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Abstract: Oligotrichids and choreotrichids are ciliate taxa
contributing to the multi-step microbial food web and
episodically dominating the marine microzooplankton.
The global diversity and distribution of aloricate Oligo-
trichea are unknown. Here, the geographic ranges of the
141 accepted species and their synonyms in marine and
brackish sea water are analyzed, using hundreds of
taxonomical and ecological studies; the quality of the
records is simultaneously evaluated. The aloricate Oligo-
trichea match the moderate endemicity model, i.e., the
majority (94) of morphospecies has a wide, occasionally
cosmopolitan distribution, while 47 morphospecies show
biogeographic patterns: they are restricted to single
geographic regions and probably include 12 endemic
morphospecies. These endemics are found in the
Antarctic, North Pacific, and Black Sea, whereas the
‘‘flagship’’ species Strombidinopsis cercionis is confined
to the Caribbean Sea. Concerning genera, again several
geographic patterns are recognizable. The species rich-
ness is distinctly lower in the southern hemisphere than in
the northern, ranging from nine morphospecies in the
South Pacific to 95 in the North Atlantic; however, this
pattern is probably caused by undersampling. Since the
loss of species might affect higher trophical levels
substantially, the aloricate Oligotrichea should not any
longer be ignored in conservation issues. The ecophysi-
ological diversity is considerably larger than the morpho-
logical, and even tops the richness of SSrRNA and ITS
haplotypes, indicating that probably more than 83–89%
of the diversity in aloricate Oligotrichea are unknown. The
huge challenge to discover all these species can only be
managed by combining the expertises of morphological
taxonomists, molecular biologists, ecologists, and physi-
ologists.

Introduction

History of Discovery
Based on morphologic and ontogenetic features, the Oligo-

trichea Bütschli, 1887 unite the halteriids, oligotrichids, and

choreotrichids (see ‘Classification and phylogeny’ and Table 1 for

scientific and vernacular names). While the former two taxa

contain exclusively aloricate (naked) species, the choreotrichids

embrace naked species and the loricate (house-forming) tintinnids,

which are not considered in the present compilation.

The first ciliate assigned to the oligotrichids was the marine

species Strombidium sulcatum Claparède and Lachmann, 1859 [1].

The freshwater species Strombidion caudatum Fromentel, 1876 [2] is

the first known aloricate choreotrichid ciliate, as it was transferred

to the genus Strobilidium by Foissner [3]. In 1773, Müller described

the first halteriid, viz., the freshwater species Trichoda grandinella [4],

which was affiliated with the genus Halteria by Dujardin [5].

In their revisions, Kent listed 21 species [6], Awerinzew 10

species [7], and Kahl 84 species [8,9], while the most recent

monographs published in 1985 and 1986 [10,11] considered 127

species of aloricate Oligotrichea. The rate of discovery (Figure 1)

reflects the introduction and improvement of light microscopy

(period ,1860–1960) for the study of live and preserved specimens

and the introduction of cytological staining methods (i.e., protargol

and silver nitrate impregnation; period ,1980–present) to reveal

the ciliary pattern and nuclear apparatus. The rate of discovery

was also distinctly influenced by the trend to neotypify species

rather than to establish new ones, assuming that the majority of

species has a cosmopolitan distribution [12–14]. Accordingly, the

intensity of taxonomic studies was much higher during the past

thirty years than implied by Figure 1. Currently, species

descriptions do not only comprise information from live

observation, silver impregnation, and scanning electron micros-

copy, but often also sequence data of the small subunit ribosomal

RNA gene (SSrRNA).

Ecology and Environments
Ciliates are highly developed unicellular eukaryotes, which

propagate mainly asexually by transverse fission. The oligotrichids

and choreotrichids are ciliate taxa episodically dominating the

marine microzooplankton with maximum abundances of up to

1.26106 individuals per litre in the upper water layers [15–18].

Such high cell densities (‘‘blooms’’) might cause water colourations

[15,19]. The halteriids, however, occur only rarely and with low

abundances in marine and brackish sea water. While the majority

of Oligotrichea has a planktonic life style, 17 aloricate species are

closely associated with the marine benthal, possessing special

ciliary structures (thigmotactic membranelles) for a temporary

attachment and/or migration on the substrate [8,20,21], and three

species are endocommensals in sea urchins (see ‘Results’; [22–24]).

Most genera occur exclusively in marine and brackish sea water:

the oligotrichid genera Apostrombidium, Cyrtostrombidium, Foissner-

idium, Laboea, Novistrombidium, Omegastrombidium, Opisthostrombidium,

Parallelostrombidium, Paratontonia, Pseudotontonia, Spirostrombidium, Spir-

otontonia, Tontonia, and Varistrombidium, and the choreotrichid
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genera Leegaardiella, Lohmanniella, Lynnella, Parastrombidinopsis, Para-

strombidium, and Strombidinopsis. The oligotrichid genus Strombidium,

the choreotrichid genera Rimostrombidium and Pelagostrobilidium, and

the halteriid genera Meseres and Pelagohalteria embrace both marine

and freshwater species. The halteriid genus Halteria, the oligo-

trichid genera Limnostrombidium and Pelagostrombidium, and the

choreotrichid genus Strobilidium are apparently restricted to

freshwater, as the few records from brackish or marine

environments are probably based on misidentifications (Table 1).

All in all, there are 29 freshwater-specific species and six with a

distribution only in saline inland waters or lakes (including the

Caspian Sea), which are excluded from this compilation.

The Oligotrichea are members of the multi-step microbial food

web. They mainly ingest bacteria as well as autotrophic and

heterotrophic nanoplankton (2–20 mm) and are preyed upon by a

wide variety of planktonic metazoans (e.g., copepods, fish larvae;

[25–27]). Hence, they contribute to the energy flux of the

conventional phytoplankton-based planktonic food web and may

change the community composition of the bacterioplankton and

nanoplankton through selective feeding [28]. Most/many oligo-

trichids are mixotrophic, ‘‘farming’’ plastids of their ingested algal

prey and benefiting from the photosynthetic products [29–36].

