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Abstract

Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However,
the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study,
we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform
data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ,100 million unique
mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite
sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately
detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and
BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and
resolution.
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Introduction

The advance of next generation sequencing technology has

revolutionized the research field of transcriptional regulation and

systems biology [1,2,3,4]. ChIP-sequencing (ChIP-seq) has become a

leading technology to interrogate in vivo protein-DNA interactions

[5,6,7]. Recently, in addition to protein–DNA interactions, massi-

vely parallel sequencing has been used to identify open chromatin

[8], histone modifications [5,9,10] and DNA methylation.

DNA methylation is one of the major epigenetic mechanisms

that play an important role in a variety of cancers [11,12,13].

Several high throughput profiling techniques (MeDIP-seq

[14,15,16], MIRA-seq [17], MBD-seq [18], MethylCap-seq [19],

MethylC-seq [20,21], BS-seq [22]) have been developed to study

genome-wide methylation patterns. Affinity-based enrichment of

methylated DNA sequences with methyl-CpG binding domain

proteins followed by next generation sequencing (MBD-seq) [18]

utilizing the MethylMinerTM Methylated DNA Enrichment kit has

been shown to be a powerful alternative to MeDIP-seq and the

whole methylome sequencing technology of BS-seq [18,20,21].

In MBD-seq experiments, high coverage of methylated CpG

dinucleotides can be achieved by increased sequencing depth;

however, as the sequencing depth increases so does the cost and

the computational resource requirement. No optimal sequencing

depth has been given by previous studies.

MACS [23], QuEST [24], SISSRs [25], PICS [26], and many

other peak identification programs [27,28,29,30,31,32] are devel-

oped for ChIP-seq data analysis; however, the majority of these

programs were designed to locate transcription factor binding sites

(TFBSs) from ChIP-seq data. DNA methylation sites differ from

TFBSs in that methylated CpG dinucleotides are highly abundant

in most differentiated cells thus the signal peaks in MBD-seq data

are densely distributed. The characteristic of this type of data raises

the demand for a computational analysis program with higher

resolution, since the aforementioned programs fail to finely detect

methylation level of CpG dinucleotides.

Several recent studies applied methods based on tags density

[18,33] or tags count normalized by the CpG density [34]. Similar

to many of the peak detection programs [32], low resolution is the

major disadvantage of using tags density based methods for MBD-

seq data analysis.

In this study, we performed high sequencing depth MBD-seq in

the human breast-cancer MCF-7 cell line. The result shows that

with ,100 million unique mapped tags (approximately five lanes

using a GAII sequencer) from 500 mM and 1000 mM elutes the

coverage of the MBD-seq data become close to a saturation point.

A bi-asymmetric-Laplace model (BALM) was developed to

analyze MBD-seq. We compared the resolution of BALM to that

of several ChIP-seq analysis tools. The results demonstrate the

program’s superior ability to distinguish methylation statuses of

closely positioned CpG sites.

This study demonstrates that MBD-seq combined with the new

program is potentially a powerful tool to capture genome-wide

DNA methylation profiles with high efficiency and resolution.
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Results

Overview of experimental design and analysis
In MBD-seq experiments, fragments of methylated genomic DNA

are precipitated by a specific capture protein. Single end of each of

these fragments are sequenced simultaneously using high-through-

put sequencing techniques. The precise locations of sequenced tags

are recorded by mapping them to the reference genome.

In this study, a total number of ,0.5 billion tags were generated

from MBD-seq performed in MCF-7 cell line (Table S1). A flow

chart of major steps of the experiments is shown in Figure 1A.

Briefly, a recombinant form of the human MBD2 protein was

applied to precipitate methylated DNA from genomic DNA.

Three separate libraries was constructed under three different

elution salt concentrations (500 mM, 1000 mM, 2000 mM)

and were sequenced and subsequently aligned to Hg18 using

the Bowtie mapping software [35] (Materials and methods
MBD-seq section).

