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Abstract

Atelopus franciscus is a diurnal bufonid frog that lives in South-American tropical rain forests. As in many other frogs, males
produce calls to defend their territories and attract females. However, this species is a so-called ‘‘earless’’ frog lacking an
external tympanum and is thus anatomically deaf. Moreover, A. franciscus has no external vocal sac and lives in a sound
constraining environment along river banks where it competes with other calling frogs. Despite these constraints, male A.
franciscus reply acoustically to the calls of conspecifics in the field. To resolve this apparent paradox, we studied the vocal
apparatus and middle-ear, analysed signal content of the calls, examined sound and signal content propagation in its
natural habitat, and performed playback experiments. We show that A. franciscus males can produce only low intensity calls
that propagate a short distance (,8 m) as a result of the lack of an external vocal sac. The species-specific coding of the
signal is based on the pulse duration, providing a simple coding that is efficient as it allows discrimination from calls of
sympatric frogs. Moreover, the signal is redundant and consequently adapted to noisy environments. As such a coding
system can be efficient only at short-range, territory holders established themselves at short distances from each other.
Finally, we show that the middle-ear of A. franciscus does not present any particular adaptations to compensate for the lack
of an external tympanum, suggesting the existence of extra-tympanic pathways for sound propagation.
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Introduction

Vocalizations play an important role in the mating and territorial

behavior of most anurans [1]. The most obvious acoustic signals

produced by these vertebrates are the advertisement calls [2]

emitted during the breeding season. Atelopus is a large genus (80

species) of diurnal bufonids (known as ‘‘Harlequin frogs’’) which is

remarkably uniform in morphology [3] and call structure [3,4].

Visual signals during agonistic displays between males are common

[5] and involve movements of the forelimbs. The use of these

particular visual signals in the genus Atelopus is intriguing because

these frogs also vocalize [5]. Interestingly, and in contrast to other

species of the genus, Atelopus franciscus males only use advertisement

calls and no visual displays to attract females and defend territories

[6]. This is unexpected, however, given that they lack an external

vocal sac, and that they live in a noisy calling environment

consisting of river banks in tropical forest. Indeed, without an

external vocal sac, A. franciscus likely exhibits a low energetic

efficiency for calling, since the range over which acoustic signals

propagate depends on the power generated by the sound source. In

fact, less than 0.05% of the source (larynx) energy is susceptible to

transfer into the medium [7], and the solution observed in most

frogs is the coupling of the larynx (source) to a resonator (the

external vocal sac) tuned to the frequency of the signal. Moreover,

the structure of the advertisement call appears poorly adapted to a

noisy environment. Contrary to forest stream dwelling Asian frogs

[8,9,10], A. franciscus produces multi-pulsed units separated by short

silences [11], typical of species living in open environments (ponds

and paddy fields, [8]). The emission of advertisement calls in an

absorbent and noisy environment imposes limits on the ability to

communicate as calls suffer attenuation and degradation. Commu-

nication in this habitat is rendered even more difficult by the

presence of numerous other frog species producing high energy

calls.
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The last, and perhaps the most intriguing aspect of communi-

cation in this frog, is related to the ear anatomy of A. franciscus. In

contrast to other amphibians (salamanders and caecilians), the

majority of anurans have developed tympanic middle ears,

consisting of an external tympanum, a middle ear cavity, an

eustachian tube, and auditory ossicles [12,13]. However, most

Atelopus, including A. franciscus, lack an external tympanum [13].

Without the external tympanum acting as an interface between the

external environment and the inner ear, this species can be

considered anatomically deaf. Paradoxically, Atelopus species have

standard inner ears with well-developed auditory sensory organs

[12], and neurophysiological studies have established that they

have the same sensitivity to sound as species with an external

tympanum [12,14].

As acoustic communication is dependent on efficient emission,

propagation and reception of a signal, the system fails if one of

these elements is disrupted. The aim of this study was to examine

the adaptations that allow this frog without an external tympanum

and vocal sac to transmit information in an absorbent and noisy

environment. To do so, we studied its acoustic communication

system at the different levels of the information transmission chain.