Resting cysts, dormant stages formed during periods of

adverse environmental conditions, are known in only a few

marine species due to their rare occurrence, sedimentation,

and difficult identification [37–47]. Apparently, open water

species follow a seasonal encystment-excystment cycle [39,41,

48], whereas the oligotrichid tide-pool ciliate Strombidium

oculatum demonstrates a circatidal behaviour, encysting before

high tide and excysting during low tide [42–44,46,49–51]. The

resting cysts are flask-shaped or spindle-shaped with a solid,

hollow, or frothy plug closing the emergence pore. The surface

of the cyst is smooth or may bear spines variable in number

and length.

Species Diversity
Ciliates have complex morphologies, which can be revealed by

cytological staining techniques and electron microscopy (see

‘Morphology’). While fossils of tintinnids (loricate Oligotrichea)

reach back to the Ordovician or possibly even Mesoproterozoic

era [52], there are no remains of the probably older aloricate

Oligotrichea. The number of reliable species in marine and

brackish sea water amounts to 103 in the 15 oligotrichid genera,

36 in the eight aloricate choreotrichid genera, and two in the two

halteriid genera (Table 1 and Table S1), based on my revision of

the aloricate Oligotrichea in preparation.

Classification and Phylogeny
The Oligotrichea are separated from the closely related

hypotrich and stichotrich spirotrichs (e.g., Euplotes, Stylonychia,

Oxytricha) by several apomorphies: (i) a globular to obconical cell

shape; (ii) a planktonic life style; (iii) an apically located adoral zone

of membranelles (fan-like units composed of densely spaced cilia);

(iv) a bipartition of the adoral zone in a collar portion with large

membranelles and a buccal portion with small membranelles; (v) a

lack of cirri (bristle-like complexes of somatic cilia); and (vi) an

enantiotropic division mode (an inverse orientation of mother/

proter and daughter/opisthe). According to cladistic analyses and

phylogenies of the SSrRNA gene, the oligotrichids and choreo-

trichids are monophyletic [37,53–64]. Concerning the position of

the halteriids, however, the morphologic and genetic data are

inconsistent, i.e., the morphology and pattern of cell division

indicate a sister group relationship with a cluster formed by the

oligotrichids and choreotrichids, whereas the halteriids are located

Table 1. Classification of halteriid, oligotrichid, and aloricate
choreotrichid ciliates; vernacular names are in bold; the
numbers of marine and brackish water species are in brackets.

Spirotricha Bütschli, 1887 = spirotrichs

Class Oligotrichea Bütschli, 1887 (141 aloricate species)

Subclass Halteriia Petz & Foissner, 1992 = halteriids (2 species)

Order Halteriida Petz & Foissner, 1992 (2 species)

Family Halteriidae Claparède & Lachmann, 1859 (1 species)

Genus Halteria Dujardin, 1841 (0 species)

Genus Pelagohalteria Foissner, Skogstad & Pratt, 1988 (1 species)

Family Meseridae Corliss, 1961 (1 species)

Genus Meseres Schewiakoff, 1892 (1 species)

Subclass Oligotrichia Bütschli, 1887 (139 aloricate species)

Order Oligotrichida Bütschli, 1887 = oligotrichids (103 species)

Family Tontoniidae Agatha, 2004 = tontoniids (11 species)

Genus Laboea Lohmann, 1908 (1 species)

Genus Paratontonia Jankowski, 1978 (3 species)

Genus Pseudotontonia Agatha, 2004 (2 species)

Genus Spirotontonia Agatha, 2004 (3 species)

Genus Tontonia Fauré-Fremiet, 1914 (2 species)

Family Cyrtostrombidiidae Agatha, 2004 (3 species)

Genus Cyrtostrombidium Lynn & Gilron, 1993 (3 species)

Family Pelagostrombidiidae Agatha, 2004 (0 species)

Genus Limnostrombidium Krainer, 1995 (0 species)

Genus Pelagostrombidium Krainer, 1991 (0 species)

Family Strombidiidae Fauré-Fremiet, 1970 (89 species)

Genus Apostrombidium Xu, Warren & Song, 2009 (1 species)

Genus Foissneridium Agatha, 2010 (1 species)

Genus Novistrombidium Song & Bradbury, 1998 (3 species)

Genus Omegastrombidium Agatha, 2004 (3 species)

Genus Opisthostrombidium Agatha, 2010 (2 species)

Genus Parallelostrombidium Agatha, 2004 (3 species)

Genus Spirostrombidium Jankowski, 1978 (10 species)

Genus Strombidium Claparède & Lachmann, 1859 (65 species)

Genus Varistrombidium Xu, Warren & Song, 2009 (1 species)

Order Choreotrichida Small & Lynn, 1985 = choreotrichids (36 aloricate
species)

Family Leegaardiellidae Lynn & Montagnes, 1988 (3 species)

Genus Leegaardiella Lynn & Montagnes, 1988 (3 species)

Family Lohmanniellidae Montagnes & Lynn, 1991 (2 species)

Genus Lohmanniella Leegaard, 1915 (2 species)

Family Lynnellidae Liu, Yi, Lin & Al-Rasheid, 2011 (1 species)

Genus Lynnella Liu, Yi, Lin & Al-Rasheid, 2011 (1 species)

Family Strobilidiidae Kahl in Doflein & Reichenow, 1929 (12 species)

Genus Pelagostrobilidium Petz, Song & Wilbert, 1995 (4 species)

Genus Rimostrombidium Jankowski, 1978 (8 species)

Genus Strobilidium Schewiakoff, 1892 (0 species)

Family Strombidinopsidae Small & Lynn, 1985 (18 species)

Genus Parastrombidinopsis Kim et al., 2005 (2 species)

Genus Parastrombidium Fauré-Fremiet, 1924 (1 species)

Genus Strombidinopsis Kent, 1881 (15 species)

doi:10.1371/journal.pone.0022466.t001
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among the stichotrichs (frequently as an adelphotaxon of Oxytricha

granulifera) and thus distinctly apart from the oligotrichids and

choreotrichids in the molecular trees [61,65–67].

The hypothesized evolution of the somatic ciliary patterns is one

of the main feature complexes integrated into the cladistic analyses

[53,54,68,69]. Agatha [53,68] assumed a convergent development

of the ciliary patterns in the tailless oligotrichids and the tailed

tontoniids, as the contractile tail is considered a strong synapo-

morphy due to its complex and unique ultrastructure. However,

gene sequence analyses indicated that the sinistrally spiralled

ciliary pattern is a synapomorphy of the tailed genus Spirotontonia

and the secondarily tailless monotypic genus Laboea. Otherwise,

the morphologic tree of the oligotrichids matches rather well the

SSrRNA phylogenies [69]. In both kind of trees, the aloricate

choreotrichids are paraphyletic, but differ in the position of the

genus Parastrombidinopsis. According to its morphology, it is an

adelphotaxon of the genus Strombidinopsis at the base of the

choreotrichids, whereas it represents a sister group to the more

highly developed tintinnids in the molecular trees [54,58].