To detect methylation level of each CpG dinucleotides, we

present a statistic orientated algorithm, which is based on a bi-

asymmetric-Laplace model. The model is aimed to precisely

recapitulate the tags’ bimodal distribution over target sites in a

ChIP-seq experiment [23,36] (Figures 1A,B, 2A). This model is

chosen based on the following facts. First, tags density decrease

exponentially on both directions from the summit of each model.

Second, an asymmetric exponential family distribution of the

lengths of gel-electrophoresis-selected ChIP fragments is observed

from paired-end sequencing data (Figure S1). More importantly,

the proposed model bears a low value of goodness of fit in both

MBD-seq and TFBSs ChIP-seq data compared to previously

described Gaussian [24] and t-distribution model [26] (Figure 2B,
Figure S2). A detailed list of estimated BALM parameters for

each dataset is provided in Table S2. All four tested public

transcription factor datasets have less than 10 million unique

mapped tags, which demonstrates that obtaining an accurate

model does not require extremely high sequencing depth (Figure
S2). An overview of the algorithm is described below (Figure 1B):

1. Initial scan for enriched regions using a tag shifting method as

in BELT [37]. If input data are available, a Fisher’s exact test is

performed to filter regions that are not significantly more enri-

ched than the input and a genome region amplification index

Figure 1. Overview of experimental design and analysis. A. Major steps of MBD-seq experiment. Methylated DNA was enriched by
recombinant MBD2 protein. Different fractions of enriched DNA fragments were eluted under three different salt concentrations (500 mM, 1000 mM,
2000 mM). Together with unenriched fraction, four DNA fractions were then used to construct four standard fragment libraries. Libraries were
sequenced using SOLiDTM 3 Analyzer and the resulting tags were aligned to the human genome using the Bowtie mapping software. B. BALM
algorithm includes a step of initial scanning target sites using a tag shifting method; followed by modeling tag distribution around target sites as a
BALM. Then scan the genome for enriched regions and predict target sites by maximizing the likelihood of the given tags within the enriched
regions. BIC is used to determine the number of target sites.
doi:10.1371/journal.pone.0022226.g001
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(GRAI) is calculated by the background enrichment level using

the input data. Set t.0, s = 1 (t is the total number of iterations,

s denotes the current iteration number).

2. Measure tag distribution over target sites.

3. Model the tag distribution over target sites as a bi-asymmetric-

Laplace distribution and estimate the parameters using the

maximum likelihood estimators [38,39,40].

4. Calculate weighted enrichment for each nucleotide in the

genome. Weighted enrichment is defined as the tag enrichment

weighted by tag’s relative position to the nucleotide using the

BALM. Then scan the genome for regions that have weighted

enrichment higher than a local threshold which is weighted by

the GRAI. Perform Fisher’s exact test to filter regions that are

not significantly enriched compared to input.

5. Within each enriched region, a BALM mixture is constructed.

Center of each bi-asymmetric-Laplace distribution represent

one target site. Unknown parameters are estimated using the

EM algorithms [41,42]. The number of components (each

component can be interpreted as a target site) is determined by

the Bayesian Information Criterion (BIC) [43,44]. Then

update the enriched regions and target sites list. For MBD-

seq data, a methylation level is inferred from the mixture model

for each CpG dinucleotides.

6. If s,t, increase s by 1, go to step 2, otherwise continue to step 7.

7. Output a list of enriched regions as well as the precise location

of the predicted target sites occurring in these regions. For

MBD-seq data, a file contains the methylation level of each

CpG dinucleotides in the genome is generated.

Figure 2. Bi-asymmetric-Laplace model. A. A plot of tags density surrounding the methylated CpG sites of MCF-7 MBD-seq and three public
MBD-seq data in H1, T cell and HCT116 cell respectively (blue) and the fitted normal distribution (green), Student’s t (n= 4) distribution (purple) and
bi-asymmetric-Laplace distribution (red). B. Asymmetric Laplace distribution gained smaller value of goodness of fit over the distribution of tags than
normal distribution and t-distribution with 4 degree of freedom, indicates BALM captures the bimodal pattern more precisely.
doi:10.1371/journal.pone.0022226.g002
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The major novelty of the algorithm is that it accurately

estimates each CpG dinucleotides’ methylation level with high

resolution in tag-enriched regions by maximizing the likelihood of

given tags via expectation maximization (EM) [45,46,47]. A more

extensive discussion of the algorithm is in the BALM algorithm

section of Materials and methods.