First, we studied the encoding of information by analysing the

physical properties of the vocal apparatus and the acoustic

structure of the advertisement call. Second, we explored signal

modifications occurring during transmission from the emitter to

the receiver. Third, we examined the anatomy of the middle-ear

using histology, synchrotron X-ray phase contrast microtomogra-

phy, and magnetic resonance imaging (MRI). Finally, using field-

based playback experiments with modified signals, we deciphered

the coding system that allows species-specific recognition in this

frog.

Results

Vocal apparatus and call intensity
The nomenclature of the vocal sac used here is based on Liu

[15]. For comparative purposes we compared call quality factor

(Q) and sound pressure levels (SPL) of A. franciscus with those of a

species emitting a signal with a similar dominant frequency,

Eleutherodactylus martinicensis (Fig. 1). Whereas A. franciscus has an

internal vocal sac with fine and long vocal slits, E. martinicensis has

an external vocal sac. The mean Q values of A. franciscus and E.

martinicensis calls were 13.11 (n = 142) and 53.1 (n = 18) respectively.

The mean (6 SD) SPL values of A. franciscus and E. martinicensis

were 7263.4 dB (n = 11) and 9563.9 dB (n = 6) respectively.

Ear anatomy (Figure 2, Video S1, Video S2)
The nomenclature used here to describe the ear is based on

Wever [12]. In contrast to most other anurans, A. franciscus lacks a

tympanic membrane and a tympanic annulus. The area

corresponding to the tympanic membrane in other frogs is not

differentiated from the surrounding skin and shows skin glands.

Under the skin, a pseudo-tympanum (PT) is present which is,

however, smaller (area: 0.34 mm2) than the oval window of other

ranoid species. The columella is well developed and consists of

three plectral parts. The median plectrum (length: 1.26 mm) runs

horizontally along the dorsal wall of the middle ear cavity. The

cartilaginous extracolumella (length: 0.73 mm) is different from

that of ranids [16,17] and is attached by its slim distal end to a

large cartilage cushion occupying the superior part of the inner

aspect of the pseudo tympanum. The extra-columella is attached

to the skull by means of a strap-like cartilaginous process (the

ascending process). A short but wide eustachian tube connects the

middle ear with the posterior corner of the buccal cavity. A lateral

opening in the inner-ear capsule, the oval window (surface:

0.68 mm2), is covered by a convex external and concave internal

operculum and a columellar footplate (length: 0.76 mm, contact

area with the oval window: 0.15 mm2). These elements are

separated and connect without interdigitation. The surface ratio is

lower, and the impedance transformer ratio (ITR) of the middle

ear is higher, than those reported for other tetrapods (Table 1).

Call analysis (Figure 3, Audio S1)
Call variability was assessed by analyzing 130 advertisement

calls from 14 males (Table 2). The mean call duration was

1.3360.25 s. The call is emitted at a rate of 15 calls/min

separated by silences of 3.2661.83 s. The signal consists of

3264.5 pulses of 3.6260.93 ms each, emitted at a rate of

Figure 1. Comparison of the vocal performance of two anurans emitting calls at a similar frequency. (a) Atelopus franciscus, which has
an internal vocal sac, and (b) Eleutherodactylus martinicensis, which has an external vocal sac. The emission intensity (c, d) and the resonant frequency
and Q factor (e, f) are shown for both species. Note how the two species have differences in the relative resonator bandwidth. In A. franciscus the
bandwidth is wider and the call is of low intensity as a consequence of its internal vocal sac.
doi:10.1371/journal.pone.0022080.g001
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25.0366.10 pulses/s, and separated by silences of 39.11621.

93 ms. Call frequency increased with the increase in amplitude

from the beginning to the end of the signal and reached a

maximum value of 800 Hz. Spectral analysis of pulses by FFT

shows that the call consists of a pure sound with a frequency at a

mean value of 31346187 Hz. Two parameters of the call (pulse

duration, Pd and the dominant frequency, Df) appear highly

repeatable and stereotyped and can be considered as species-

specific characteristics.