Morphology
In contrast to the majority of eukaryotes, ciliates are

heterokaryotic, possessing two kinds of nuclei: one, rarely two or

more diploid micronuclei involved into the sexual processes

(conjugation) and usually one or several highly polyploid

macronucleus nodules mainly controlling the metabolism. The

aloricate Oligotrichea are globular, subspherical, ellipsoidal,

obconical, or obovoidal and measure 15–260 mm. The somatic

ciliature is often reduced, whereas the conspicuous adoral zone of

membranelles at the apical cell end is used for locomotion and

food collection by filter feeding [70].

Halteriids (Figures 2a, b). In the halteriids, the adoral zone of

membranelles is C-shaped with a distinct ventral gap and consists

of a collar portion with large membranelles and a buccal portion

with small membranelles. On the inner wall of the buccal lip, a

longitudinal row of occasionally ciliated basal bodies, the endoral

membrane, extends into the eccentric buccal cavity. The few

ciliated basal bodies on the outer cell surface at the level of the

cytostome represent the paroral membrane. In the genus Meseres,

the somatic ciliature is arranged in several longitudinal rows

composed of dikinetids (paired basal bodies), each with a cilium

associated only with the anterior basal body (Figure 2a). In

Pelagohalteria, the short and equatorially arranged somatic kineties

consist of a longitudinal anterior and a horizontal posterior portion

(Figure 2b). Its somatic cilia are conspicuously long and form

bristles. Usually, the specimens rotate on the spot, interrupted by

long jumps.

Oligotrichids (Figure 2c). In the oligotrichids, the adoral zone of

membranelles is C-shaped with a distinct ventral gap and consists

of a collar portion with large membranelles and a buccal portion

with small membranelles. On the inner wall of the buccal lip, a

longitudinal row of occasionally ciliated basal bodies, the endoral

membrane, extends into the eccentric buccal cavity. The somatic

ciliature typically comprises two ciliary rows: the girdle kinety and

the ventral kinety. These kineties are composed of dikinetids, each

with a stubby cilium associated only with the left or anterior basal

body. Whereas the girdle kinety is arranged in several patterns, the

ventral kinety generally extends longitudinally in the posterior cell

portion. Rod-shaped or needle-shaped extrusomes (extrusive

organelles) are usually attached to the cell membrane directly

anteriorly to the girdle kinety and extend obliquely into the

cytoplasm [71]. The cell cortex posterior to the girdle kinety

typically contains a layer of polygonal polysaccharide platelets

[31,60,72–74]. The specimens usually swim in spirals by rotation

about their main cell axis.

Choreotrichids (Figures 2d–h). In the choreotrichids, the adoral

zone of membranelles forms a circle. The large collar membra-

nelles insert on an elevated rim around the peristomial field. Some

of them are elongated, extending into the eccentric buccal cavity,

which also contains the small buccal membranelles. In the genera

Lynnella, Parastrombidinopsis, and Parastrombidium, however, the

adoral zone of membranelles opened secondarily, producing an

indistinct ventral gap. The genus Leegaardiella is exceptional in its

bipartited bases (polykinetids) of the collar membranelles, i.e., they

consist of an outer portion with long cilia and an inner portion

with short cilia (Figure 2g). While the structure of the somatic

ciliature is rather uniform in the oligotrichids, the choreotrichids

show a wide variety of patterns: (i) in the genera Pelagostrobilidium

and Rimostrombidium, the stubby cilia are very densely arranged in a

few longitudinal or curved monokinetidal (composed of single

Figure 1. Rate of discovery. The published descriptions of new halteriid, oligotrichid, and aloricate choreotrichid species (including synonyms,
nomina dubia, and nomina oblita) per year.
doi:10.1371/journal.pone.0022466.g001
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basal bodies) rows and bent leftwards by cytoplasmic flaps (kinetal

lips) covering their bases (Figure 2e); (ii) in the genera

Strombidinopsis, Parastrombidinopsis, and Parastrombidium, the somatic

ciliature is well developed and comprises several longitudinal rows

composed of dikinetids, each with two cilia (Figure 2d); (iii) in the

genus Lohmanniella, the few kineties are short, extending in the

posterior cell portion, and consist of dikinetids, each with a cilium

associated only with the posterior basal body (Figure 2f); (iv) in the

genus Leegaardiella, the few kineties are short, extending in the

posterior cell portion, and consist of dikinetids, each with two cilia

or one cilium associated only with the anterior basal body

(Figure 2h); and (v) in the genus Lynnella, one kinety is

monokinetidal, while the other consists of dikinetids, each with a

cilium associated only with the posterior basal body. Many

aloricate choreotrichids are able to jump.

Materials and Methods

Data Source
While the biogeography of tintinnids (loricate Oligotrichea) is

comparatively well studied [75–79], a census and survey on the global

distribution of aloricate Oligotrichea are not available. Even in recent

estimations of marine species richness, ciliates are not considered or

are subsumed under the protists [80,81]. A preliminary list of marine

aloricate Oligotrichea merely exists for European sea regions [82].

The present compilation is based on hundreds of taxonomical

and ecological studies, considering the accepted species mentioned

(Table S1) and their synonyms; however, it cannot be excluded

that some ecological papers might have been overlooked. The

available records were classified according to their quality: (i)

reliable records from the type or neotype locality accompanied by

the original description or redescription; (ii) more or less reliable

records supported by descriptions, measurements, and/or illustra-

tions; and (iii) unsubstantiated records based on uncertain

identifications.

