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Abstract

RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of
protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling
suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta
software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes,
33 enzyme-inhibitor complexes, and 60 ‘other’ complexes. These targets were further classified by expected docking
difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations
for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances
of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A
breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for
63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of ‘other’ targets. In terms of docking difficulty,
RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For
targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced
backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that
quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in
RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study
marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research
in protein interface modeling and structure prediction.
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Introduction

The formation of highly specific protein complexes is a

fundamental process in biology, and the structures of these

complexes can yield deep insight into the mechanisms of protein

function. Computational protein docking provides a means by

which to predict the structure of protein-protein complexes from

their unbound structures. Blind structure-prediction efforts, such

as the Critical Assessment of Protein Interactions (CAPRI) [1,2]

have showcased a number of successful docking strategies using a

range of methods from course-grained fast-Fourier transform

approaches which identify surface complementarity between two

partners [3,4] to all-atom stochastic methods that can accommo-

date intricate protein conformational changes [5,6]. In a number

of CAPRI strategies, [3,7,8,9,10] as well as other protein docking

studies [11,12], the protein docking component of the Rosetta v2

software package, RosettaDock [13], has proved useful for a range

of protein docking applications.

RosettaDock was first introduced as a multi-scale Monte Carlo

based docking algorithm that utilized a centroid-based coarse

grain stage to quickly identify favorable docking poses and an all-

atom refinement stage that simultaneously optimized rigid-body

position and side-chain conformation. Since then RosettaDock has

been modified to address the critical challenge in protein-protein

docking: binding-induced backbone conformational changes.

Wang et al. introduced explicit loop modeling and backbone

minimization [6] while we added ensemble-based docking [14]

and conformational move sets specific to antibody docking [15]. In

that span, RosettaDock has been used for a wide range of

applications from antibody-antigen docking [11,12], to peptide

docking and specificity [16,17] to multi-body [18] and symmetric

docking.[19]

The current version of Rosetta, v3.2, has been in development

for the past two years. The original Rosetta software package was

written primarily for ab initio protein folding [20] but quickly

expanded to include an array of molecular modeling applications

from protein docking to enzyme design. The new Rosetta software

package [21] was written from the ground up with these diverse

applications in mind. Essential components such as energy

function calculators, protein structure objects, and chemical

parameters were assembled into common software layers acces-

sible to all protocols. Protocols such as side-chain packing, or

energy minimization, were written with a modular object-oriented

architecture that allows users and programmers to easily combine
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different molecular modeling objects and functions. Control

objects were written to give users a generalized scheme from

which to precisely specify the sampling strategy for a given

protocol. Finally, user interfaces such as RosettaScripts,[22]

PyRosetta [23], and a PyMol interface [24] were developed to

provide unprecedented accessibility of the code.

The protein docking component of Rosetta v3.2, was written

with two main goals. The first goal was to include all the core

docking capabilities of Rosetta v2.3. The second, take advantage

of the modular Rosetta v3.2 architecture to easily include new

features such as modeling small-molecules, [25] noncanonical

amino acids, and post-translational modifications, adding more

customized conformational constraints, or allowing for alternative

side-chain packing or design schemes. In order to systematically

evaluate docking performance, we ran both RosettaDock v2.3 and

RosettaDock v3.2 against the recently expanded Protein Docking

Benchmark 3.0 [26]. The results of this benchmark can determine

whether RosettaDock v3.2 successfully reproduces or improves

upon the results of RosettaDock v2.3. More importantly,

benchmarking identifies the strengths and weakness of the core

RosettaDock algorithm against a large diverse set of targets to

guide future development.

Finally, in order to showcase the additional capabilities of the

Rosetta v3 software package, we identified a subset of targets in the

benchmark that contain small-molecule co-factors in or near the

binding site. Although these co-factors are critical to biological

protein function and interactions, due to their non-protein nature,

they are often excluded from many docking algorithms, including

Rosetta v2.3. We utilize the small-molecule modeling components

of Rosetta v3.2 to incorporate these co-factors in the docking

process to test whether performance would improve.

Methods

Overview of the RosettaDock algorithm
RosettaDock is a Monte Carlo (MC) based multi-scale docking

algorithm that incorporates both a low-resolution, centroid-mode,

coarse-grain stage and a high-resolution, all-atom refinement stage

that optimizes both rigid-body orientation and side-chain

conformation. The algorithm, illustrated in Figure 1, roughly

follows the biophysical theory of an encounter complex formation

followed by a transition to a bound state. Typically the algorithm

starts from either a random initial orientation of the two partners

(global docking), or an initial orientation that is randomly

perturbed from a user-defined starting pose (local perturbation).

From there, the partner proteins are represented coarsely, where

side chains are replaced by a single unified pseudo-atom, or

centroid. During this phase, a 500-step Monte Carlo search is

made with adaptive rotation and translational steps adjusted

dynamically to achieve an acceptance rate of 25%. The score

Figure 1. The RosettaDock algorithm. RosettaDock is a multi-scale Monte-Carlo based algorithm that roughly models encounter complex
formation followed by a transition to a bound state.
doi:10.1371/journal.pone.0022477.g001
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function used in this stage primarily consists of a ‘bump’ term, a

contact term, and docking-specific statistical residue environment

and residue-residue pair-wise potentials (Table 1) [13].

Once the centroid-mode stage is complete, the lowest energy

structure accessed during that stage is selected for high-resolution

refinement. During high-resolution refinement, centroid pseudo-

atoms are replaced with the side-chain atoms at their initial

unbound conformations. Then 50 MC steps are made in which

the (1) rigid-body position is perturbed by a random direction and

magnitude specified by a Gaussian distribution around 0.1 Å and

3.0u, (2) the rigid-body orientation is energy-minimized, and (3)

side-chain conformations are optimized with RotamerTrials [27],

followed by a test of the Metropolis criteria. Every eight steps, an

additional combinatorial side-chain optimization is carried out

using the full side-chain packing algorithm, followed by an

additional Metropolis criteria check. To reduce the time devoted

to the computationally expensive energy-minimization for unpro-

ductive rigid-body moves, minimization is skipped if a rigid-body

move results in a change in score of greater than +15. The all-

atom score function used in this stage primarily consists of Van der

Waals attractive and repulsive terms, a solvation term, an explicit

hydrogen bonding term, a statistical residue-residue pair-wise

interaction term, an internal side-chain conformational energy

term, and an electrostatic term (Table 1) [13].