MBD-seq data analysis
The average tag density throughout known genes (RefSeq HG18)

for all three experiments was plotted in Figure 3A. The results

showed lower methylation levels occurs at both the transcription

start sites (TSS) and the transcription termination sites (TTS), which

is consistent with the observation in previous studies using bisulfite

padlock probes with microarray [48] as well as bisulfite sequencing

[49]. The tags distribution pattern of 1000 mM and 2000 mM

elution are similar, however, 500 mM is substantially different from

the other two (Figure 3A). Log tag count correlation analysis found

a higher correlation (r = 0.973, p = 0.000) for 1000 mM vs 2000 mM

than for 500 mM vs 1000 mM (r = 0.884, p = 0.000) and 500 mM vs

2000 mM (Figures 3B,C,D).

The BALM analysis results of three representative regions on

chromosome 21 showed that 500 mM elution captures distinct

portion of methylated genomic region compared to 1000 mM and

2000 mM elution (Figures 4A). To quantitatively compare the

detected methylated sites between three different salt concentra-

tion elutions, CpG sites with a methylation score in top 20%

(5,632,772 out of 28,163,863 total CpG sites in human genome) of

each salt concentration dataset were selected. A 78.4% overlap

was observed between 1000 mM and 2000 mM elution, while the

overlap between 500 mM and 1000 mM, 500 mM and 2000 mM

are only 35.9%, 31.4% respectively (Figures 4B). The detected

methylation score of the top 20% CpG sites in 1000 mM and

2000 mM were well correlated (r = 0.838, p = 0.000); however,

there were no strong correlation between CpG sites of 500 mM

and 1000 mM elution (r = 0.286, p = 0.000) (Figure 4C, D).

CpG islands are often important cis-regulatory elements

distributed in the genome. To test the effect of CpG island

methylation on gene expression genome wide, we define a CpG

island methylation score as the average methylation score of all

CpG dinucletides within that CpG island. We then calculated the

correlation between promoter CpG island methylation score and

the gene expression. Although no strong negative correlation

(r = 20.159, p = 0.000) is observed, the expression difference

between promoter CpG island hypermethylated group (score.0.8)

of genes and hypomethylated group (score,0.2) of genes is

statistically significant (student’s t-test, p = 0.009). This result is

consistent with current knowledge that gene expression is

regulated at multiple levels and CpG island methylation might

affect the accessibility of active or repressive transcription factors

to the regulatory elements, however not directly promote or

suppress gene expression [34]. Thus, we performed correlation

analysis of CpG islands’ DNA methylation score and DNase hyper

sensitivity, which measures the accessibility of the DNA (EN-

CODE consortium). Genome wide analysis showed medium

negative correlation (r = 20.454, p = 0.000) between these two

factors (Figure S3).

Optimal depth of MBD-seq
We compared the coverage the MCF-7 MBD-seq data to three

public available MBD-seq data. The result shows that increased

sequencing depth provides higher tags CpG coverage (Figure 5A,
Figure S4). To maximize the efficiency of MBD-seq experiments,

first we needed to determine an optimal combination of different

salt concentration elution. Thus, we performed CpG coverage

analysis [34] on five datasets, including three original datasets of

MBD-seq under different salt concentration, a double concentra-

tion dataset that combined 500 mM, 1000 mM salt concentration

datasets and a triple concentration dataset that combined three

salt concentration datasets (Figure 5B). The triple concentration

dataset showed increased depth because more tags were included;

however, minimum improvement of coverage was observed

compared to the double concentration dataset. Meanwhile, the

double concentration dataset showed significant increased cover-

age because of the complement of 500 mM and 1000 mM

datasets. After we decided the 500 mM and 1000 mM combina-

tion is the optimal elution condition, saturation analysis was

performed to optimize the efficiency of sequencing depth

(Figure 5C). Using increased fraction of random sampled data

from the original 500 mM, 1000 mM combination dataset, tag

coverage was calculated and plotted in Figure 5C. Different levels

of tag coverage tend to become saturated as sequenced tag number

grows. After the point 60% (approximately 100 million tags),

increase in sampled tag fraction does not cause significant increase

in CpG coverage. MBD-seq experiments reached optimal

efficiency when using a combination of 500 mM and 1000 mM

salt concentration elution and with ,100 million unique mapped

tags sequenced in MCF-7 cells. Cancer cells in general contain less

genome-wide DNA methylation than their normal counterparts.