Biogeographic Subdivisions
The present analysis of the global distribution is not restricted to

the pelagial, benthal, and sea ice of marine waters, but also

includes all records from brackish sea waters in estuaries, fjords,

coastal lagoons, the Baltic Sea, and the Black Sea. Finally, seven

regions of the oceans were distinguished (Table S1), whose limits

roughly correspond with the latitudinal-physical geographic

zonation of water masses proposed by Van der Spoel and

Heyman [83]: the Arctic and Subarctic waters are pooled; the

northern temperate, northern subtropical, and northern tropical

waters are united each in the North Atlantic and North Pacific; the

southern tropical, southern subtropical, and southern temperate

waters are lumped each in the South Atlantic, South Pacific, and

Indian Ocean; and the Subantarctic and Antarctic waters are

amalgamated. Furthermore, the Mediterranean, Baltic, and Black

Sea are considered. Even though almost all studies were

performed in neritic waters, the recorded species are supposed

to occur also in the affiliated oceanic regions.

Figure 2. Morphology of main groups. Generalized ventral (a–c, f), dorsal (d, e), top (g), and posterior polar (h) views after protargol
impregnation (a, after [190]; b, d, f, originals; c, e, after [53]; g, h, after [192]). a, b: The halteriid genera Meseres and Pelagohalteria. c: The oligotrichid
genus Strombidium. d–h: The choreotrichid genera Strombidinopsis (d), Rimostrombidium (e), Lohmanniella (f), and Leegaardiella (g, h). B – bristle
kineties, BM – buccal membranelles, CM – collar membranelles, E – endoral membrane, GK – girdle kinety, ICM – inner portion of collar membranelles,
OCM – outer portion of collar membranelles, P – paroral membrane, SK – somatic kineties, VK – ventral kinety.
doi:10.1371/journal.pone.0022466.g002
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Results

In spite of the comprehensive literature research, the species

inventories presented in Table S1 are fragmentary and influenced

by various limitations (see below) preventing detailed comparisons

and ecological analyses.

The majority of aloricate Oligotrichea (94 morphospecies) has a

wide, occasionally cosmopolitan distribution (occurring in all

oceans and seas from the Arctic through the tropics to the

Antarctic), while 47 morphospecies are restricted to single

geographic regions and include, conservatively estimated, 12

endemic morphospecies. The choreotrichid Leegaardiella elbraechteri

and the oligotrichids Spirostrombidium echini (possibly specific to its

sea urchin host), Strombidium glaciale, S. kryale, S. syowaense nom. corr.

(specific epithet emended, as the genus name is neuter gender),

and Tontonia antarctica were only found in the Antarctic Sea. The

choreotrichid Rimostrombidium sulcatum as well as the oligotrichids

Strombidium costatum and S. opisthostomum are possibly confined to the

Black Sea. The oligotrichids Strombidium foissneri and S. rapulum are

restricted to the North Pacific, possibly due to the geographic

ranges of their sea urchin hosts. Among the endemics, the

choreotrichid Strombidinopsis cercionis represents a ‘‘flagship’’ species

in the sense of Tyler [84]. Because of its unique shape (pyriform

with a posterior spine ,30 mm long) the species is so conspicuous

that it would have probably been recorded if it indeed occurred

outside the Caribbean Sea. However, it cannot be excluded that S.

cercionis is a young species that not yet fully explored its potential

range. So, endemic species occur within widely distributed genera

of aloricate Oligotrichea, as in tintinnids [75]. The oligotrichid

Parallelostrombidium rhyticollare displays like the tintinnid Acanthosto-

mella norvegica, the dinoflagellate Polarella glacialis, and some

planktonic foraminifera a bipolar distribution, which possibly

results from the glaciation during the Neogene [75,85–87]. The

other species recorded only in a certain region might actually have

a wider distribution (see below).

The distribution of the genera presented here is like that of the

species preliminary and necessitates more detailed studies. Several

oversimplified geographic patterns are recognizable: (i) a cosmo-

politan distribution in Laboea, Leegaardiella, Lohmanniella, Parallelos-

trombidium, Paratontonia, Pelagostrobilidium, Pseudotontonia, Rimostrombi-

dium, Spirostrombidium, Strombidium, and Tontonia (Figure 3d–f, 4d, f,

5b–d, g); (ii) a worldwide distribution with the exception of the

Antarctic Sea in Strombidinopsis (Figure 5f); (iii) a distribution

roughly restricted to the northern hemisphere in Cyrtostrombidium

and Foissneridium (Figure 3b, c); (iv) a distribution only in the

northern hemisphere with the exception of the Arctic Sea in

Novistrombidium, Omegastrombidium, Parastrombidium, Spirotontonia, and

Varistrombidium (Figure 4b, c, e, 5e, h); (v) a distribution confined to

the North Pacific in Apostrombidium, Lynnella, Opisthostrombidium, and

Parastrombidinopsis (Figure 3a); (vi) a distribution limited to the

North Atlantic, Black Sea, and probably Mediterranean in

Pelagohalteria (Figure 5a); and (vii) a distribution restricted to the

Black Sea in Meseres (Figure 4a), which mainly occurs in

freshwater. The choreotrichid Lohmanniella oviformis and the

oligotrichids Laboea strobila, Paratontonia gracillima, Strombidium

conicum, S. dalum, and S. sulcatum have a worldwide range, although

subtle morphologic differences indicate the presence of a species

complex at least in Strombidium sulcatum.

The number of accepted morphospecies ranges from nine for

the South Pacific to 95 for the North Atlantic (Table S1). A high

diversity of aloricate Oligotrichea is also found in the North Pacific

(94 species), Mediterranean (48 species), and Black Sea (46

species). Generally, the recorded species richness is lower in the

southern hemisphere than in the northern (see below).

Discussion

Limitations
The data on the biogeography and diversity of aloricate

Oligotrichea are strongly influenced by taxonomy and investiga-

tion methods. Furthermore, the natural patterns have been

disturbed by human impact.

(i) Taxonomy. The accurate circumscription of species is an

essential requirement for biodiversity and biogeography

assessments. Traditionally, morphological traits were used to

define and identify ciliate species, viz., the morphospecies

concept was employed. Taxonomic mistakes and uncertain-

ties, e.g., the tendency to identify specimens from new

regions with European species despite subtle differences [88]

and unjustified synonymizations, affect the diversity and

geographic ranges perceived: taxonomic separations that

mainly concern sympatric populations cause a higher global

and local species diversity, while separations of allopatric

populations on species level result in a decreasing relative

local species richness due to a higher proportion of endemics

[89]. Recent molecular and ecological studies showed that

the morphospecies concept is too conservative in several

groups of marine plankton protists, i.e., a tremendous

genetic diversity indicating cryptic (no morphologic differ-

ences in cell and resting cyst) or pseudocryptic (subtle

morphologic differences) species is frequently hidden within

a morphospecies [90–96]. The discovery of these distinct

(cut-off divergence of 1–2%) haplotypes underlying the

morphospecies contributes to an increase of the perceived

total taxonomic diversity. Simultaneously, the geographic

ranges are probably reduced and endemic haplotypes/

biological species might become evident [97].