Ambient noise
The ambient noise differed slightly at the two studied sites in the

rainforest. We measured 57.0962.72 dB along the river bank and

5261.80 dB in the undergrowth (UG). The difference between the

two sound pressure levels are statistically significant (Mann-

Whitney U test, P,0.001, z = 3.402).

Call attenuation (Figure 4)
The measured attenuation along the riverbank (RB) is well

described by the inverse square law for the spreading of spherical

waves (-6dB per doubling of distance), similar to what has been

described for Centrolenella fleischmanni [18]. This is not the case in

the undergrowth. Here, a strong decrease of the amplitude (-13.54

dB) was observed over the first two meters, after which the

measured attenuation followed the inverse square law. At a

distance of 16 m the signal was below the background noise level

Figure 2. Ear anatomy of Atelopus franciscus. (a) View of the pseudo-tympanum (note that the slices are windowed to obtain the best contrast in
soft tissues) consisting of the extra-columella and middle ear cavity on a virtual medial slice of the left ear obtained with holotomography (7.46 mm).
(b) A virtual coronal slice at the level of pseudo-tympanum showing the connection of the middle ear with the buccal cavity obtained with
holotomography (7.46 mm). (c) and (d) 3D visualisation of inner ear (green) and middle ear cavity connected to the buccal cavity (blue) with the skin
rendered transparent. (e) and (f) Views of the connection between the opercular muscle, the suprascapula, and the operculum. The virtual slices are
obtained by MRI in the saggital and frontal plane. (g) Histological section of the left ear in the frontal plane illustrating the fibrous connection
between the middle ear ossicle and the otic capsule. (h) and (i) Volume rendering of middle ear anatomy inside the skull obtained with
holotomography (10 mm). (h) lateral view, (i) postero-lateral view. Scale bars represent 1 mm. Abbreviations: Asc Anterior semi-circular canal, Br Brain,
Co columella, Di diploe, Ec extracolumella, Et Eustachian tubes, IE inner ear, Ip interna plectri, Mec middle ear cavity, Mo muscle opercular, Oc otic
capsule, Op operculum, Pr prootic, Sk Skin, Sq squamosal and Ss suprascapula.
doi:10.1371/journal.pone.0022080.g002

Table 1. Comparison of the lever ratio, ITR and transmission of the middle ear in tetrapods.

Vertebrate Animal Ratio T/FO
Ratio lever
ossicle ITR Tmax (in %) Tmin (in %) Source

Anuran Atelopus franciscus 0.5 3.3 0.183 14.99 7.79 current study

Bufo americanus 12.8 / [S1]

Hyla cinerea 9.1 / [S1]

Rana catesbeiana 27–47 1.2 0.044–0.0161 86.3 60.8 [S2]

Rana temporaria / 5.8 [S3]

Mammal Human 17 1.2 0.041 51.99 30.5 [S4]

Primate 21.1 1.8 0.014 89.94 65.39 [S5]

Cat / 2 [S6]

Bats with sonar 16 2.3 0.012 95.26 73.61 S7]

Bats without sonar 14.7 1.7 0.023 73.8 47.9 [S7]

Bird Pigeon 21 2.7 0.007 99.6 92.38 [S8, S9]

Chicken 11 / [S10]

Grebes (Podiceps) 15 / [S10]

Birds of prey (falconiformes) 20 / [S10]

Owls (strigiformes) 30 1.6 0.013 92.46 68.98 [S11]

Lizard Gekkonidae 28.6 4.3 0.002 64.51 89.28 [S12]