For particular targets, a variety of RosettaDock sampling

strategies are often used to improve the chance of achieving an

accurate structure prediction [28]. If no prior structural or

biochemical information is known about the protein interaction

of interest, global docking is used to randomize the initial docking

poses. From there, score filters and clustering are used to identify

clusters of acceptable low-energy structures for further docking

and refinement. In most cases, there is some known information

about the complex, either in the form of related protein complexes

or in biochemical or bioinformatics data which identify probable

regions of interaction on the protein partners. In these cases users

manually arrange the starting docking pose to a configuration that

is compatible with the information and carry out a local docking

perturbation. Additionally, users can set distance-based filters that

bias sampling towards those docking poses that are compatible

with specified constraints [28]. If backbone conformational

changes are anticipated, appropriate backbone sampling strategies

are prescribed [6,8,14,15].

Additional capabilities of Rosetta v3.2
Rosetta v3.2 represents a complete bottom-up re-implementa-

tion of the Rosetta software. The protein docking module of

Rosetta v3.2 was intended to reproduce the core docking

functionality of RosettaDock v2.3, and it can be used in

conjunction with a number of new Rosetta v3.2 capabilities both

through changes in source code and command-line options. These

capabilities include automated parameterization of non-protein

moieties such as small molecules [25] as well as non-canonical

amino acids and post-translational modifications, precise control

over the degrees of freedom available during conformational

search using the pose, fold tree, and movemap functionalities,[6]

expanded side-chain packing options for side-chain optimization

and design, and control over sampling and decoy generation

through constraints or filters. Finally, a number of algorithmic

improvements in sampling and score calculations have led to an

overall speed-up. For more information on the capabilities of

Rosetta v3.2, see Leaver-Fay et al.[21]

Implementation of docking in Rosetta v3.2
The RosettaDock code was restructured in Rosetta v3.2 with

two goals: first, to allow for easier use of built-in Rosetta

functionality, such as constraints or ligand modeling, and second

to give developers greater flexibility when developing their own

protocols that use docking functions. Figure 2 shows a diagram of

the structure of the major classes associated with docking. Docking

has been split into three major classes: DockingProtocol,

DockingLowRes and DockingHighRes. DockingProtocol is

responsible for handling user-specified docking-options, appropri-

ately configuring various objected associated with docking, and

applying DockingLowRes and DockingHighRes objects.

DockingLowRes and DockingHighRes contain all the data

and functions associated with the low-resolution docking and high-

Table 1. RosettaDock scoring components and weights.

Centroid docking score function

Component name weight

Contact interchain_contact 2.0

Bumps interchain_vdw 1.0

Environment interchain_env 1.0

Pair-wise interaction interchain_pair 1.0

All-atom docking score function

Component name weight

Van der Waals (attractive) fa_atr 0.338

Van der Waals (repulsive) fa_rep 0.044

Dunbrack side-chain fa_dun 0.036

Solvation fa_sol 0.242

Pair-wise interaction fa_pair 0.164

Hydrogen Bond hbond_lr_bb, hbond_sr_bb, hbond_bb_sc, hbond_sc 0.245

Electrostatic hack_elec 0.026

doi:10.1371/journal.pone.0022477.t001
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resolution refinement stages, respectively, including the score

functions, sampling functions (including translation/rotation

parameters and side-chain packing), and Monte Carlo data. Both

objects are independent of the Rosetta options system and can be

called directly within the Rosetta source code or through Rosetta

interfaces such as PyRosetta[23] and RosettaScripts[22]. Given

the wide range of minimization and side-chain packing strategies

that might be utilized in the high-resolution docking stage,

DockingHighRes is designed as an abstract class that underlies

a diverse set of high-resolution docking functions including

standard high-resolution docking, pre-packing, as well as exten-

sions of docking such as peptide docking and protein interface

design. This versatility is achieved through the DockTaskFactory

class within DockingHighRes, which handles all docking side-

chain packing options and allows subclasses of DockingHighRes

to be able to create a tailored set of packing instructions (Figure 2).

All docking objects contain default parameters that allow them to

be run with minimal setup; users only need to specify docking

parameters for non-default behavior.

Benchmarking Rosetta with Protein Docking Benchmark
3.0

The expanded Protein Docking Benchmark 3.0, curated by

Huang et al., [26] is a non-redundant set of bound protein complex

structures and their respective unbound structures from the Protein

Data Bank.[29] There are 35 complexes classified as ‘enzyme-

inhibitor’ (E/I), 25 classified as ‘antibody-antigen’ (Ab/Ag), and 64

classified as ‘other’ (O). According to docking difficulty criteria

described by Mintseris et al., 88 are ‘rigid-body’ targets, 19 are

‘medium’ targets, and 17 are ‘difficult’ targets. [30] We applied

RosettaDock v2.3 and RosettaDock v3.2 to the entire benchmark set.

To prepare the structures for docking, the unbound structures

were superimposed over the bound complex and the resulting

superposed structure was used as the starting structure for local

docking. For consistency, all chain identifiers were switched to that

of the bound structure and all hetero-atoms were denoted with a

chain identifier of ‘X’. In RosettaDock v2.3 the docking partners

are defined by placing a ‘TER’ in the appropriate position in the

starting structure PDB file. In RosettaDock v3.2, the docking

partners are identified by chain identifier in the command-line.

We first prepared each docking partner in isolation, optimizing

their side-chain conformations prior to docking (‘‘pre-packing’’),[13]

and then carried out local docking perturbations [13] using both

RosettaDock v2.3 and RosettaDock v3.2 to generate 1000 decoys, or

candidate structures, from each method. As described in [14], we set

the docking perturbation parameter to 3 Å translation and 8̊ rotation.