(ii) Investigation methods. Most species-specific features of the

ciliates are recognizable in vivo and after cytological stainings

(silver impregnation techniques). However, the application of

both methods requires training by an expert. Since the Lugol-

fixed material frequently used in ecological studies does not

provide these characteristics, the discovery of new species and

the identification of known ones is hardly feasible in such

material. Furthermore, the fixation techniques are selective

[98]. Generally, a higher taxonomic resolution results in a

higher species diversity and a lower relative local species

richness [99]. However, the species richness recorded in a

certain region also depends on the spatial and temporal

resolution of the sampling [99–101]. Hence, thorough studies

are able to unveiled large portions of the otherwise cryptic

diversity (organisms that are not detected as they are rare and/

or patchily distributed) in marine protists, enhancing the species

richness and influencing the number of endemics. Since ciliate

taxonomists show a patchy distribution with ‘‘hot spots’’ of

taxonomic excellence, comprehensive and reliable species lists

are usually only available for the respective sampling regions.

(iii) Human impact. The distribution patterns observed nowa-

days are the result of natural processes and anthropogenic

influences, e.g., the more than thousand years of shipping

with the transport of organisms by ballast water and the

construction of canals connecting oceans and hence

enabling the exchange of organisms [102–104].

Biodiversity and Biogeography
The nature and extent of microbial biodiversity, biogeography,

and community structure are controversially discussed: cosmopol-
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itan vs. moderate endemicity model and niche-based vs. neutral

theories [100,105–109].

Baas Becking postulated that in microorganisms, including

ciliates, ‘‘everything is everywhere, but the environment selects’’

[110]. According to the tenet of Finlay and colleagues,

microorganisms have a high dispersal potential due to their small

body size and huge abundance [105]. Therefore, marine plankton

ciliates should show a ubiquitous dispersal (random across all

spatial scales), causing a cosmopolitan distribution wherever the

required habitat is realized, a low allopatric speciation, a low

global but high local diversity, and low extinction rates. The huge

abundances are the fundamental drivers of the ubiquitous

dispersal of encysted and active microorganisms [111]. However,

there are only few very abundant species of aloricate Oligotrichea

in the plankton, while most species are only moderately abundant

or even very rare [106,112–118]. Additionally, the transport by

ocean currents is non-random, resulting in an uneven distribution

[77–79,93,119]. A ubiquitous dispersal is further hampered by the

duration of the transport by ocean currents, i.e., a global

circulation needs more than 1000 years [86,120] and even the

transport by the Gulf Stream from the east coast of the USA to

European coastal waters lasts about two years [121,122]. Active

forms do not tolerate the uncomfortable conditions encountered

during such long-distance dispersal (e.g., low temperatures and

starvation in winter), and resting cysts are rarely formed by marine

plankton ciliates, as indicated by molecular analyses comparing

plankton and benthos samples from the same coastal sites [123].

Since the cysts are also at risk to sediment (14.4 m d21 in

freshwater oligotrichids; [41,124]) and the excystment ability

decreases from ,60% to an incapability after some month at low

temperatures ( = conditions met in deep water layers; [40,48,125]),

a long-distance dispersal of the cysts and a subsequent population

growth are thus apparently rare events. The isolation caused by

distance [86,126], patchiness [127] due to the heterogeneity of the

oceans [128,129], front systems, changes in the ocean circulation

patterns, vicariance events, glacial-interglacial climate dynamics,

and global extinction events might have fostered together with the

short generation times [106,117] allopatric speciation in aloricate

Oligotrichea. Furthermore, there is evidence for parapatric and

sympatric speciation in some planktonic protists [91,130–134].

Indeed, the statistical analyses of ciliate communities from the

freshwater pelagial and marine benthal performed by Hillebrand

Figure 3. Global distribution of genera. Red colour marks the presumptive range in marine and brackish sea water (Table S1). Note that the
distribution in freshwater and saline inland waters is not considered. a: Apostrombidium, Lynnella, Opisthostrombidium, and Parastrombidinopsis. b:
Cyrtostrombidium. c: Foissneridium. d: Laboea. e: Leegaardiella. f: Lohmanniella and Rimostrombidium.
doi:10.1371/journal.pone.0022466.g003
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and co-authors refuted the prediction that unicellular organisms

generally have a higher relative local species diversity than

metazoa [89]; thus, they must not necessarily be ubiquitous, but at

least some species might possess a biogeography. Actually,

geographic patterns are recognizable in many species or

haplotypes of marine plankton protist (e.g., foraminifera, radi-

olaria, dinoflagellates, tintinnids, and aloricate Oligotrichea; [this

study,83,91–93,95,135–140]) as well as in many macrozooplank-

ton species [96]. The moderate endemicity model attenuates the

‘‘everything is everywhere’’ tenet, suggesting that (i) the abun-

dances and thus the migration rates are low in ,90% of the

species, (ii) the extinction rates are moderate, (iii) the proportion of

the global species pool found locally is moderate, and (iv) ,30% of

the species are endemics [117]. Consistent with this model and the

findings in the closely related tintinnids [75], the majority of

aloricate Oligotrichea has a wide, possibly cosmopolitan distribu-

tion, while ,33% of the morphospecies are restricted to certain

geographic regions, and at least ,9% of the morphospecies are

endemic according to conservative estimations.