This also should be taken as one of the factors when estimating

optimal sequencing depth for a certain experiment.

Figure 3. Correlation of tags density of different salt concentrations. A. A plot of average tags density vs a known gene (RefSeq HG18) for
MBD-seq data in MCF-7 cell for three salt concentrations, 500 mM, 1000 mM and 2000 mM. The results showed a lower methylation levels occurs in
the transcription start sites (TSS) and the transcription termination sites (TTS). Gene body and up down 15 kb region was plotted in this figure. The
gene body region was evenly divided into 200 bins and 15 k bp up down gene body region was divided into 50 bp bins. Log tags count correlation
analysis showed a higher correlation for 1000 mM vs 2000 mM (B, r = 0.973, p = 0.000) than 500 mM vs 1000 mM (C, r = 0.884, p = 0.000) and 500 mM
vs 2000 mM (D, r = 0.890, p = 0.000).
doi:10.1371/journal.pone.0022226.g003
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Resolution and efficiency of BALM
Because there are few widely accepted standalone programs

available for MBD-seq data analysis, we compared the resolution

of BALM with several popular peak-detection programs designed

for analysis of transcription factor ChIP-seq data which is based on

the same principle and shares similar procedures with MBD-seq.

These programs apply similar or more advanced algorithms

compared to the existing MBD-seq analysis methods most of

which are based on tags density. MACS, QuEST, SISSRs and

PICS were chosen because each of these programs is implemented

with different algorithms and uses different statistical methods. For

example, the MACS algorithm is based on shifting sequence tags

towards the binding site for a certain number of base pairs then

locating the binding site by calculating the summit within a peak

region. QuEST identifies binding sites using a tag enrichment

profile of a peak region with a Gaussian kernel. SISSRs screens

binding sites in a certain window by a threshold of tags count on

both forward and reverse strand calculated based on a Poisson

distribution. Recently, mixture model showed advantages over

several widely used programs in the ability to separate closely

positioned peaks [26]. For a comprehensive comparison, we inclu-

ded PICS which applied a mixture t-distribution model to

probabilistically infer binding sites.

Firstly, to test an algorithm’s ability to separate closely position-

ed target sites, we generated spike in data using the human trans-

cription factor ERa dataset in MCF-7 cell [50]. Briefly, three well

defined peaks, representing low depth peak, medium depth peak

and high depth peak respectively, which are detectable by all five

programs on chromosome 1 of the ERa dataset were inserted to

random position of the genome. A second peak was then inserted

at a close position to the first peak (100 bp, 50 bp, 25 bp). Five

programs were then applied to detect the spike in peaks. The result

shows that all of the programs identified the spike in peak region,

however only BALM accurately located the two separated peaks

Figure 4. Correlation of CpG methylation score of different salt concentrations. A. Three representative regions on chromosome 21 show
the methylation sites captured by 500 mM elution are distinct to those from 1000 mM and 2000 mM elution. B. A Venn diagram shows the overlap of
top 20% predicted methylated CpG sites in three different elutions. 1000 mM and 2000 mM elution has an overlap of nearly 80% overlap, while only
35.9% overlap between 500 mM and 1000 mM is observed. C. and D. show the correlation of methylation probability of individual CpG site under
different condition. C. shows the low correlation (r = 0.286, p = 0.000) between 500 mM and 1000 mM. D. shows the high correlation (r = 0.838,
p = 0.000) between 1000 mM and 2000 mM.
doi:10.1371/journal.pone.0022226.g004
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within peak region at 50 bp resolution for low depth peaks and

25 bp resolution for medium and high depth peaks (Figure 6).