For side-chain packing, extra rotamers were used for x1 for all

residues and for x2 for aromatic residues, and unbound rotamers

were included as well [27]. We assessed docking performance by

sorting these respective decoy sets by interface energy [6]. We ran all

docking simulations on our local cluster; creation of each decoy

required, on average, 2.5 minutes in RosettaDock v2.3 and 0.8

minutes on RosettaDock v3.2.

The RosettaDock v3.2 command line used for pre-packing and

docking structures in this benchmark is shown below. The inputs

for docking include the pre-packed starting structure ($name.

prepack.pdb), the original starting structure for loading unbound

rotamer conformations ($name.unboundrot.pdb), the chain

designations for the first and second partner ($chains1 and

$chains2), and the desired number of decoys ($nstruct). The

starting structure was the unbound components superimposed on

the bound complex structure. The output includes all decoys in

Figure 2. Structure of major classes associated with docking. A shaded diamond indicates composition (the object the diamond points
towards is responsible for the lifecycle of the other object); an open diamond indicates aggregation (the object the diamond points towards has an
instance of the other object but it may not be solely responsible for that instance’s lifecycle); and an open triangle indicates a class hierarchy with the
triangle pointing towards the parent class.
doi:10.1371/journal.pone.0022477.g002
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PDB format, and a score file that includes the total energy (total

score), interface energy (I_sc) for each decoy, as well as docking

metrics to the starting structure, including Lrmsd (rms), Irmsd

(Irms), and fnat (Fnat).

#for pre-packing

docking_protocol.linxgccrelease –database $data-

base_path /

-s $name.pdb /

-partners $chains1_$chains2 /

-dock_ppk /

-ex1 -ex2aro -unboundrot $name.unboundrot.pdb

#for docking

docking_protocol.linxgccrelease –database $data-

base_path /

-s $name.prepack.pdb /

–nstruct $nstruct /

-partners $chains1_$chains2 /

-dock_pert 3 8 –spin /

-ex1 -ex2aro -use_input_sc -unboundrot $name.un-

boundrot.pdb

#for refinement of native complexes

docking_protocol.linxgccrelease –database $data-

base_path /

-s $name.prepack.pdb /

–nstruct $nstruct /

-partners $chains1_$chains2 /

-docking_local_refine /

-ex1 -ex2aro -use_input_sc -unboundrot $name.un-

boundrot.pdb

For analysis and classification of docking failures we refined

native crystal co-complexes using the docking flag –docking_

local_refine which carries out only the high-resolution

refinement stage of docking. When incorporating non-protein

moieties such as ligands or co-factors, additional parameters are

input using the flags –extra_res_fa and –extra_res_cen to

load the full-atom and centroid mode ligand connectivity and

atom typing. We used the script molfile_to_params.pl packaged with

Rosetta to generate the ligand parameters.[25]

Metrics for structural accuracy and docking performance
A number of measurements of structural accuracy are regularly

used to measure docking performance, as defined by the CAPRI

evaluators.[31] L_rmsd is the root mean squared deviation (RMSD)

of the Ca atoms of the smaller partner in the complex (ligand) to its

coordinates in bound structure after superposition of the larger

partner in the complex (receptor). I_rmsd is defined as the RMSD of

the heavy atoms in the interface residues after superposition of those

same residues where the interface is defined as all residues with an

intermolecular distance of at most 4.0 Å. Finally, the fraction of

native contacts (fnat) is defined as the fraction of residue-residue

contacts in the bound structure that are recovered in a given decoy,

where a contact is defined by any two residues with any pair of atoms

that are within 5.0 Å. L_rmsd describes the overall ligand-receptor

position, I_rmsd describes the atomic accuracy of the interface

between the two partners, and fnat describes the degree to which

specific residue-residue interactions across the interface are recov-

ered. As a qualitative description of accuracy, we use the term ‘near-

native’ to refer to a decoy with I_rmsd of at most 4.0 Å.

The presence of a ‘docking funnel’, in which near-native decoys

consistently have better scores than non-native decoys, is

considered to be the most robust measure of success in a docking

simulation. For each target we count the number of near-native

decoys among the top five scorers (N5) and classify a docking result

as having a funnel if it has N5$3.

Classification of successes and failures
Analyzing docking successes and failures is critical to under-

standing the strengths and weaknesses of the docking algorithm.

Typically structure prediction algorithms are evaluated on the

basis of sampling, discrimination, and prediction accuracy. We

classified our docking results as successes or failures based on

whether they achieved a docking funnel. The quality of a docking

success was classified according to the accuracy of the closest decoy

in the top five scoring decoys as high, medium, and acceptable

quality according to CAPRI-defined criteria.[32] Generally, a

decoy with I_rmsd,1.0 Å was considered high quality,

1.0 Å,I_rmsd,2.0 Å was considered medium quality, and

2.0 Å,I_rmsd,4.0 Å, was considered acceptable quality.

For each docking failure we performed two subsequent docking

runs. First, we carried out local refinement starting from the

unbound partners on the native complex. Second, we carried out

local refinement using the bound in their native complex. Based

on the results of these subsequent docking runs we classified

failures as rigid-body sampling failures (RB sampling failure),

backbone-dependent sampling failures (BB sampling failure), and

discrimination failure, as described in the Results section.

Assessing the reliability of docking results: a statistical
analysis

In order to quantify the level of variation in the results inherent

in a given decoy set, we carried out a bootstrap case

resampling.[33] Bootstrap statistical analyses are model-indepen-

dent and can approximate statistic variables such as mean,

standard deviation, and test statistics without making assumptions

about the distribution of the underlying data. The noise in

inherent in stochastic simulations, the complexity of the confor-

mational landscape that is simulated, and the non-linearity of

observed metrics such as RMSD from a reference structure or the

number of top-scoring decoys below a given RMSD threshold,

necessitate the use of a model-independent statistical approach.