Molecular biogeography is still in its infancy in aloricate

Oligotrichea. The few studies available focussed on the small

subunit ribosomal RNA (SSrRNA) gene and/or the internal

transcribed spacer (ITS) sequence from comparatively limited

geographical samples. A gene flow was found between (i) the

northwest Atlantic [115] and northwest Pacific [141], (ii) the

Mediterranean [60] and northwest Pacific [56,57,142], and (iii) the

Mediterranean [37,55] and northwest Atlantic [61,115,116]. On

the other hand, there are deviations in morphospecies from the

northwest Pacific [56,57] and northwest Atlantic (five SSrRNA

nucleotides; [45]) and from the Mediterranean [60] and northwest

Pacific (1.2% in the SSrRNA gene and in morphologic details;

[142]). In morphologically similar freshwater halteriids, the

conspicuous genetic diversity registered by Katz and colleagues

was correlated with differences in the resting cysts (cyst species;

[143]) and minute deviations in the cell morphology [144]

indicating biological species. Hence, the genetic diversity within

a morphospecies might at least partially result from an insufficient

taxonomic resolution, viz., haplotypes which are indistinguishable

in live and Lugol-fixed material at low (400–6006) magnification

might be differentiated by an experienced morphological taxon-

omist, using live observation, silver impregnation, and light

microscopy at high (10006) magnification. For example, the

Figure 4. Global distribution of genera. Red colour marks the presumptive range in marine and brackish sea water (Table S1). Note that the
distribution in freshwater and saline inland waters is not considered. a: Meseres. b: Novistrombidium. c: Omegastrombidium. d: Parallelostrombidium.
e: Parastrombidium. f: Paratontonia and Strombidium.
doi:10.1371/journal.pone.0022466.g004
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analyses of the ITS regions indicated a huge genetic diversity in

similar-sized tide-pool oligotrichids identified with Strombidium

oculatum due to their green sequestered plastids and the prominent

eye-spot in the apical protrusion [144]. It finally turned out that

one haplotype had a .99% identity in the SSrRNA gene with

Strombidium apolatum and one represents Strombidium rassoulzadegani

[45], while it is still unknown whether one of the six further

haplotypes really corresponds with Strombidium oculatum. So, the

genetic diversity observed was mainly due to a lumping of species,

which are morphologically distinct in live and silver-impregnated

material (with or without a conspicuous posterior spine; girdle

kinety continuous or with a distinct ventral gap; position of the

extrusome girdle). This example is a plea for submitting molecular

data of named species only after detailed morphological

investigations of live and silver-impregnated specimens [145]

and the deposition of permanent voucher slides in a recognized

museum. Recent studies on a freshwater halteriid and aloricate

choreotrichid suggested that the ecophysiological diversity is not

Figure 5. Global distribution of genera. Red colour marks the presumptive range in marine and brackish sea water (Table S1). Note that the
distribution in freshwater and saline inland waters is not considered. a: Pelagohalteria. b: Pelagostrobilidium. c: Pseudotontonia. d: Spirostrombidium.
e: Spirotontonia. f: Strombidinopsis. g: Tontonia. h: Varistrombidium.
doi:10.1371/journal.pone.0022466.g005
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only considerably larger than the morphological, but also tops that

of the haplotypes [146,147].

Community Structure
The high diversity of plankton organisms, especially, protists,

raised the question of ‘‘how a number of species can coexist in a

relatively isotropic or unstructured environment all competing for

the same sorts of materials’’ (‘‘paradox of the plankton’’; [148]).

Not only extrinsic (weather-driven) fluctuations, as suggested by

Hutchinson [148], but also intrinsic mechanisms within the

plankton communities can fuel non-equilibrium dynamics and

result in a coexistence of many species on a handful resources

[149–151]. A further explanation for the diversity of similar

species is provided by Hubbell’s ‘‘neutral community model’’

[108]. The theory assumes that the interactions among species are

equivalent on an individual ‘per capita’ basis. Since niche

differentiation will, however, impact any of the basic processes

of the neutral community model, Gravel and colleagues suggested

the continuum hypothesis, reconciling both the niche-based and

neutrality concepts [152]. Additionally, Alonso and co-authors

emphasized that different mechanisms, although strictly violating

the equivalence assumption, can also generate patterns resembling

neutrality [153]. In aloricate Oligotrichea, the functional equiv-

alence is limited, as they often show species-specific temperature

optima for growth and threshold concentrations [154,155] as well

as salinity preferences [156], food selectivity [157–159], and

different nutrition modes (see ‘Ecology and Environments’).

Hence, the aloricate Oligotrichea are probably a physiologically

quite heterogeneous group within the microbial food web. In

tintinnids, the community structure was studied, using morpho-

logical approaches [112–114], whereas the investigation of marine

aloricate Oligotrichea was either based on molecular data

[115,116] or morphological studies [160]. The tintinnid abun-

dances in the southeast tropical Pacific Ocean usually fitted a log-

series distribution coherent with the neutral community theory

[112]. For Mediterranean tintinnids, the data are incoherent:

while Sitran and colleagues found a log-normal distribution,

indicating a strong impact of the environment [114], Dolan and

co-workers observed a log-series distribution. A partition of the

tintinnid assemblages revealed, however, a log-normal distribution

in the core (numerical abundant) morphospecies and a log-series

distribution in the occasional (rare) ones [113]. Similar findings

were obtained for the core and occasional haplotypes in aloricate

Oligotrichea from the east coast of the USA [115,116]. Claessens

and co-authors analyzed the ciliate community in the plankton of

the Red Sea [160,161]. The species abundances (in total ,41%

aloricate Oligotrichea, ,37% tintinnids, and ,22% other ciliate

groups) most closely fitted the log-normal distribution mainly

during mixing conditions and after onset of a stratification, while a

log-series distribution was registered usually during the stratifica-

tion. The authors concluded that the neutral community model

did not explain the species diversity observed. Between-clone

variation in the dominant cyanobacteria Synechococcus might be at

least partially responsible for niche separation based on fine-scale

food selectivity.

In general, the numbers of morphospecies found in the different

geographic regions reflect rather the intensity of taxonomic

research than the real diversity of aloricate Oligotrichea, viz.,

the North Atlantic, North Pacific, and Mediterranean harbour the

largest numbers of accepted species (Table S1), which is consistent

with the results of Bouchet [80]. These findings are also influenced

by various further factors (see ‘Limitations’). Even though

molecular analyses are able to screen large water volumes, there

is evidence of a cryptic diversity [162]. Using a cut-off divergence

of 1%, in sum 66 Oligotrichea haplotypes (including ,12

tintinnids) were found in 50–60 litres of sea water, each taken at

three distantly located sites along the east coast of the USA in

spring and autumn. An estimation of the total haplotype diversity

yielded a maximum of 325 haplotypes for a spring sample. In

samples of 200 ml Lugol-fixed material taken on the same

occasions, up to 19 morphotypes could be discerned under the

light microscope at a magnification of 400–6006[115]. Due to the

distinctly different volumes analyzed and the low taxonomic

resolution provided by the Lugol-fixed material (see ‘Limitations’),

the molecular and morphological data of this study are hardly

comparable. In the Long Island Sound samples of this study, in

sum 27 haplotypes of Oligotrichea (including at least three

tintinnids) were found [115]. In 12 further samples of each two

litres of sea water taken at the same site in summer, 62 additional

haplotypes (including eight tintinnids) were recorded, while only

five haplotypes from the former study were rediscovered [116].

