and can modulate synaptic plasticity by regulating ion

channel currents [16,20,37]. In the developing nervous system,

integrins are involved in dendrite and axon outgrowth

[38,39,40,41] and guide synaptogenesis [20,37], and in mature

neurons, they play a role in remodeling dendritric spines [37,42].

Their ability to modify Ca2+ handling and modulate synaptic

strength has also been linked to stabilizing long term memory

potentiation [43], suggesting that integrins may be key players in

memory and learning [15,20]. In this study, we showed that axons

may be more vulnerable to injury than the soma because the

failure strength of FACs in neurites is significantly lower than in

the soma. Furthermore, neuronal injury was dependent upon FAC

density, and force transmission via integrin binding proteins

always produced widespread focal swelling, whereas non-specific

force transmission through the membrane produced only local

injury. A previous study has demonstrated a similar sensitivity of

neuronal injury to ECM composition in the 3D cell microenvi-

ronment [43]. Neurons embedded in a 3-D gel composed of

collagen conjugated to agarose exhibited increased cell death

following an acute, high rate deformation when the collagen

concentration was increased, indicating that the degree of cell-

ECM contacts may influence neuronal injury [44]. In another

study, the threshold for mechanically induced action potentials

was found to be lower in neurons cultured on FN compared to

those cultured on PLL, underscoring the important role of cell-

ECM contacts in neurons [45]. Cell-matrix interactions have also

been shown to be involved in pathological processes following

acute mechanical stimulation in other cell types such as vascular

smooth muscle cells [46] and epithelial cells [47,48]. These

reports, coupled with the data reported herein, suggest integrins

are a reasonable conduit for mechanical cell trauma.

Previous reports suggest a role for calpains in neuronal injury

[9,10,26]. In our low strain model, we were unable to mitigate

neuronal injury with a calpain inhibitor. However, we were

successful in reducing neurite injury with the use of a ROCK

Figure 4. Pharmacological inhibition of secondary injury pathways may reduce neuronal injury. (A) Immediate administration of a
Calpain inhibitor MDL 28170 following 10% stretch of neurons seeded on PLL substrates was unable to reduce the percentage of injured neurons 10
minutes later (n$4). (B) However, immediate application of a ROCK inhibitor, HA-1077, was able to reduce neuronal injury in a dose dependent
manner (n$5). (C) Decreases in injury were observed at both 5% and 10% strain magnitude (n$5). All bars SEM for all panels, * p,0.05.
doi:10.1371/journal.pone.0022899.g004
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inhibitor. Integrin stimulation can activate many signaling

cascades [49], but activation of the Rho-ROCK pathway is of

particular interest because of its known effects on the cell

cytoskeleton. ROCK activation can affect cytoskeleton remodeling

by activating downstream targets which regulate cytoskeleton

tension [50], actin polymerization [51], neurofilament depolymer-

ization [52], and microtubule stability [53]. Interestingly, studies

have shown that axon focal swelling may be a result of the

breakdown of microtubules and impairment of the axonal

transport system [54]. Furthermore, axon retraction following

mTBI can be linked to active remodeling of the neuronal

cytoskeleton [55]. The activation of RhoA in in vitro studies has

demonstrated neurite retraction in neuroblastoma cell lines [56]

and dendritic retraction in brain slices [57]. A genetic study in

Drosophila indicates that in mature neurons, the RhoA-mediated

axon retraction pathway is actively repressed by negative

regulators [58]. The synaptic degeneration associated with DAI

implies that the activation of RhoA is a maladaptive response.

Blocking activation with a Rho antagonist can reduce injury

related apoptosis in the CNS [59], suggesting that blocking Rho

activation may be effective in treating TBI. Furthermore, recent

studies on axon growth cone retraction have demonstrated a link

between ECM protein type, integrin activation, cyclic AMP levels,

and Rho activity [60]. With the growing concern about the lack of

therapeutic options for treating mTBI [61], our results suggest that

further exploration of integrin mediated neuronal injury may

identify novel therapeutic opportunities.

Materials and Methods

Ethics Statement
All procedures were approved by the Harvard Animal Care and

Use Committee under Animal Experimentation Protocol permit

number 24-01. This protocol, entitled "Harvest and Culture of

Neural and Cardiac Tissue from Neonatal Rats and Mice for In

Vitro Disease Models," meets the guidelines for the use of

vertebrate animals in research and teaching of the Faculty of Arts

and Sciences of Harvard University. It also follows recommenda-

tions included in the NIH Guide for the care and use of laboratory

animals and is in accordance with existing Federal (9 CFR Parts

1,2&3), state and city laws and regulations governing the use of

animals in research and teaching.