References
S1. Moffat AJM, Capranica RR (1978) Middle ear sensitivity in anurans and reptiles measured by light scattering spectroscopy. J Comp Physiol 187 [A]: 97-107.
S2. Mason MJ, Narins PM (2002) Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I, The extrastapes. J Exp Biol 205:3153-3165.
S3. Jørgensen MB, Kanneworff M (1998) Middle ear transmission in the grass frog, Rana temporaria. J Comp Physiol [A]. 182: 59-64.
S4. David R (2002) Signals and Perception: The Fundamentals of Human Sensation. Basingstoke: Palgrave, Open University. 407.
S5. Coleman MN, Ross CF (2004) Primate auditory diversity and its influence on hearing performance. Anat Rec 281A: 1123-1137.
S6. Iskandar HG, IH,Mounir M (1982) The ossicular system of cats. J Laryngol Otol 96: 195-204.
S7. Thomassen HA, Gea S, Maas S, Bout RG, Dirckx JJJ, Decraemer WF, Povel GDE (2007) Do Swiftlets have an ear for echolocation? The functional morphology of
Swiftlets middle ears. Hear Res 225: 25-37.
S8. Schwartzkopff J (1955) On the hearing of birds. Auk 72: 340-347.
S9. Gummer AW, Smolders JWTh, Klinke R (1989) Mechanics of a single-ossicle ear: I. The extra-stapedius of the pigeon. Hear Res 39: 1-13.
S10. Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Comparative Hearing: Dooling RJ, Fay RR, Popper AN, editors. Birds and
Reptiles, New York: Springer-Verlag. 13-69.
S11. Payne RS (1971) Acoustic Location of Prey by Barn Owls (Tyto Alba). J Exp Biol 54: 535-573.
S12. WernerYL, Igić PG (2002) The middle ear of gekkonoid lizards: interspecific variation of structure in relation to body size and to auditory sensitivity. Hear Res 167:33-
45.
doi:10.1371/journal.pone.0022080.t001
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and attenuation values were not measurable in both sites

(riverbank and undergrowth).

Modification of amplitude modulation
At both sites, modifications of the envelopes of the propagated

signal compared to the non-propagated signal were small for

signals recorded at 2 m and 4 m (Pearson correlations: river bank:

r = 0.82 at 2 m and r = 0.80 at 4 m, p,0.05; undergrowth: r = 0.87

at 2 m and r = 0.85 at 4 m, p,0.05). Modifications of the

envelopes are stronger beyond 8 m (riverbank: r = 0.64; p,0.05;

undergrowth: r = 0.53, p,0.05) and at 16 m modifications were no

longer measurable as the signals recorded were softer than the

background noise.

Interspecific acoustic competition with other frogs
(Figure 5)

We identified and recorded 33 species of frogs in our study area.

Only 9 of these called during the day and only 2, Allobates femoralis

and Otophryne pyburni, were overlapping in frequency with the call

of A. franciscus. However, the temporal structure of the calls of these

two species differed from that of A. franciscus.

Figure 3. Advertisement call of Atelopus francisus. (a) sonographic and oscillographic representations of a natural call, (b) envelope
representation of three successive pulses corresponding to the part highlighted in (a), c) oscillographic (left) and spectrographic (right)
representation of a single pulse. Abbreviations refer to temporal and frequency measures.
doi:10.1371/journal.pone.0022080.g003
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Playback experiments
We did not observe a significant difference between the

response to the control signal and the experimental signal where

amplitude modulation was suppressed (sign test, p = 1, n = 10;

Fig. 6). Inversion of the temporal structure of the signal also did

not elicit a different response (sign test, p = 0.13, n = 9, Fig. 6). We

did not observe a significant difference between the response to the

control signal and responses to the signal with only the first part of

the call (sign test, p = 0.13, n = 9, Fig. 6), or only the final part of

the call (sign test, p = 0.48, n = 9, Fig. 6) present. We did not

observe a significant difference between the responses to the

control signal and the experimental signals with the frequency

shifted (sign tests: +200 Hz, p = 0.13; +400 Hz, p = 0.48; +800 Hz,

p = 0.22; +200 Hz, p = 0.72; +2000 Hz, p = 0. 37; n = 10 for all

tests, Fig. 6). Finally, We did not observe a significant difference

between the response to the control signal and the experimental

signal without any frequency modulation (sign test, p = 0, 62,

n = 10, Fig. 6). However, signals with pulse and inter-pulse

durations shortened or lengthened elicited significantly weaker

responses than the control signal (sign test, p,0.05, n = 10 in all

cases, Fig. 7).