This clearly shows the impact of the sampling effort on the

diversity record. So, in total 89 Oligotrichea haplotypes (including

tintinnids) were found in the Long Island Sound, which is similar

to the number of morphologically identified species in the whole

North Atlantic (95 without tintinnids; Table S1; [115,116]). In

total, 26 morphotypes of aloricate Oligotrichea were recorded in

6.6 litres formalin-fixed material taken at eleven stations in the

Mediterranean at six different depths (1–100 m; [163]), whereas

48 morphospecies have been compiled for the whole region (Table

S1). In the Arctic Sea, 38 morphologically identified species were

recorded, but merely four oligotrichid sequences were found in

500–1000 ml of sea water, each taken in two depth, and a

sediment sample at a single site near the west coast of Svalbard in

summer (Table S1; [164]). Claessens and co-authors discovered 45

morphotypes of aloricate Oligotrichea in the Red Sea [160]. Since

half of the morphotypes could not be identified, merely 25 species

from the Indian Ocean plus the Red Sea are assembled in Table

S1.

At the present state of knowledge, a differentiation of

longitudinal trends and undersampling effects (indicated by the

low numbers of species descriptions and redescriptions; Table S1)

is impossible in the aloricate Oligotrichea. In planktonic

foraminifera and tintinnids, however, the number of taxa increases

from high to low latitudes with two peaks near the Tropics of

Cancer and Capricorn (20–30uN and S, respectively; [165–167]).

In contrast to the tintinnids, there are only few regional

inventories about aloricate Oligotrichea. Hence, it is infeasible to

apply the same statistical approaches as in soil ciliates [100].

Nevertheless, the steady rate of species descriptions indicates a

much higher total diversity. Foissner and colleagues concluded

from habitat studies that the number of known ciliate species must

be doubled [143]. ‘‘Cyst species’’ increase the number further by

50%, and ‘‘genetic species’’ will again double the number. So, the

authors argued that eventually 83–89% of the ciliate diversity are

unknown. A similar percentage was estimated by Costello and co-

workers with 70–80% in marine species [81] and by the

Convention on Biological Diversity with about 95% in protists

(,575,000 unknown species, as estimated from Figure 1 in [168]).

Taking the conservative estimate of unknown species by Foissner

and co-workers [143] and the data of the present study (Table S1),

the number of biological species in aloricate Oligotrichea would

amount to 560–860 for the North Atlantic and to 830–1280

worldwide.

Significance of Aloricate Oligotrichea
The aloricate Oligotrichea are occasionally important grazers

on phytoplankton [169–171] and thus possibly influence (i) the
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ocean acidification via sequestration of anthropogenic CO2 by the

phytoplankton and (ii) the climate by the release of DMS

(dimethylsulfide) that can act as cloud condensation nuclei

[172,173]. On the other hand, aloricate Oligotrichea supply the

primary production of algae with inorganic nutrients through

recycling [174]. Some species feed on harmful and bloom-forming

plankton algae [175–181] and hence might control these toxic

organisms that contaminate seafood and/or kill marine organisms,

e.g., fish. Neutral communities (see above) are characterized by

high functional redundancy; thus, the extinction of a few species

should have little effect on the functional integrity of the whole

community or ecosystem [111]. Even if (i) alternative nutritional

strategies, such as mixotrophy, might have a stabilizing effect on

ecosystem functioning and (ii) the rare species might compensate

species loss due to dramatic shifts in the environmental conditions,

the resulting changes in the community structure of aloricate

Oligotrichea might affect higher trophical levels substantially

[182,183]. Accordingly, the aloricate Oligotrichea should not any

longer be ignored in conservation issues [184].

Future Research
Although many governments, through the Convention on

Biological Diversity, have acknowledged the shortage of trained

taxonomists and the Global Taxonomic Initiative was established

to overcome this problem (‘‘Taxonomic impediment’’; [185]), the

number of ciliate taxonomists is still too low (i) to describe the

conservatively estimated 690–1140 new species only in the

aloricate Oligotrichea living in marine and brackish sea water,

(ii) to investigate the southern hemisphere, the oceanic regions,

and the deep sea, and (iii) to identify the huge amount of gene

sequences yielded by environmental samples. Since the recogni-

tion of new morphospecies largely depends on the availability of

reliable identification guides, the production of regularly updated

comprehensive monographs should be a priority [81].

Molecular analyses, using SSrRNA and ITS sequences, have

become an affordable and practical method that is increasingly

applied in diversity studies. However, species identification merely

by molecules cannot compensate the disappearing taxonomic

expertise, as it is fraught with the same constraints and

inconsistencies plaguing morphological judgments of species limits

[186]. A gene sequence that does not exactly match a previously

sequenced and morphologically identified species cannot be

assigned and thus determined, as a predictive rule about the

degree of genetic divergence required for the recognition of

distinct species is impossible [90,186,187]. Further, gene sequences

of misidentified species prevent correct interpretations of phylo-

genetic trees and geographic ranges. Accordingly, the identifica-

tion of sequenced specimens should be based on detailed studies of

live and silver-impregnated material by a morphological taxono-

mist, and permanent slides should be deposited [188,189].

Future taxonomic studies will certainly (i) provide morpholog-

ical data from additional populations that contribute to a better

circumscription of the known species, (ii) identify further

taxonomically significant features, and (iii) discover new species.

Genetic analyses of environmental samples might assist in the

detection of these new species, especially, the rare ones. The

taxonomic investigations should use live observation, silver

impregnation techniques, and electron microscopy as in [190]

and should be complemented by molecular studies not only of the

SSrRNA and ITS sequences, but also of the cytochrome oxidase I

gene (COI), which might reveal biogeographic patterns even in

organisms with identical SSrRNA and ITS genes [191]. By means

of systematic sampling, the species diversity and abundances from

various distances and environmental conditions should be

recorded to better distinguish between contemporary environ-

mental and historical contingencies causing spatial variability

[107]. Likewise, the ecological and evolutionary processes of

speciation and the mechanisms by which diversity is maintained in

the pelagic realm require further investigations. In order to attain

these objectives, synergistic approaches combining the expertises

of morphological and molecular taxonomists, ecologists, and

physiologists are indispensable.