This demonstrates the high resolution of BALM and indicates that

the ability of the program to separate closely positioned peaks

increases when increasing sequencing depth, which provide strong

evidence supporting the high accuracy of the statistical model. The

resolution limitation of BALM is at ,50 bp for low depth regions

and better resolution can be achieved at high depth regions.

Secondly, we compared the result of BALM to that of MACS

and QuEST using the triple concentration MBD-seq dataset in

the MCF-7 cell line. SISSRs and PICS were excluded in this

comparison due to the tags number exceeding the capacity of the

programs. All of the programs detected broad methylated genomic

regions; however, in addition to methylated regions, BALM

calculates the methylation score of each CpG dinucletides within

each region. Three representative regions on Chromosome 7 show

that the proposed algorithm provides users higher resolution

detection and more information of DNA methylation than

programs originally designed for TFBSs detection (Figure S5).

Applying advanced algorithm raised the concern of the

program’s efficiency. Furthermore, we compared the efficiency of

these five algorithms by measuring computational resource

consumption. BALM is relatively slow for data with small size

since sophisticated statistical methods are applied; however, this

algorithm is not tags number sensitive. A trend analysis (Figure
S6) demonstrates the programs’ execution time on datasets with

different tag numbers. In general, the execution time of all the

programs tested increases with the increase in the total number of

tags. The shorter execution time for high depth datasets might be

due to its C and C++ implementation as compared to MACS

(Python), QuEST (Perl), SISSRs (Perl) and PICS (R).

Clonal bisulfite sequencing validation
To validate methylation sites identified from MBD-seq and assess

the resolution and accuracy of BALM, we performed standard

clonal bisulfite sequencing in randomly selected regions in MCF-7

cells. 11 regions, including 2 unmethylated, 3 partially methylated

and 6 fully methylated regions with both dense and spotty CpG

sites. Comparing a total of 178 CpG di-nucleotide loci’s bisulfite

sequencing results to the corresponding methylation score produced

by BALM yielded a Pearson correlation coefficient r = 0.879

(p = 0.000) The results demonstrated the prediction of DNA

methylation by BALM is accurate and reliable not only in sparse

but also in dense CpG regions (Figure 7, Figure S7, S8, S9).

Discussion

MBD-seq is widely used as a cost efficient method to investigate

genome wide methylation pattern. In this study, we attempted to

determine the optimal condition for the MBD-seq experiment. We

performed high depth MBD-seq under three different elution salt

concentrations (500 mM, 1000 mM, 2000 mM) in MCF-7 cell

line. The analysis indicates that different salt concentrations can be

used in MBD-seq to yield distinctive populations of methylated

DNA fragments. The result shows that with ,100 million unique

mapped tags (approximately five lanes for a GAII sequencer) from

Figure 5. Coverage and saturation of MBD-seq experiments. A. Representative region shows the coverage of different salt concentration
elution of MCF-7 MBD-seq, public available MethylC-seq data in H1 cell and MBD-seq in H1, T and HCT116 cell. Total number of tags in each dataset is
listed on the right. B. Coverage analysis on five datasets, including 500 mM, 1000 mM, 2000 mM elution fraction, a double concentration
(500 mM+1000 mM) and a triple concentration (500 mM+1000 mM+2000 mM) dataset, shows the double concentration dataset achieve high
coverage efficiency. C. The coverage of increased fraction of random sampled tags from the double concentration datasets was plotted. The
saturation curve indicates an optimal depth of MBD-seq at ,100 million uniquely mapped tags in MCF-7 cells.
doi:10.1371/journal.pone.0022226.g005
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500 mM and 1000 mM elutes the coverage of the MBD-seq data

become close to a saturation point. MBD protein’s affinity to

methylated DNA is enhanced as the density of methylated CpG

sites increases [34]. This makes MBD-seq a highly effective

method to measure the methylation status of CpG islands, within

which CpG sites are densely distributed. As many of the studies

are focused on CpG island methylation, accurate measurement

can be achieved at a lower sequencing depth.

Interestingly, a medium negative correlation of CpG island

methylation score and DNase hyper sensitivity is observed.