Discussion

Like most frogs, male Atelopus franciscus use advertisement calls to

attract females and to defend their territories. Such signals are

typically devoted to long-range communication. However, our

data show that the Q-value of the call is low. A low Q value is

typically associated with short broadband signals that are only

slightly longer than the exciting impulse. This is exactly what we

observe for the advertisement call of A. franciscus: it consists of a

train of short pulses (mean duration: 3.6 ms), each pulse

corresponding to a non-frequency-modulated sound with a wide

frequency bandwidth (ranging from 2.9 to 3.3 kHz). This simple

call structure is, however, common among frogs [19,20] and not

specific to earless frog species. In bufonid frogs in particular such a

call organisation is common [4,19]. Interestingly, the call of A.

franciscus is emitted at a low intensity (72 dB SPL) which is likely

due to the lack of an external vocal sac. The external vocal sac has

an important effect on the intensity of the signal and on the tuning

of the resonant frequencies [20] as it enhances sound radiation by

generating standing waves (resonance). Atelopus franciscus, having

only an internal vocal sac, emits a relatively low intensity call

compared to other frogs [21,22]. In most frogs with sizes similar to

A. francisus the sound level of calling males measured at 1 m is on

the order of 87-113 dB [21,23]. This range corresponds well to the

value (95 dB) we have measured for E. martinicensis, a species

emitting in the same frequency band and living in the rainforest

undergrowth, but possessing an external vocal sac. Due to its weak

Table 2. Acoustic parameters and coefficients of variation
(C.V.) measured on the advertisement calls of 14 individuals
(with a mean number of 10 calls per individual).

Parameters Avg. S.D. Min. Max. N CV aCVi CVP/aCVi

Sd (s) 38.6 9.63 20.23 55.48 14 \ \ \

Cr 0.25 0.04 0.18 0.33 14 \ \ \

Np/C 32.01 4.49 24 46 129 14.1 7.3 2.4

Cd (s) 1.33 0.25 0.9 1.86 130 18.7 5.8 3.5

Dics (s) 3.26 1.83 1.64 18.26 117 56.5 31.5 2.7

Pd (ms) 3.62 0.93 2 6.94 4120 25.8 23 1.2

Dips (ms) 39.11 21.93 0.25 133.13 3991 56.1 47.4 1.2

Pr 25.03 5.94 15.84 37.75 126 23.9 7.8 3.6

R 0.1 0.03 0.05 0.23 126 33.3 13.8 2.8

FM (Hz) 411 197 0 813 136 48.3 41.6 1.6

Ffi (Hz) 3298 165 2875 3719 136 5 3.7 2

Fli (Hz) 2887 167 2500 3313 136 5.8 3.1 2.2

Df (Hz) 3134 187 2500 3656 1329 6 4.7 1.5

Abbreviations: Avg Average, aCVi average Coefficient of Variation individual,
CVP Coefficient of Variation of Population, Max Maximum, Min Minimum, N
Number.
doi:10.1371/journal.pone.0022080.t002

Figure 4. Attenuation of the call propagated at different
distances (2, 4, 8 m) in two natural habitats, undergrowth (UG)
and riverbank (RB).
doi:10.1371/journal.pone.0022080.g004

Figure 5. Frequency bandwidth of the calls of 9 frog species
sympatric with A. franciscus. In light gray, the two species in
frequency competition with A. franciscus. A. franciscus in dark gray. D,
diurnal; N/D, diurnal/nocturnal activity.
doi:10.1371/journal.pone.0022080.g005
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emission intensity, but also to the absorbent properties of the

vegetation and the high background noise the environment (52 dB

in the undergrowth and 57 dB along the riverbank), the call of A.

franciscus propagates only at short range. Our experiments in the

natural habitat of this species confirm this and show that at a

distance of 8 m the signal is masked by background noise.