Supporting Information

Table S1 Global distribution of halteriids (H), oligotrichids (O),

and choreotrichids (C) in marine and brackish sea waters.
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37. Agatha S, Strüder-Kypke MC, Beran A, Lynn DH (2005) Pelagostrobilidium

neptuni (Montagnes and Taylor, 1994) and Strombidium biarmatum nov. spec.

(Ciliophora, Oligotrichea): phylogenetic position inferred from morphology,
ontogenesis, and gene sequence data. Eur J Protistol 41: 65–83.

38. Ichinomiya M, Nakamachi M, Taniguchi A (2004) A practical method for

enumerating cysts of ciliates in natural marine sediments. Aquat Microb Ecol

37: 305–310.

39. Kim Y-O, Taniguchi A (1995) Excystment of the oligotrich ciliate Strombidium

conicum. Aquat Microb Ecol 9: 149–156.

40. Kim Y-O, Suzuki T, Taniguchi A (2002) A new species in the genus

Cyrtostrombidium (Ciliophora, Oligotrichia, Oligotrichida): its morphology,

seasonal cycle and resting stage. J Eukaryot Microbiol 49: 338–343.

41. Kim Y-O, Ha S, Taniguchi A (2008) Morphology and in situ sedimentation of

the cysts of a planktonic oligotrich ciliate, Strombidium capitatum. Aquat Microb

Ecol 53: 173–179.
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eukaryote Ostreococcus provides genomic insights into the paradox of plankton

speciation. Proc Natl Acad Sci USA 104: 7705–7710.

133. Pearson PN, Shackleton NJ, Hall MA (1997) Stable isotopic evidence for the

sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic

foraminifera). J Geol Soc, Lond 154: 295–302.

134. Sexton PF, Norris RD (2008) Dispersal and biogeography of marine plankton:

long-distance dispersal of the foraminifer Truncorotalia truncatulinoides. Geology

36: 899–902.

Aloricate Oligotrichea

PLoS ONE | www.plosone.org 12 August 2011 | Volume 6 | Issue 8 | e22466



135. Bass D, Richards TA, Matthai L, Marsh V, Cavalier-Smith T (2007) DNA

evidence for global dispersal and probable endemicity of protozoa. BMC Evol
Biol 7: 162. doi:10.1186/1471-2148-7-162.

136. Casteleyn G, Leliaert F, Backeljau T, Debeer A-E, Kotaki Y, et al. (2010)

Limits to gene flow in a cosmopolitan marine planktonic diatom. Proc Natl
Acad Sci USA 107: 12952–12957.

137. Darling KF, Wade CM (2008) The genetic diversity of planktic foraminifera
and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol

67: 216–238.

138. Darling KF, Kucera M, Pudsey CJ, Wade CM (2004) Molecular evidence links
cryptic diversification in polar planktonic protists to Quaternary climate

dynamics. Proc Natl Acad Sci USA 101: 7657–7662.
139. De Vargas C, Bonzon M, Rees NW, Pawlowski J, Zaninetti L (2002) A

molecular approach to biodiversity and biogeography in the planktonic
foraminifer Globigerinella siphonifera (d’Orbigny). Mar Micropaleontol 45:

101–116.

140. Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and
distribution. Biodivers Conserv 17: 407–418.

141. Jeong HJ, Kim JS, Kim S, Song JY, Lee I, et al. (2004) Strombidinopsis jeokjo n. sp.
(Ciliophora: Choreotrichida) from the coastal waters off western Korea:

morphology and small subunit ribosomal DNA gene sequence. J Eukaryot

Microbiol 51: 451–455.
142. Zhang Q, Yi Z, Xu D, Al-Rasheid KAS, Gong J, et al. (2010) Molecular

phylogeny of oligotrich genera Omegastrombidium and Novistrombidium (Protozoa,
Ciliophora) for the systematical relationships within Family Strombidiidae.

Chin J Oceanol Limnol 28: 769–777.
143. Foissner W, Chao A, Katz LA (2008) Diversity and geographic distribution of

ciliates (Protista: Ciliophora). Biodivers Conserv 17: 345–363.

144. Katz LA, McManus GB, Snoeyenbos-West OLO, Griffin A, Pirog K, et al.
(2005) Reframing the ‘everything is everywhere’ debate: evidence for high gene

flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41: 55–65.
145. McManus GB, Katz LA (2009) Molecular and morphological methods for

identifying plankton: what makes a successful marriage? J Plankton Res 31:

1119–1129.
146. Weisse T, Strüder-Kypke MC, Berger H, Foissner W (2008) Genetic,

morphological, and ecological diversity of spatially separated clones of Meseres

corlissi Petz & Foissner, 1992 (Ciliophora, Spirotrichea). J Eukaryot Microbiol

55: 257–270.
147. Weisse T, Rammer S (2006) Pronounced ecophysiological clonal differences of

two common freshwater ciliates, Coleps spetai (Prostomatida) and Rimostrombidium

lacustris (Oligotrichida), challenge the morphospecies concept. J Plankton Res
28: 55–63.

148. Hutchinson GE (1961) The paradox of the plankton. Amer Nat 95: 137–145.
149. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations

and chaos. Nature 402: 407–410.

150. Fox JW, Barreto C (2006) Surprising competitive coexistence in a classic model
system. Commun Ecol 7: 143–154.

151. Scheffer M, Van Nes EH (2006) Self-organized similarity, the evolutionary
emergence of groups of similar species. Proc Natl Acad Sci USA 103:

6230–6235.
152. Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and

neutrality: the continuum hypothesis. Ecol Lett 9: 399–409.

153. Alonso D, Etienne RS, McKane AJ (2006) The merits of neutral theory.
Trends Ecol Evol 21: 451–457.

154. Gismervik I (2005) Numerical and functional responses of choreo- and
oligotrich planktonic ciliates. Aquat Microb Ecol 40: 163–173.

155. Montagnes DJS (1996) Growth responses of planktonic ciliates in the genera

Strobilidium and Strombidium. Mar Ecol Prog Ser 130: 241–254.
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