For each target, we generated a set of resampled decoy sets and

calculated bootstrap statistical measures based on the observed

docking results from each resample. Briefly, we generated B

resampled decoy sets by randomly selecting 1000 decoys from the

original decoy set, with replacement. From this set of re-sampled

decoy sets we calculated the bootstrap mean (Eq 1) and standard

deviation (Eq 2) of N5, denoted m(N5) and s(N5), respectively, based

on the observed N5 for each re-sample Ni
S

� �
. Additionally, we

calculated the bootstrap probability of observing a successful docking

result based on the number of re-sampled sets where N5$3 (Eq 3).

m N5ð Þ~ 1

B

XB

i~1

Ni
5 ð1Þ

s N5ð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB

i~1

Ni
5{m N5ð Þ

� �2

vuut ð2Þ

Psuccess~
1

B

XB

i~1

# Ni
5§3

� �
ð3Þ

In order to calculate the significance of a given docking result,

we calculated the probability of achieving a docking success by

chance. As before, we generated B re-sampled decoy sets by
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randomly selected 1000 decoys from the original decoy set, with

replacement, for each target. For each resample, the score for each

decoy was replaced by a second random selection of scores from

the original decoy set, again with replacement. This second re-

sampling randomizes the relationship between a given decoy and

its score from docking, while maintaining the overall distribution

of decoys and scores, creating a ‘random’ data set specific to each

target. We then calculated the above bootstrap statistics (m Nrand
S

� �
,

s Nrand
S

� �
, and Prand

success ) for the randomized data.

Results

Overall benchmark results
We applied RosettaDock v3.2 to the Docking Benchmark 3.0,

which contains a range of docking targets that vary in both

complex type and difficulty. We defined a ‘successful’ prediction as

a docking run in which at least three of the five lowest energy

structures had an I_rmsd of at most 4.0 Å (N5$3). We defined the

quality of a given successful structure prediction as the best

accuracy achieved among the five top scoring structures, based on

the criteria established in CAPRI for high, medium, and

acceptable accuracy.[32] Below we outline the docking results

across the entire benchmark set in terms of both its success and

reliability in predicting near-native solutions, as well as the overall

accuracy of the structure prediction.

In a successful docking run, the lowest energy decoys should

correspond to the near-native conformations, and at least three of

the five top scoring decoys have an Irmsd of #4.0 Å. The results

of a representative docking success of the Vav-Grb2 complex

(1GCQ), is shown as a scatterplot of interface energy vs. Irmsd

(Figure 3A). In this example, all five of the five lowest energy

decoys are near-native, with the closest having an Irmsd of 0.88 Å,

indicating a high-quality prediction. As a comparison, a

subsequent refinement of the unbound conformers superimposed

on the bound complex (green) identifies similar near-native

structures with similar energy, indicating that there was adequate

sampling in the standard docking run. A refinement of the bound

conformers superimposed on the bound complex (red) demon-

strates that the binding-induced conformation changes observed in

the Vav-Grb2 co-crystal lead to significantly more favorable

interface energies than rigid-body docking of the unbound

conformers.

The overall benchmark results are illustrated in Figure 4 and

summarized in Table 2 and Table 3. Across the 116 targets in the

benchmark set, Rosetta v3.2 successfully predicted at least

‘acceptable’ or better quality solutions for 56 targets, representing

an overall success rate of 48%. With respect to complex type,

Rosetta successfully predicted near-native structures for 62% of

the enzyme-inhibitor complexes, 64% of the antibody-antigen

complexes, and 35% of the ‘other’ complexes. With respect to

docking difficulty, Rosetta successfully predicted near-native

structures for 58% of rigid-body targets, 29% of medium difficulty

targets, and 14% of difficult targets. Figure 4 provides a further

breakdown of docking success and accuracy with respect to both

complex type and docking difficulty. Briefly, Rosetta achieved

either high or medium accuracy predictions for over 50% for both

the enzyme-inhibitor targets and antibody-antigen targets, and

33% of the ‘other’ targets. In terms of docking difficulty, Rosetta

achieved either high or medium accuracy for over 50% for rigid-

body targets, and almost 25% for medium-difficulty targets,

compared to 14% for difficult targets. A deeper analysis reveals

that both complex type and docking difficulty were predictors of

docking success. Among rigid-body targets, Rosetta predicted 67%

of enzyme-inhibitor complexes to at least medium accuracy

compared to 52% of antibody-antigen complexes and 40% of

‘other’ complexes.

Unsuccessful docking predictions are classified as cases for

which the five lowest-energy decoys did not contain at least three

near-native structures. There are a number of potential reasons for

docking failures, from insufficient sampling of near-native

conformations to inadequate discrimination of near-native struc-

tures from the overall decoy set. We sought to classify the observed

docking failures based on subsequent docking refinement runs that

identify whether inadequate rigid-body sampling, binding-induced

conformation changes, or deficiencies in the score function are

responsible for failure.

Docking failures due to inadequate rigid-body sampling (RB

sampling failure) reflect cases where rigid-body docking of the

unbound conformers is sufficient for successful docking, but rigid-

body conformational space was insufficiently sampled to locate

low-energy near-native structures in the standard docking run.

The Fv antibody-human chorionic gonadtropin complex (1QFW)

serves representative example of an RB sampling failure

(Figure 3B). A scatter-plot of interface energy vs. Irmsd shows

that refinement of the unbound conformers superimposed on the

bound complex located lower energy near-native decoys than

those accessed by the standard docking run.

Docking failures due to binding-induced conformation changes

between the unbound and bound state (BB sampling failures) arise

from cases in which rigid-body docking of the unbound

conformers is incapable of identifying low-energy near-native

conformations. In such cases, binding-induced conformation

changes must be taken into account for successful docking. The

nuclear transport factor 2-Ran GTPase complex (1A2K) serves as

a representative example of a BB sampling failure (Figure 3C).

Neither standard docking nor refinement of the unbound

conformers superimposed on the bound complex were capable

of sampling low-energy near-native conformations. By contrast,

refinement of the bound conformers superimposed on the bound

complex locates near-native structures with significantly more

favorable interface energy than the decoys from unbound docking.