Moreover, the amplitude modulation of the signal is strongly

modified in the natural habitat. Such degradation of amplitude

modulation (AM) parameters during propagation, highlighted for

other frog species [24], can be critical for species recognition.

However, as A. franciscus maintains contiguous territories with each

male being spaced 2–4 m apart on average, information coded at

the level of the amplitude structure can still be effectively

transmitted between an emitter and a receiver.

Even though the males call in close proximity to one another,

the receivers present a characteristic that seems particularly

constraining for effective communication: the lack of an external

tympanum. In terrestrial frogs with a complete middle ear, the

impedance gap between air and fluid is partially reduced by two

anatomical specializations that increase the efficiency of sound

transmission: 1) the surface area of the external tympanum is

greater than that of the oval window, and 2) the columella has a

lever action. Based on our observations, the middle ear anatomy

of A. franciscus presents some specialisations that could partially

compensate for the absence of an external tympanum. The lever

ratio was approximately 3.3, i.e. somewhat higher than lever

ratios reported for most tetrapods, and hence the middle ear

lever probably makes a significant contribution to impedance

matching. On the other hand, the middle ear of A. franciscus also

appears to present some limitations. First, the area of the

pseudo-tympanum is smaller than that of the oval window

resulting in a poor mechanical pressure transformation and

consequently the ITR is higher than that of other tetrapods.

Second, no inter-digitations are present between the inner

operculum and the columellar footplate and the extra-columella

is firmly connected to the squamosal leading to a limited

coupling between the two ossicles. Thus, despite its high lever

ratio, the middle ear of A. franciscus does not seem particularly

efficient. Nevertheless A. franciscus communicates effectively

using airborne sounds [5]. A potential explanation for this

paradox may reside in the presence of other acoustic pathways.

For low-frequency sounds (,1000 Hz), the opercularis system in

the inner ear could serve as an extra-tympanic pathway [14].

For higher frequency sounds, displacements of the body wall

overlying the lung could be transmitted to the inner ear by this

pathway as well [23,14]. One other possibility is that sound is

Figure 6. Sonographic and oscillographic representations of test signals used for playback experiments (signals corresponding to
tests of frequency parameters are not shown). Histogram representations correspond to the associated responses expressed as a proportion of
the theoretically maximal response score.
doi:10.1371/journal.pone.0022080.g006
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transmitted to the inner ear from the sides of the head by

conduction through bone or other tissues.

Whatever the acoustic pathway used to reach the inner ear, A.

franciscus responds to the emission of a conspecific advertisement

call by an aggressive call and by orienting itself towards the sound

source. In frogs, species-specific coding can be carried either by

temporal [25] or frequency-dependent elements [26]. According

to our playback experiments, males of A. franciscus pay little

attention to frequency parameters, since advertisement calls

shifted up or down up to 800 Hz still elicited positive responses.

Similar results were obtained for signals with AM or FM

suppressed or signals with the temporal structure inverted (i.e.

AM and FM reversed). On the other hand, signals with the natural

intra-pulse frequency but with pulse duration enhanced or

shortened by 30, 50, or 60% elicited only weak responses. Thus,

the pulse duration of the call appears an important parameter for

species-specific recognition.

A coding strategy based on pulse duration could appear

inappropriate for a species living in a forest habitat as the

reflection of sound waves on the numerous obstacles present (e.g.

tree trunks, branches, leaves, etc.) induces reverberating sounds

and the resulting echo may increase pulse duration. However, as

territorial males establish calling sites in close proximity to one

another (2–4 m) the signal remains largely unmodified. In

addition, the pulse duration information is repeated often

throughout the call and this information redundancy is ideally

suited for communication in a noisy environment. A coding based

on pulse duration also allows male A. franciscus to distinguish

conspecific calls from those of the other diurnal frogs, some of

which emit in the same frequency range.