Neuron Harvest and Culture
Cortical neurons were isolated from 2-day old neonatal

Sprague-Dawley rats (Charles River Laboratories, Boston, MA).

Reagents were obtained from Sigma-Aldrich (St. Louis, MO)

unless otherwise indicated. Cortices were surgically isolated and

minced in Hanks’ balanced salt solution (Invitrogen, Carlsbad,

CA) followed by digestion with trypsin (USB, Santa Clara, CA)

overnight at 4uC. The cell suspension was then filtered though a

nylon filter of 40 mm pore size (BD Bioscience) and finally

separated using a Percoll gradient (GE Healthcare Life Sciences,

Piscataway, NJ). Subsequently, cells were re-suspended in DMEM

culture medium (Invitrogen) supplemented with 10% (v/v) heat-

inactivated fetal bovine serum (Invitrogen), 30 mM Glucose,

2 mM L-glutamine, 25 mM KCl, 50 mU Insulin, 7 mM p -

Aminobenzoic acid, 100 U/mL penicillin, and 100 mg/mL

streptomycin. Cells were seeded at a density of 30,000 cells per

cm2 and supplemented with 10 mM cytosine arabinoside for the

first 48 hours of culture on substrates coated with either 100 mg/

ml PLL or 50 mg/ml FN. Samples were incubated under standard

conditions at 37uC and 5% CO2. After 48 hours cells were washed

3 times with PBS to remove non-adherent cells. Media was

replaced every 48 hours until experiments were executed. All

experiments were performed on either day 4 or 5 post seeding.

High Speed Stretcher In Vitro TBI Model
Medical grade silicone elastomer membranes (SMI .010’’ NRV)

were spin-coated with Sylgard 527 (Dow Corning, Midland, MI)

polydimethylsiloxane (PDMS) that was mixed at a 1:1 base to

curing agent ratio and allowed to cure for at least 4 hours at 70uC.

The elastomer membranes were then clamped into custom made

brackets to maintain tension, and a reducing well to hold cell

media was adhered using additional PDMS which was allowed to

cure again for at least 4 hours at 70uC. Samples were then

oxidized using UV ozone (Model No. 342, Jetlight, Irvine, CA) for

8 minutes to sterilize the surface and increase hydrophilicity for

protein adsorption. Either isotropic Poly-l-Lysine (PLL) or

Fibronectin (FN) (BD Biosciences, San Jose, CA) was then

deposited on the PDMS at a concentration of mg/ml or 50 mg/

ml, respectively, in sterile deionized water for at least 20 minutes.

Excess PLL or FN was removed by washing with deionized water.

Neurons were seeded and cultured inside the reducing well as

indicated previously. Each sample was loaded into a custom made

High Speed Stretching (HSS) device which used a high precision

linear motor (LinMot Model P01-23680F-HP, Elkhorn, WI) to

displace the brackets and strain the elastomer sheet to a desired

magnitude at a rate of 1% per ms (Movie S1). Membrane strain

was verified by recording the deformation of a 1.561.5 cm grid

using a high speed camera (FasTec Troubleshooter Model #:

TS1000ME) and calculating the strain using a three-point strain

algorithm [62].

Immunofluorescent Staining and Microscopy
Cells were washed 3 times in PBS at 37uC and fixed for 10

minutes in 4% paraformaldehyde and 2.5% TritonX-100 in PBS

at 37uC. Cells were then washed 3 times in PBS and an initial

blocking step using 5% Bovine Serum Albumin (Jackson

ImmunoResearch, West Grove, PA) in PBS was performed for

1 hour at 37uC. The blocking solution was aspirated away and the

primary antibody solution was immediately added and incubated

for 1.5 hours at room temperature. The primary antibodies used

were either anti-b-Tubulin III (1:200), monoclonal anti-Vinculin

(1:200), or anti-glial fibrillary acidic protein (1:200). Primary

antibodies were added to a 0.5% BSA in PBS solution. Following

primary staining, cells were washed 3 times, and the secondary

staining solution consisting of either goat anti-mouse conjugated to

Alexa-Fluor 488 or goat anti-rabbit conjugated to Alexa-Fluor 546

and 49,6-diamidino-2-phenylindole (DAPI) was added to the cells

for 30 minutes at room temperature. Samples were then washed 3

times. For samples seeded on silicon sheets, a scalpel was used to

cut out an 18 mm circular section of the substrate which was

placed on a glass slide. For glass bottom samples, the glass was

removed from the dish and placed on a glass slide. ProLong Gold

Antifade reagent (Invitrogen) was added to preserve the samples

and glass coverslips are affixed using nail polish (company info).