However, this result does not identify a causal relationship

between DNA methylation and chromatin status. H3K4 methyl-

ation has been reported as an active histone modification mark on

the chromatin affecting the accessibility of the cis-element.

Relationship between H3K4 methylation and DNA methylation

may be interesting for further study given the negative correlation

between DNA methylation and chromatin accessibility.

To finely determine the methylation level of each CpG

dinucleotides in the genome, we developed a statistic model

named BALM. There are several noteworthy features which

increase the accuracy of the presented algorithm.

Firstly, unlike TFBSs, methylated CpG dinucleotides are highly

abundant in the genome and densely distributed. The new

program is capable of distinguishing two closely positioned target

sites by applying EM algorithm to approximate a BALM mixture.

Indeed, the proposed algorithm increases the resolution of MBD-

seq from 150 bp to 50 bp and up to 25 bp in signal highly enrich-

ed regions [34]. A methylation score is calculated for each

genomic CpG site based on the statistic model. This score is an

effective indication of the probability of the position being methy-

lated or not. Therefore, it allows users to interpret the data in a

more appropriate and effective way.

Secondly, as many efforts are made to understand the abnormal

transcriptional regulation and aberrant epigenetic event in cancer

development, more high-throughput data derived from cancer

model cell lines are available. The majority of these model cell

lines’ genomes are disrupted, for example, MCF-7, LNCaP, K562

etc. Another important feature of the program is by using a

Figure 6. Resolution of BALM. MACS, QuEST, SISSRs, PICS and BALM’s results on the spike in region with two peaks showed the ability of these
programs to separate juxtaposition peaks. Three prototype peaks representing low (A), medium (B) and high (C) depth peaks respectively. In each
experiment, two prototype peaks were placed 100 bp (left column), 50 bp (middle column) or 25 bp (right column) away from each another.
doi:10.1371/journal.pone.0022226.g006
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genome region amplification index (GRAI), it increases the

threshold of the weighted enrichment as well as the number of

background noise tags simulated to better control the FDR in

amplified genomic regions. For example, several genomic regions

on the q arm of chromosome 20 in MCF-7 cell line were reported

to have a high amplification number [51]. To access the bias

control provided by the GRAI, the index of 20q generated based

on the input data of MBD-seq was plotted with the result from the

study of Volik S et al [51] (Figure S10). The comparison showed

that the GRAI precisely reflected the copy number changes of

different genomic regions.

In summary, we produced extra high sequencing depth MBD-

seq data in MCF-7 cell line and determined the optimal

parameters for MBD-seq experiment. The new algorithm was

specifically designed to address the emerging demand of higher

resolution detection of densely distributed CpG dinucleotides’

methylation level. Through validation using clonal bisulfite

sequencing, this study demonstrates that the combination of

BALM and MBD-seq could serve as a powerful method to capture

genome wide DNA methylation profile with high efficiency, high

resolution and low cost.

Materials and Methods

Methylated DNA enrichment and high-throughput
sequencing (MBD-seq)

Purified genomic DNA from the breast cancer cell-line MCF-7

(BioChain, Hayward, CA) was fragmented using an S2 non-

contact Adaptive Focused AcousticsTM ultrasonicator (Covaris,

Woburn, MA) as described in the SOLiDTM 3 fragment library

protocol to generate randomly fragmented DNA of 50–350 bp in

length. Fragmented DNA was then subjected to MethylMinerTM

methylated DNA kit enrichment (which uses a recombinant form

of the human MBD2 protein) according to the manufacturer’s

protocol and two methylated fractions (500 mM and 1000 mM

salt eluates) were isolated. The recovered eluted mass of DNA was

6.9% (3.47 mg) of the total mass loaded (50 mg). Subsequent

elution at very high NaCl concentration (3.5 M) followed by

digestion with proteinase K shows that less than 10% of the

captured DNA remains on the beads after elution with 1 M NaCl.