Finally, discrimination failures arise from cases where even

refinement of the bound conformers superimposed on the bound

complex are unable to identify lower energy decoys than those

accessed by the standard docking runs. The N10 antibody-

staphylococcal nuclease complex (1NSN) illustrates a discrimina-

tion failure (Figure 3D). Regardless of whether the bound or

unbound conformation is used, there is no discrimination of near-

native decoys.

Overall, among the 59 targets in which RosettaDock failed, 17

were considered RB-sampling failures, 36 were considered BB-

sampling failures, and 6 were considered discrimination failures.

There is a strong relationship between both docking difficulty and

complex type with regards to the cause of docking failure (Table 4).

Most notably, docking of medium and difficult targets resulted in

BB-sampling failures over 50% of the time. Likewise, 45% of

‘other’ type complexes resulted in BB-sampling failures.

Measuring variability in docking results
Given that a number of docking programs, including Rosetta-

Dock, are based on stochastic sampling strategies, an understudied

area of research is in quantifying the degree of certainty of a given

docking prediction. We used a bootstrap case resampling

approach to quantify the variability within a given docking run.

We found that 5000 re-sampled sets (B = 5000) for each target was

more than sufficient to converge the bootstrap statistical measures

of interest: mean N5 (m (N5)), standard deviation of N5 (s(N5)), and

the percentage of re-sampled sets which could be classified as a
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docking success (Psuccess). The bootstrap statistics are displayed in

Table 2 and 3 for docking successes and failures, respectively.

The m (N5) showed good agreement with the N5 calculated,

indicating both that our original N5 data did not contain any

significant outliers, and that the m (N5) metric was well-converged.

The inherent noise within each decoy set is quantified by both

s(N5) and by Psuccess. Overall, there was significant noise in the

data. In approximately 33% of the successes, Psuccess was greater

than 0.9, indicating an extremely reliable success rate. For cases

closer to the borderline of success classification, Psuccess fell below

0.3, implying that in repeated trials, those targets would be

considered docking successes only 30% of the time. Among

docking failures, few targets had a m (N5) greater than 2.0 or a

Psuccess greater than 0.15. Using statistics-based docking success

criteria of m (N5) $2.5 and Psuccess $0.3, 53 of 56 docking

successes remained classified as successes indicating that the

overall results of the benchmark are robust to the noise inherent in

the stochastic sampling methods used in RosettaDock. Finally, a

bootstrap analysis of target-specific randomized re-sampled sets

showed that the probability of observing a funnel from

Figure 3. Examples of docking successes and failures. Interface energy vs. I_rmsd scatter plots for representative cases of (A) a docking
success, (B) RB-sampling failure, (C) BB-sampling failure, and (D) a discrimination failure. Standard docking run decoys are in gray, the ten lowest-
energy decoys from refinement of the unbound conformers superimposed on the native complex are in green, and the ten lowest-energy decoys
from refinement of the bound complex is in red.
doi:10.1371/journal.pone.0022477.g003
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randomized data Prand
success

� �
was below 0.001 for all docking targets,

demonstrating the significance of observing a docking funnel in the

data.

Comparing RosettaDock v3.2 and v2.3
One major goal in developing the new RosettaDock v3.2 was to

reproduce, if not improve, the docking performance and accuracy

of the previous RosettaDock v2.3. Towards that end, we ran the

entire benchmark set using RosettaDock v2.3 for comparison

(Tables S1 and S2). In terms of computational speed, RosettaDock

v3.2 substantially outperformed the older version, generating

decoys, on average, three times faster. Given that further docking

improvements will inevitably require more computational inten-

sive sampling as well as more sophisticated score functions, this

speed-up is essential to developing future docking strategies. In

terms of docking performance, RosettaDock v3.2 performed

marginally better than the older version, despite having the same

overall docking algorithm. As shown in the histogram on Figure 5,

overall, RosettaDock v3.2 achieved 56 successful predictions,

compared to 49 in v2.3. Furthermore, it was more accurate, with

50 predictions of medium or high accuracy, compared with 38.

We calculated bootstrap statistics for RosettaDock v2.3 to

compare with the v3.2. The bootstrap analysis revealed that the

differences observed in the overall number of successes and failures

classified by the N5 measure was supported by significant

differences in the underlying data. Among 58 targets in which

RosettaDock v2.3 or RosettaDock v3.2 produced a Psuccess$0.30,

there were 13 targets where v3.2 showed at least a 5-fold increase

Psuccess relative to v2.3 compared to 3 targets in which v2.3 showed

similar improvement over v3.2. A visual inspection of these targets

shows that Psuccess quantifies readily observable qualitative

differences between these docking results well.

Docking with ligand groups
We used the small-molecule modeling capabilities of Rosetta

v3.2 to carry out protein docking on a subset of six targets in the

benchmark where a small molecule was found in or near the

interface. The small molecule was explicitly modeled with all

atoms, including hydrogens, in both the low-resolution and high-

resolution stages of docking. The Ferredoxin-NADP+ reductase

(FNR) bound to the ligand group flavin adenine dinucleotide

(FAD), in complex with ferredoxin (Fd) (Target 1EWY) provides

the best example of the potential benefits to explicitly modeling

ligands in protein docking. Figure 6 shows the score vs. Irmsd plot

for docking with and without modeling the FAD molecule, and

the second-lowest-energy decoy illustrated. The FAD molecule

serves as a prosthetic group in FNR and is critical for electron

transfer from the Fd to the NADP+ substrate through the

formation of a ternary complex.[34] Inspection of the crystal

structure of the complex shows that almost half of the

intermolecular contacts between FNR and Fd are mediated by

the FAD molecule.[35] The necessity of explicitly modeling the

Figure 4. Breakdown of benchmark results. The RosettaDock benchmark performance in terms of docking success and accuracy across both
complex type (A) and docking difficulty (B).
doi:10.1371/journal.pone.0022477.g004
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FAD molecule in protein docking of this target highlights its

critical role in mediating the formation of this protein complex

and underscores the need to accommodate interface ligands and

cofactors in protein docking.