Prepared slides were either imaged immediately or stored at -

20uC. Imaging was performed on a LSM 5 LIVE confocal

microscope (Carl Zeiss, Oberkochen, Germany) with appropriate

filter cubes.

TUNEL Assay
Click-iT TUNEL assays (Invitrogen) were performed following

the manufacturer’s protocol [63]. Briefly, cells were fixed in 4%

paraformaldehyde and fragmented strands of DNA were labeled

with a fluorescent indicator. Fluorescence imaging was performed

on experimental and control populations, and neurons exhibiting

Integrin Signaling in Diffuse Axonal Injury

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22899



fluorescence levels above a threshold set by control samples were

considered to be apoptotic.

Membrane Poration Studies
Immediately prior to HSS experiment, membrane impermeable

fluorescein dye (Invitrogen) was added to the cell media at a

10 mM concentration. Following completion of the experiment,

samples were fixed as described previously but TritonX-100 was

excluded. Cell nuclei were labeled with DAPI as described earlier.

Uptake of the dye was determined by fluorescence microscopy.

Cells exhibiting uptake of the dye above a set fluorescence

intensity threshold of three standard deviations greater than the

control mean were considered to be permeabilized.

Magnetic Tweezer Fabrication and Control
The magnetic tweezer was fabricated using a permalloy core

(MmShield, Londonderry, NH) that was equipped with a 720-turn

solenoid (Magnetic Sensor Systems, Van Nuys, CA). The tweezer

ensemble was mounted on an Axio Observer.Z1 microscope

(Carl Zeiss) and was controlled by a micromanipulator system

(Eppendorf, Hamburg, Germany). Current in the solenoid was

produced by a voltage-controlled current supply (Kepco Model #
BOP 100-4M, Flushing, NY) that transformed voltage signals from

a function generator into a current signal with amplitudes up to

5A. LabVIEW (National Instruments, Austin, TX) software was

used to program the desired voltage waveform. The magnetic

tweezer was calibrated using methods outlined in [28]. Briefly,

beads were placed in a 99% glycerol solution and the tweezer was

engaged at various current levels. Utilizing Stoke’s formula and

magnetic bead velocities, we calculated force as a function of

distance from tweezer tip for each current level (fig S4A).

Temperature rise of the extracellular media as a result of the

Joule effect in the tweezer’s coil was determined to be

approximately one degree Celsius (fig. S4B). Mechanoporation

during bead pull experiments was assessed through rhodamine dye

uptake [10] and intracellular rises in calcium concentration (fig.

S4C–D), revealing no increase in cell membrane permeability.

Bead Functionalization and Attachment
In order to deliver necessary forces for neuron adhesion strength

and peeling experiments, the super paramagnetic beads (Bioclone,

San Diego, CA) were coated with fibronectin (10 mg/ml)

according to manufacturer’s specifications. For bead-induced

neuronal injury studies, much less force was required and

Dynabeads paramagnetic beads (Invitrogen) were used and coated

with either PLL or fibronectin (PLL: 100 mg/ml; FN: 10 mg/ml).

For both cases beads were incubated with neurons for a total of

1 hour before experiments.

Polyacrylamide Gel Fabrication and Functionalization
Cells were cultured on polyacrylamide gels. Acrylamide and bis-

acrylamide (Fisher Scientific, Pittsburgh, PA) solutions are prepared

to contain a constant polymer mass of 5% and bis-acrylamide

concentrations of 0.2% to reach a final modulus of 6 kPa (Brain:

E,0.1–1 kPa). Acrylamide, bis-acrylamide, ammonium persulfate,

and N,N,N,N-tetramethylethylenediamine (TEMED) under a

nonaqueous layer of toluene containing 0.5% acrylic acid N-

hydroxy succinimide ester was polymerized between two coverslips,

chemically modified as previously described [64]. After washing

with HEPES buffer to remove traces of unpolymerized solvent,

wells containing the polyacrylamide (PA) gels were filled with sterile

water and keep at 4uC until use. The PA gels were coated with poly-

L-lysine and fibronectin. Our results clearly show that patterned PA

gels create a highly ordered cell matrix for guidance of neurons. We

employ micropatterning to control the cell-matrix interaction, to

organize neuron cells, and to perform magnetic pulling experiments

at the single cell level.