Figure 7. Oscillographic representations of test signals used during playback experiments with natural pulses stretched or
compressed (expressed in %). Histogram representations correspond to the associated responses expressed as a proportion of the theoretically
maximal response (* = p,0.05, ** = p,0.01).
doi:10.1371/journal.pone.0022080.g007
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To conclude, A. franciscus is confronted with several acoustic

communication problems: a lack of external vocal sac and an

external tympanum, a call emitted at a low intensity level, a noisy

and absorbent environment and an important inter-specific

competition. To solve these problems, the species adopts two

kinds of strategies: 1) behavioural strategies involving the use of

contiguous territories with males established in close proximity to

one another; 2) acoustic strategies involving the use of redundant

and simple coding based on pulse duration, and possibly the use of

an extra middle-ear pathway to compensate the lack of external

tympanum.

Materials and Methods

Study site
Harlequin frogs were studied at two locations in French Guiana:

between March and mid-May at the Muséum National d’Histoire

Naturelle (MNHN) field station of Saint-Eugène (4u51’N; 53u3’W,

65 m elevation) and between May and June, at the station of

Nouragues (4u5’ N, 52u41’ W, 110 m elevation). Recording and

playback experiments were done during the active calling period

of males (i.e. between 6.00 a.m. and 6.30 p.m.).

Electro-acoustic material
Calls were recorded at 1 m distance using an omnidirectional

Brüel and Kjær serial 4053 microphone connected to a Sony

TCD-D100 digital audio tape (DAT) recorder (sampling

rate = 48 kHz, frequency response flat within the range 20–20

000 Hz). Signals were A–D converted (16 kHz), stored on a PC,

and modified with Syntana signal processing software [27]. Sound

pressure level (SPL in dB) measurements were taken using a

Bioblock Scientific Sound Level Meter type 5017 (linear frequency

scale, Fast setting). For propagation tests, signals were played back

by an Aiwa HDS 1000 DAT or a Sony WM6 recorder (frequency

range 30–20000 Hz 61dB) connected to a 12 cm diameter Klein-

Hummel Mini-Monitor 201 loudspeaker (frequency response 80–

16000 Hz 61.5 dB) and re-recorded as mentioned above.

Vocal apparatus
To characterise the resonance properties of the vocal apparatus

we measured the resonant frequency and the Q-value or quality

factor. The quality factor is a measure of the sharpness of tuning or

of the resistive damping of a vibration [28] and allows an

assessment of the quality of oscillators and resonators. An

estimation of Q for the vocal apparatus is provided by the

equation: Q = f0/BW-3dB SPL [29], where f0 is the resonant

frequency (the frequency at which the amplitude is maximal), BW-

3dB SPL is the bandwidth at the 50% power level which is at -3dB

SPL (20 mPa below the peak), i.e. the frequency range that is

within 3dB of the maximum peak amplitude.

Middle ear biomechanics
The two primary mechanisms that have been proposed to assist

in overcoming the impedance mismatch between the perilymph

and air [30] are the ossicular lever [31] (the lever action that

results from taking half the length of the footplate as the ‘‘effective’’

length of the in-lever and the distance from the fulcrum to the

centre of the eardrum of the out-lever) and the areal convergence

ratio (i.e. the force collected by the larger surface area of the

tympanic membrane is concentrated on the smaller area of the

oval window resulting in a pressure amplification; Fig. 2). Using

these two ratios we calculated the impedance transformer ratio

(ITR) of the middle ear, using the equation provided in Coleman

and Ross [32]. Using this ITR, we estimated the theoretical

maximum percentage of acoustic transmission (T) at peak

performance through the middle ear.

Call intensity
To characterize the intensity of the call produced by the species,

we measured the Sound Pressure Level (SPL) on 11 individuals.