Overall, among the six targets tested, explicitly modeling the

small molecule at the interface substantially improved docking in

three cases, and did not have any effect for the other four

(Table 5). In all the targets except 1EWY, interface small

molecules made up only a very small fraction of the total

intermolecular contacts at the interface. The greatest improve-

ments were observed in targets 1EWY and 1GRN, where local

docking without the small-molecules failed to produce even a

single medium-quality prediction in the five top scoring decoys.

Bootstrap analysis of docking results showed that in three cases,

1EWY, 1GRN, and 1RLB, docking with the ligand lead to a

,10 fold improvement in Psuccess, indicating improvements in

docking that aren’t captured by the final N5 metric. It is

important to note that protein docking with explicitly modeled

ligands might require a re-tuned score function, as there are a

number of differences between the protein docking and ligand

docking scoring function in Rosetta, mainly in the balance of

hydrogen bonding and pair potential terms with respect to the

electrostatics and solvation terms.

Discussion

In this study we benchmarked the docking performance of the

new RosettaDock v3.2 against the diverse Protein Docking

Benchmark 3.0, marking the most comprehensive benchmarking

of the RosettaDock algorithm. Our goals were two-fold: to identify

trends in the docking results that may serve as areas of

improvement in the algorithm development and to benchmark

the new RosettaDock version against the popular previous

iteration of RosettaDock, v2.3. Finally, we aimed to showcase

the capabilities of the Rosetta v3.2 modeling package by

incorporating small-molecule and ligand cofactors in the docking

simulation, a capability that is lacking in the earlier RosettaDock

as well as many other protein docking protocols.

Overall RosettaDock v3.2 achieved a 48% success rate over the

entire benchmark set with substantial variation in results across

both complex type and docking difficulty. The most consistently

accurate predictions came for enzyme-inhibitor and antibody-

antigen complexes, while the results for ‘other’ complexes varied

significantly. Docking difficulty, as classified by Mintseris et al.

[30], is based on the magnitude of backbone conformational

changes between the bound and unbound conformations.

Rosetta’s docking algorithm performed well with rigid-body

Table 2. Docking Benchmark 3.0 results summary for successes.

PDB
Difficulty |
type N5

m(N5)
[s(N5)] Psuccess Irmsd

CAPRI
quality PDB

Difficulty |
type N5

m (N5)
[s(N5)] Psuccess Irmsd

CAPRI
quality

1OPH rigid-body | E 5 5.0 [0.0] 1.00 0.23 *** 1YVB rigid-body | E 4 4.0 [0.9] 0.71 1.32 **

1ML0 rigid-body | O 5 5.0 [0.0] 1.00 0.40 *** 1ZHI rigid-body | O 4 4.0 [0.9] 0.72 1.47 **

1KTZ rigid-body | O 5 5.0 [0.0] 1.00 0.51 *** 1XQS medium | O 4 3.9 [1.0] 0.70 1.47 **

1PPE rigid-body | E 5 5.0 [0.0] 1.00 0.91 *** 2OOB rigid-body | O 4 3.9 [1.2] 0.69 1.04 **

1B6C rigid-body | O 5 5.0 [0.0] 1.00 1.51 ** 1DFJ rigid-body | E 4 3.6 [1.4] 0.57 1.39 **

2HLE rigid-body | O 5 5.0 [0.2] 1.00 0.89 *** 1BJ1 rigid-body | AB 4 3.6 [1.2] 0.57 2.25 *

1KXP rigid-body | O 5 5.0 [0.2] 1.00 1.16 ** 2CFH medium | O 4 3.6 [1.1] 0.56 1.25 **

2HRK medium | O 5 5.0 [0.2] 0.99 1.42 ** 1BVK rigid-body | A 3 3.5 [1.2] 0.51 1.77 **

1QA9 rigid-body | O 5 5.0 [0.1] 1.00 0.59 *** 1AVX rigid-body | E 3 3.4 [1.1] 0.50 1.87 **

1FSK rigid-body | AB 5 5.0 [0.1] 1.00 1.03 ** 1MAH rigid-body | E 3 3.4 [1.1] 0.50 1.94 **

1JPS rigid-body | A 5 4.9 [0.5] 0.97 1.15 ** 1VFB rigid-body | A 4 3.4 [1.1] 0.50 1.96 **

1AK4 rigid-body | O 5 4.9 [0.5] 0.97 1.36 ** 2SNI rigid-body | E 3 3.3 [1.1] 0.47 1.14 **

1UDI rigid-body | E 5 4.9 [0.4] 0.98 2.17 * 1KXQ rigid-body | AB 3 3.3 [1.1] 0.44 1.25 **

1D6R rigid-body | E 5 4.9 [0.3] 0.99 2.14 * 1BUH rigid-body | O 3 3.3 [1.1] 0.44 1.73 **

7CEI rigid-body | E 5 4.8 [0.6] 0.94 0.79 *** 1XD3 rigid-body | O 3 3.3 [1.1] 0.45 2.69 *

2UUY rigid-body | E 5 4.7 [0.7] 0.93 1.30 ** 1E4K difficult | A 4 3.2 [1.3] 0.45 1.98 **

1E6E rigid-body | E 5 4.7 [0.6] 0.94 0.79 *** 1E6J rigid-body | A 3 3.2 [1.2] 0.40 2.48 *

1SBB rigid-body | O 5 4.6 [0.7] 0.91 0.60 *** 1HIA rigid-body | E 3 3.2 [1.1] 0.40 1.95 **

2C0L difficult | O 5 4.6 [0.7] 0.91 1.15 ** 2SIC rigid-body | E 3 3.1 [1.3] 0.40 0.59 ***

1IQD rigid-body | AB 5 4.5 [0.8] 0.89 1.26 ** 2FD6 rigid-body | A 3 3.1 [1.2] 0.38 1.85 **

1AHW rigid-body | A 5 4.5 [0.7] 0.89 1.38 ** 1HE1 rigid-body | O 3 3.0 [1.2] 0.36 1.31 **

1GCQ rigid-body | O 5 4.4 [0.8] 0.88 0.72 *** 2JEL rigid-body | AB 3 3.0 [1.1] 0.36 0.40 ***

1EAW rigid-body | E 4 4.4 [0.8] 0.87 1.31 ** 1AY7 rigid-body | E 3 2.9 [1.1] 0.32 1.55 **