In order to coat the polyacrylamide gel with ECM, a few drops

of 1 mM Sulfo-SANPAH (sulfosuccinimidyl-6- (4-azido-2-nitro-

phenyl-amino) hexanoate); (Pierce/ThermoFisher Scientific, Wal-

tham, MA) in 200 mM HEPES were added to activate the free

surface of the gel. The system was then irradiated with the UV

light of a sterile hood (254 nm wave length) for 5 min to link the

SANPAH to the gel by photoactivation. The solution containing

excess SANPAH was removed by aspiration, and the process of

adding SANPAH and exposing to vacuum and UV light was

repeated once more. In order to maximize the efficiency of FN or

PLL transfer to the surface of the PA gel in the desired pattern of

10 mm wide lines, PDMS microfluidic chambers were used to

constrain FN or PLL solution on the gel overnight. After the excess

SANPAH was again removed by aspiration, the PDMS chamber

was gently placed onto the activated polyacrylamide gel. 500 mL of

fibronectin or poly-L-lysine solution was added to the edges of the

chamber (fig S10). The chambers were constructed so that ECM

coating could be sucked in from the sides of the chamber. The

ECM protein was held in place by the chamber on the surface of

the activated gel overnight at 4uC and excess of solution was

removed by washing the gels.

Focal Adhesion and Vinculin Puncta Quantification
The preparations were immunostained for vinculin, a focal

adhesion protein. With fluorescent microscopy, the vinculin

plaques representing FACs could be counted and their area,

indicating the size of the focal adhesion, calculated within the

acquired images. Using a watershed algorithm to separate

structures according to the intensity drop between them,

individual FACs could be identified and their respective area

quantified. In order to segment very large and granular adhesion

sites, as observed on FN- and PLL-coated substrates respectively,

we used a different set of threshold values for watershed

segmentation [65,66].

Neuronal Adhesion and Peeling Experiments
In the peeling experiments, the distance between the tip of the

tweezer and the bead was maintained at a range of 10–30 mm with

a micromanipulator, and the current was maintained at 0–5

Amps, corresponding to a maximum force magnitude of 30 nN.

Cells were imaged in phase contrast with an Axiovert 200 inverted

optical microscope (Carl Zeiss) and recorded using a Cascade

512B CCD Camera (Roper Scientific, AZ) in order to determine

peeling and detachment. All experiments were conducted in

normal Tyrode’s solution at 37uC.

Neuronal Magnetic Tweezer Injury Experiments
Cells were plated onto PDMS-coated coverslips coated with

100 mg/mL Poly-L-Lysine. Cells were loaded with Fluo-4

(Invitrogen) so that calcium activity during the pull could be

measured. The magnetic tweezers captured individual beads and

applied a short 100 ms pulse between 0.5nN and 5.5nN. Each cell

was imaged every minute following bead pull to determine injury

outcome. All experiments were conducted in normal Tyrode’s

solution at 37uC.

Magnetic Tweezer Membrane Poration Studies
Normal Tyrode’s solution was supplemented with 12.5 mM

carboxytetramethylrhodamine dye (Invitrogen). Cells were
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imaged during and after bead pull to assess changes in

intracellular dye concentration as an indicator of cell membrane

poration, which would allow the dye to rush into the cell. Given

the high ratio of extracellular to intracellular calcium concen-

tration, Fluo-4 (Invitrogen) was also used to determine if smaller

pores-those that could let calcium ions pass- formed by checking

for a rise in intracellular calcium concentration during the bead

pull.

Scanning Electron Microscopy
After beads were attached to neurons they were rinsed twice

with PBS fixed with 2.5% Glutaraldehyde for 2 hours. After

rinsing again, cells were treated with 1% OsO4 for 2 hours. After

another rinse with PBS, cells were gradually dehydrated with

increasing dilutions of ethanol up to 100%. After critical point

drying was completed, cells were gold sputter coated for 2 minutes

at 30 mA. All imaging was done on Quanta 200 scanning electron

microscopy (FEI, Hillsboro, OR).

Pharmacological Interventions
Calpain inhibitor MDL 28170 (Sigma) was prepared per

manufacturer’s recommendations. Briefly, MDL 28170 was

reconstituted in anhydrous DMSO and neurons were treated

with concentrations ranging between 100 nM and 1 mM in

Tyrode’s solution. The effects of the calpain inhibitor were

determined for both 30 minute pre-incubations and immediate

post stretch applications. Rho-associated Kinase (ROCK)

inhibitor HA-1077 (Sigma) was prepared by dissolving in

water and neurons were treated with concentration ranging

between 1 nM and 100 mM in Tyrode’s solution. The effects of

calpain inhibitor were determined for immediate post stretch

applications.