Separately, 25 mg of fragmented genomic DNA was enriched with

a MethylMinerTM kit and eluted as a single fraction with buffer

containing 2000 mM NaCl. Unenriched genomic DNA frag-

ments, 500 mM, 1000 mM, and 2000 mM DNA fractions were

then used to construct standard fragment libraries using a

combination of adaptor ligation and nick translation (SOLiDTM

Fragment Library Construction Kit, Invitrogen). Library DNA,

was size-selected (inserts were ,100–200 bp) by gel-purification

from 2% agarose E-GelH EX gels prior to PCR amplification,

attachment to beads, and emulsion PCR. Libraries were

sequenced in 4-well deposition chambers on a SOLiDTM 3

Analyzer and sequenced tags corresponding to 50 base lengths

were obtained. The resulting tag sequence csfasta and quality files

were aligned to the human genome (NCBI Build 36.1, UCSC

Hg18) using the Bowtie mapping software [35].

Clonal Sanger bisulfite sequencing
2.5 mg of MCF-7 cell line genomic DNA (Biochain) was bisulfite

converted with MethylCode Bisulfite Conversion Kit (Invitrogen)

in 5 reactions at 500 ng scale each. PCR amplification of 50 ng

equivalent of starting amount of converted DNA was performed

with C to T conversion specific primers (avoiding CpG regions)

Figure 7. Clonal bisulfite sequencing validation. A total of 11 regions, including 2 unmethylated regions, 3 partially methylated regions and 6
heavily methylated regions with 178 CpG loci predicted from the MBD-seq in MCF-7 cell line were validated using bisulfite sequencing technique.
Four representative regions at gene PLAU (A), SBF1 (B), PFKL (C) and ARVCF (D) show the accuracy of the prediction.
doi:10.1371/journal.pone.0022226.g007
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with the following PCR mix: 2 units of AccuPrime Taq DNA

Polymerase High Fidelity enzyme (Invitrogen), 16 AccuPrime

PCR Buffer II, 0.2 mM each primer final, in 100 ml final volume,

with cycling conditions as follows: initial denaturation at 94uC
2 min., 40 cycles (denature at 94uC 15 sec., anneal at 53–62uC
30 sec., extend at 68uC 1 min.), final extension at 68uC 5 min.,

4uC hold. Detailed information about primers used for each

amplicon is listed in Table S3. PCR Products (1–2 ml) were

cloned into pCR4-TOPO sequencing vector (Invitrogen), and

transformed into TOP10 chemically competent E.Coli. (Invitro-

gen). Transformation was then plated on LB+100 Ampicillin

plates and incubated at 37uC overnight. Up to 20 individual

colonies of each amplicon were grown in 1 ml BRM+100 mg/ml

cultures overnight in a 96 well culture block at 37uC at 300 RPM.

Plasmid DNA was isolated using PureLink HQ 96 Plasmid

Purification Kit (Invitrogen), and 1 mg of each clone was

sequenced using M13 Reverse primer from TOPO kit (Invitrogen)

by Sanger sequencing technology.

Public datasets
MethylC-seq data in H1 human embryonic stem cells [21],

MBD-seq data in H1 human embryonic stem cells [34], human T

cell[33] and HCT116 human colon cancer cells [18]. ChIP-seq

data for human transcription factors CTCF in CD4+ T cell [5],

FOXA1 in MCF-7 cell [23], ERa in MCF-7 cell [50], and NRSF

in Jurkat lymphoblast cell [6] were downloaded for evaluating the

performance of the program. All datasets are available at http://

motif.bmi.ohio-state.edu/BALM/.

BALM algorithm
Initial scan for target sites. In the first step, an average

fragment length is determined by taking the average distance

between the mean position of the tags on the forward strand and

reverse strand of top enriched bimodal pileup regions [37]. Then,

all tags are shifted towards the mid-point by half of the average

fragment length. A sliding window of 50 bp is used to scan regions

that have a higher fragments count than a predetermined

threshold weighted by the GRAI (Text S1). Within each of these

regions, a target site is calculated by taking the average of the

positions of the fragments in this region. Shifted tag positions are

used for the initial detection of target sites, while the original tag

positions are used in constructing the model and subsequent

analysis.