1FC2 rigid-body | O 4 4.4 [0.8] 0.84 1.53 ** 1WQ1 medium | O 3 2.8 [1.3] 0.30 1.48 **

1GPW rigid-body | O 4 4.4 [0.8] 0.88 1.98 ** 2QFW rigid-body | AB 3 2.8 [1.2] 0.30 0.64 ***

2MTA rigid-body | E 4 4.3 [0.9] 0.81 0.66 *** 1IJK medium | E 3 2.8 [1.2] 0.28 2.35 *

1BVN rigid-body | E 4 4.0 [1.0] 0.72 1.35 ** 1NCA rigid-body | AB 3 2.7 [1.3] 0.27 0.46 ***

1CGI rigid-body | E 4 4.0 [1.0] 0.74 1.76 ** 2I25 rigid-body | A 3 2.2 [1.2] 0.15 1.80 **

doi:10.1371/journal.pone.0022477.t002
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Table 3. Docking Benchmark 3.0 results summary for failures.

PDB
Difficulty |
type N5

m (N5)
[s(N5)] Psuccess Irmsd Classification PDB

Difficulty |
type N5

m (N5)
[s(N5)] Psuccess Irmsd Classification

1K74 rigid-body | O 2 2.5 [1.1] 0.20 1.63 RB sampling 1EER difficult | O 1 0.9 [1.0] 0.02 2.23 BB sampling

1Z5Y rigid-body | O 2 2.4 [1.1] 0.16 1.14 BB sampling 1FAK difficult | O 1 0.9 [0.9] 0.01 3.30 discrimination

1WEJ rigid-body | A 2 2.2 [1.1] 0.14 2.60 discrimination 1TMQ rigid-body | E 1 0.8 [0.9] 0.01 1.47 RB sampling

1HE8 medium | O 2 2.2 [1.1] 0.13 3.19 BB sampling 1I4D rigid-body | O 1 0.8 [0.9] 0.01 3.13 RB sampling

1ATN difficult | O 2 2.1 [1.2] 0.12 1.53 RB sampling 1RLB rigid-body | O 1 0.8 [0.9] 0.01 3.88 RB sampling

2HQS rigid-body | O 2 2.1 [1.2] 0.13 2.69 BB sampling 1Z0K rigid-body | O 1 0.7 [0.8] 0.00 3.56 BB sampling

1JMO difficult | O 2 2.1 [1.2] 0.11 2.82 BB sampling 1EFN rigid-body | O 1 0.7 [0.8] 0.00 3.58 BB sampling

2O8V rigid-body | E 2 2.1 [1.2] 0.12 3.62 BB sampling 1I9R rigid-body | AB 1 0.6 [0.8] 0.00 0.52 RB sampling

1J2J rigid-body | O 2 2.0 [1.4] 0.14 1.10 BB sampling 1AZS rigid-body | O 0 0.5 [0.9] 0.01 5.41 RB sampling

1NSN rigid-body | AB 2 2.0 [1.2] 0.10 1.15 discrimination 2B42 rigid-body | E 0 0.4 [0.6] 0.00 5.85 RB sampling

1K5D medium | O 2 2.0 [1.1] 0.09 2.87 BB sampling 2BTF rigid-body | O 0 0.3 [0.6] 0.00 4.44 BB sampling

1FQ1 difficult | E 2 1.7 [1.3] 0.08 2.18 RB sampling 1KKL medium | E 0 0.2 [0.5] 0.00 4.60 RB sampling

2AJF rigid-body | O 2 1.7 [1.1] 0.06 1.23 RB sampling 1F51 rigid-body | O 0 0.2 [0.5] 0.00 12.35 BB sampling

1E96 rigid-body | O 1 1.6 [1.1] 0.05 3.38 BB sampling 1KAC rigid-body | O 0 0.1 [0.5] 0.00 4.01 BB sampling

1I2M medium | O 1 1.5 [1.0] 0.03 2.68 BB sampling 1MLC rigid-body | A 0 0.1 [0.4] 0.00 4.31 BB sampling

1QFW rigid-body | AB 1 1.5 [1.1] 0.03 1.93 RB sampling 1S1Q rigid-body | O 0 0.1 [0.3] 0.00 4.37 BB sampling

1GLA rigid-body | O 2 1.5 [1.1] 0.05 2.98 BB sampling 1M10 medium | E 0 0.0 [0.0] 0.00 4.46 BB sampling

1AKJ rigid-body | O 1 1.2 [1.0] 0.02 1.48 BB sampling 1A2K rigid-body | O 0 0.0 [0.0] 0.00 5.20 BB sampling

1EZU rigid-body | E 1 1.2 [1.0] 0.02 2.82 RB sampling 1R8S difficult | O 0 0.0 [0.0] 0.00 5.21 BB sampling

1F34 rigid-body | E 1 1.2 [1.0] 0.02 4.00 RB sampling 1GP2 medium | O 0 0.0 [0.0] 0.00 5.23 BB sampling

1GRN medium | O 1 1.1 [1.0] 0.02 1.24 BB sampling 1IBR difficult | O 0 0.0 [0.0] 0.00 5.46 RB sampling

1NW9 medium | E 1 1.1 [1.0] 0.02 2.33 BB sampling 1BKD difficult | O 0 0.0 [0.0] 0.00 5.62 BB sampling

2H7V medium | O 1 1.1 [1.0] 0.02 3.65 BB sampling 2OT3 difficult | O 0 0.0 [0.0] 0.00 6.00 BB sampling

1GHQ rigid-body | O 1 1.0 [1.0] 0.01 2.69 BB sampling 1FQJ rigid-body | O 0 0.0 [0.0] 0.00 6.48 RB sampling

2NZ8 medium | O 1 1.0 [1.0] 0.02 3.91 BB sampling 1PXV difficult | E 0 0.0 [0.0] 0.00 9.49 BB sampling

1IB1 medium | O 1 1.0 [1.0] 0.01 3.95 discrimination 1H1V difficult | O 0 0.0 [0.0] 0.00 9.96 BB sampling