Statistical Analysis
Statistical significance was measured by ANOVA and

subsequent pairwise comparison when comparing multiple

values. Fisher’s exact test was used to analyze data in

contingency tables [67]. p,0.05 for all statistically significant

differences.

Supporting Information

Figure S1 Custom built high speed stretching device delivers

precision strain at high rates to an elastomer membrane. (A) Image

of the device shows culturing well adhered to elastomer membrane

which is clamped into mounts and displaced by a linear motor. (B)

Representative longitudinal 3-point Lagrange strain profiles were

measured by high speed imaging of the deformation of a

1.561.5 cm grid located at the center of the culturing well. (C)

Strain fields were found to be uniform in the center of this region

(dashed circle).

(TIF)

Figure S2 (A) TUNEL staining was performed to detect

traumatic DNA fragmentation pursuant to apoptosis at 10 minutes

following abrupt 5% and 10% strain, but no significant increase

was observed (n = 3). (B) The amount of apoptotic neurons did not

show a significant increase at 60 minutes (n = 3; all bars SEM for

all panels).

(TIF)

Figure S3 An inverted immunofluorescent image of vinculin

puncta from a neuron cultured on a 10 mm wide line of PLL

indicates the presence of FACs.

(TIF)

Figure S4 (A) Force calibration of 4.5 mm paramagnetic beads

was conducted in 99% glycerol solution. The bead velocity was

tracked and force was deduced through Stokes formula for low

Reynolds flow. (B) Induction of magnetic field in tweezers did not

result in a large temperature increase after a 1 second 5 Ampere

pulse. (C–D) Pulling beads bound to neurons did not cause an

increase in membrane permeability as evidenced by the lack of

rhodamine dye and calcium ion entry into the cell during and after

the injury pull.

(TIF)

Figure S5 Time series depicts focal swelling development due to

a 3nN 100 ms injury pulse applied at the red paramagnetic bead

locations. Focal swellings occurred globally and in bi-directional

fashion despite the focal nature of the injury.

(TIF)

Figure S6 (A) Panels depict the formation of focal swellings

along neurites as seen by phase contrast microscopy following a 1

second 3nN pull on a bound bead. (B) Exposing a neuron to the

magnetic field alone did not induce an injury. (C) The beads alone

failed to produce injury without the presence of the magnetic field.

(TIF)

Figure S7 FN-coated paramagnetic beads were attached to

neurons as previously described. With no magnetic field, cells did

not show signs of injury as indicated by the lack of focal swellings,

Ca2+ uptake, and Sytox uptake.

(TIF)

Figure S8 Beads coated with Ac-LDL bind neurons nonspecif-

ically through lipid interactions. Since focal adhesions did not form

at the bead binding site, force applied to such beads failed to

produce injury as indicated by the lack of focal swellings, Ca2+

uptake, and Sytox uptake.

(TIF)

Figure S9 Prophylactic treatment with Calpain inhibitor MDL

28170 (30 minutes prior to abrupt strain) applied over a range of

concentrations to neurons cultured on PLL was unable to decrease

neuronal injury 10 minutes after stretch (n$4; all bars SEM).

(TIF)

Figure S10 In order to pattern 10 mm wide lines on Polyacryl-

amide (PA) gels, a modified PDMS microfluidic chamber was first

placed on top of the gel. Vacuum was then applied to the top of

the PDMS chamber through a port connected to the surface

features. This vacuum drew ECM solution from the sides of

chamber into feature cavities. The PDMS chamber was incubated

with the PA gels overnight to ensure ECM transfer.

(TIF)

Video S1 High Speed Stretcher. Sample video shows rapid

displacement of HSS system used to deliver mechanical stimula-

tion to neuronal cultures.

(AVI)

Video S2 Global Injury. Inverted calcium time lapse imaging

of neuron after pulled FN-coated bead (red dot indicates bead

location). Note retraction of neurites (red arrow) and global extent

of injury despite a focal pull. Focal swellings also appear along

previously smooth neurites.

(AVI)

Video S3 Local Injury. Inverted calcium time lapse imaging of

neuron after pulled PLL-coated bead (red dot indicates bead

location). Injury is not global but is localized to neurites near the

pulled bead (red arrow).

(AVI)
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