Parameter estimation of the BALM model. The density

function for an asymmetric Laplace distribution (ALD) is,

fd,s,k xð Þ~ 1

s
: k

1zk2

exp {
k

s
x{dð Þ

� �
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� �
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Two steps are followed to obtain the maximum likelihood

estimators of the ALD [38,39],

1. Given sample size n, find xm, 1#m#n that minimize the

function H xmð Þ ,

H xmð Þ~2ln
ffiffiffiffiffiffiffiffiffiffiffiffi
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In above equations, xj is the jth element of x and xm is the element

that minimize function H(xm).
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Maximization of the likelihood of tags within enriched

regions using the EM algorithm. Within a signal enriched

region, multiple target sites might exist. These sites are estimated

by maximizing the likelihood of the given tags using a BALM

mixture,

ĥhmle~arg maxh[H

Xn

i~1
ln f xijhð Þ ð6Þ

Where f is the probability density function of the BALM mixture

and n is the number of tags.

The detailed procedure of EM algorithm is discussed in Text S1

in the EM algorithm section.

Determination of the best mixture model. Bayesian

Information Criterion (BIC) is used to determine the number of

components (target sites) within a signal enriched region.

BIC Mlð Þ~2 lnL X ,Mlð Þ{d log N ð7Þ

where Ml is the model being tested, L X ,Mlð Þ is the log likelihood

that the given sample is generated from model Ml , d is the

number of free parameters in model Ml and N sample size, in this

case, tags number in a given enriched region.

Calculation of weighted enrichment level. The weight of

a tag with respect to a target site is determined by the relative

position of that tag to the target site. The weight is proportional to

a probability P modeled by the BALM described above. The

weighted enrichment score of each position is calculated as follows,

Epos~
Xn

i~1
P xijts~posð Þ ð8Þ

where ts represents target site, pos represents a genomic position

and n is the total number of observations around that target site.

Generation of the genome region amplification index

(GRAI). The GRAI is an indicator of the copy number of a

certain genomic region. When input data are available, a local

background enrichment level can be calculated by counting the

tags that mapped to that local region. The index is constructed by

taking the ratio of the local background enrichment to the genome

background enrichment.

Analysis of CpG Dinucleotides Methylation

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e22226



GRAIi~
niLg

LiN
ð9Þ

where ni denotes the input tags number in the ith region, Lg denotes

the genome size, Li represents the length of the ith region and N is

the total number of input tags.

Estimation of False Discovery Rate (FDR)
Monte-Carlo simulation is performed to generate simulated

data and compute FDR. Each dataset includes simulated peaks

and background noise tags based on the real MBD-seq data [37].

Program implementation
BALM is implemented in C and C++. The source code is platform

independent and was compiled and tested in Linux Fedora10, OS X

with the gcc compiler and Windows XP, Vista with Microsoft Visual

C++ 9.0 compiler. The documentation, source code and compiled

binaries for Linux, OS X, Windows XP and Vista can be

downloaded at http://motif.bmi.ohio-state.edu/BALM/download.

The program takes inputs of various tag information file formats,

such as BED, ELAND, EXTENDED ELAND, GFF, SAM and

Bowtie alignment file. The default input file format is ELAND. It

also provides an option for non standard file formats, which allows

users to specify the columns containing chromosome name, start,

end, and strand of a tag (e.g. –n 0 1 2 5). If control data are available,

the -c option specifies the control file name (e.g. -c XXX_IgG.txt). –

c option can also be used to compare different samples.

Some of the most commonly used genome assemblies are included,

e.g. Human (hg18, hg19) and Mouse (mm8, mm9). The default

assembly is hg18. For genomes that are not included, users need to

provide genome information, such as size, chromosome number, and

length of chromosomes. By default, pericentromeric and repetitive

region are excluded from the output using a species specific repetitive

region table; however, this filter off can be turned off if desired.

In addition, options –o and -W allow the program to generate

files with fragment enrichment levels across the genome, in

variable step and fixed step WIG format respectively after the tags

have been shifted. These files can be easily visualized by any

genome browser taking the WIG format file as input, such as the

UCSC genome browser [52] and the Integrated Genome Browser

[53]. Tools that can convert files between different file formats are

integrated in the program.

A user friendly GUI for BALM is provided to help biologist

specifying parameter for running the program (Text S1).
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