1K4C rigid-body | AB 1 1.0 [1.1] 0.02 2.15 BB sampling 1Y64 difficult | O 0 0.0 [0.0] 0.00 13.70 discrimination

1EWY rigid-body | E 1 1.0 [1.1] 0.02 3.01 BB sampling 1DQJ rigid-body | A 0 0.0 [0.2] 0.00 6.15 BB sampling

2PCC rigid-body | E 1 1.0 [0.9] 0.01 3.38 discrimination 1ACB medium | E 0 0.0 [0.1] 0.00 4.56 RB sampling

1KLU rigid-body | O 0 0.0 [0.1] 0.00 8.16 BB sampling

doi:10.1371/journal.pone.0022477.t003

Table 4. Docking success and failure by complex type and difficulty.

failures % [n]

complex type n Success % [n] RB sampling BB sampling discrimination

antibody-antigen 23 67 [16] 9 [2] 14 [3] 9 [2]

enzyme-inhibitor 33 61 [20] 21 [7] 15 [5] 3 [1]

other 60 35 [21] 15 [9] 45 [27] 5 [3]

difficulty

rigid-body 84 58 [49] 15 [13] 23 [19] 4 [3]

medium 17 29 [5] 12 [2] 53 [9] 6 [1]

difficult 14 14 [2] 21 [3] 50 [7] 14 [2]

doi:10.1371/journal.pone.0022477.t004
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targets where side-chain flexibility is adequate in accommodating

binding-induced conformational changes. By contrast, medium

and difficult targets proved to be a challenge for the standard

RosettaDock algorithm.

Evaluations of structure-based algorithms typically treat sam-

pling and discrimination as orthogonal metrics. A cursory survey

of the benchmark results shows that despite a success rate of

approximately 50%, near-native rigid-body orientations were

sampled in over 90% of the targets. This sizeable ‘discrimination

gap’ suggests that discrimination of near-native structures is the

primary challenge for future docking development. Given that

sampling and discrimination are intimately linked when using

physics-based sampling and scoring strategies, we sought to more

finely distinguish sampling and discrimination by examining

docking failures in the context of rigid-body docking, binding-

induced backbone conformation changes, and near-native dis-

crimination. We identified three corresponding types of docking

failures: RB sampling failure, in which the native structure was at

the global energy minimum when docking the unbound

conformations but was undersampled in standard docking, BB

sampling failure in which the native structure was at the global

energy minimum only when docking the bound backbone

conformations and thus inaccessible to rigid-body docking using

the unbound backbone conformations, and a discrimination

failure in which the global energy minimum does not correspond

to the native structure.

An analysis of the docking failures revealed significant trends as

to the cause of failure. In almost all categories of complex type and

difficulty, BB sampling failures were the most common, and

accounted for over 60% of all failures. By contrast, true

discrimination failures accounted for less than 10% of docking

failures, indicating that the apparent ‘discrimination gap’ between

the number of successful predictions and the number of targets in

which near-natives were sampled is largely due to the sub-optimal

backbone conformations of the unbound state.

It is notable that ‘other’ type complexes are particularly prone

to the BB sampling failure; even in local docking only 50% of

other-type complexes identified the native conformation, com-

pared to 78% and 82% for enzyme-inhibitor and antibody-antigen

complexes respectively. This could reflect historical biases towards

enzyme-inhibitor targets for which docking algorithms were first

developed, or it could reflect more challenging flexibility and

thermodynamics in this broad class of complexes. Unlike

traditional enzyme-inhibitor complexes which typically have small

conformation changes and higher affinities, these ‘other’ com-

plexes are often involved in molecular recognition or signal

transduction and bind with greater promiscuity and lower binding

affinities. Substantial advancements have been made that expand

the core protein docking algorithm in RosettaDock to accommo-

date binding-induced backbone conformation changes, both

through explicitly modeling of backbone flexibility[6] as well as

the use of an ensemble of alternate backbone conformers.[14]

Once these features have been fully implemented in RosettaDock

v3.2, a benchmarking against the data set presented here is

needed.

A bootstrapping-based statistics approach to measuring the

variability in docking results, such as calculating the probability of

observing a docking success, can be a useful tool for comparing

stochastic data from structure prediction methods like Rosetta-

Dock. Previous statistical descriptions, such as using a z-score

based on the mean and standard deviation of data [27] makes

Figure 5. Comparison of RosettaDock v3.2 and RosettaDock
v2.3. A histogram showing the docking success and accuracy for a
benchmark set of 116 targets for the new RosettaDock v3.2 and the
older RosettaDock v2.3.
doi:10.1371/journal.pone.0022477.g005

Figure 6. Docking of the FNR-Fn ternary complex. Plots of score vs. Lrmsd for local docking of the unbound structures in target 1EWY without
(A) and with (B) the small molecule FAD bound to FNR (A), with high, medium, and acceptable accuracy decoys colored in brown, orange, and tan,
respectively. (C) The second-lowest energy structure from docking using FAD with FNR (green), Fd (cyan), and the FAD molecule (magenta)
superimposed on the crystal structure of the complex (gray).
doi:10.1371/journal.pone.0022477.g006
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f,awed assumptions about the distribution of the underlying data,

which can lead to significant noise in the final statistical measure,

limiting both its accuracy and utility. Likewise, a visual assessment

of prediction quality from the data, while useful in qualitatively

evaluating the results in a manner robust to the noise of a

particular metric, is subject to user-bias.[36] By contrast, a

relatively simple, model-independent, bootstrapping method, such

as the case re-sampling approach described here, avoids these

pitfalls while describing both the reliability and significance of the

structure prediction results. Further research on the utility of

bootstrapping statistics to analyze stochastic results is needed,

particularly in the context of molecular modeling and structure

prediction.

The new Rosetta v3.2 modeling package provides a powerful

means for developing novel and customized modeling protocols

based on several core algorithms. The RosettaDock algorithm,

which searches rigid-body conformation space to optimize the

interface between two protein segments continues to be a highly

useful molecular modeling tool for a range of applications from

protein docking to interface design.
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