The sound level meter was positioned at 1 m in front of the head

of male A. franciscus. For each individual, 10 measures were taken

at 15 s intervals. All these measures were averaged to obtain a

mean SPL value of the call.

Call analysis
Patterns of inter individual variability of advertisement calls

were assessed by analyzing calls from 14 males (10 calls per

individual). From these calls we extracted the following parame-

ters: sequence duration (Sd), call duration (Cd), duration of inter-

call silences (Dics), pulse duration (Pd), number of pulses per call

(Np/C), duration of inter pulse silences (Dips), call rate (Cr),

rhythm (R, sum of signals/silences), pulse rate (Pr), dominant

frequency (Df), frequency values of the first impulse (Ffi) and the

last impulse (Fli), and frequency modulation (FM) obtained by

subtracting Ffi from Fli. Frequency measurements were performed

on power spectra with the following Fast Fourier Transform (FFT)

values: Hamming window size = 4096 points, filter bandwidth

= 120 Hz (T = 1/F = 8.3 ms). For each call parameter, we

determined the mean, the standard deviation, the minimum and

the maximum, Table 2. All these parameters were measured using

Syntana [27].

Ambient noise measurements
We measured the mean level of the ambient noise in two

representative sites: along a riverbank and in the undergrowth of

the rainforest. The sound level meter was positioned at a height of

0.5 m. Mean instantaneous sound pressure level measurements

were taken at each site at 15 s intervals during 5 min for each

individual encountered on different days (N = 10 measures). To

compare the levels of the ambient noise at the two sites, we used

non-parametric tests (Mann-Whitney U test). Note, however, that

these measurements cannot fully quantify the entire variability at

the two sites and should thus be regarded as a temporal & spatial

snapshot of the ambient sound environment of this species.

Propagation experiments
We broadcasted a representative advertisement call of the

Harlequin frog. The call was repeated 15 times at intervals of 2.5 s

at the natural sound pressure level of the species. The frequency

and temporal values of this call and its repetition rate

corresponded to the mean values measured in natural calls of

the species. This series of repeated calls was broadcasted in the two

natural habitats mentioned above. The propagation distances, i.e.

the distances between the loudspeaker and the microphone, were

the same in both experiments: 1 m (reference signal), 2 m (average

distance between two territories of two neighbours males), 4 m,

8 m and 16 m. Experiments were conducted between 06.00 a.m.

and 5.30 p.m. The loudspeaker and the microphone were placed

50 cm above the ground to mimic the natural position of calling

males.

Analysis of the propagated signal
The attenuation of the call during propagation and modification

of the amplitude modulation of the signal before and after

propagation through the environment (riverbank and under-

growth) were measured. The call attenuation, expressed in

Acoustic Communication in an ‘‘Earless’’ Frog

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e22080



decibels, was defined as: CA = 20 log (As/Ais), where As is the

mean absolute amplitude value of the propagated call, and Ais is

the mean absolute amplitude value of the reference signal. We

compared the amplitude values of the signals recorded at 2 m,

4 m, 8 m and 16 m to the corresponding amplitude value of the

reference signal recorded at 1 m. This allows us to compensate for

the contribution of background noise to the amplitude measures.

The attenuation values in the two environments were compared

using non-parametric tests (Mann-Whitney U test). To analyse the

modification of the amplitude modulation, the envelope of each

call was calculated using the analytic signal calculation [33]. Each

envelope (N = 3670 points) was digitally filtered using a short-term

overlapping (80%) FFT (window size 4096, bandpass 0–250 Hz)

focusing only on the slow amplitude modulation of the call. To

minimize the influence of environmental changes the 15 envelopes

corresponding to each test situation and distance of propagation

were averaged. To assess the degree of similarity, a Bravais-

Pearson correlation coefficient (r) between each of the 3670 points

of the averaged envelope of the propagated signal and the

corresponding points of the control signal was computed.

Histology
Two specimens were killed by an overdosis of anaesthetic

(ketamine) and fixed in either neutral-buffered formalin (4–10%)

or ethanol, embedded in paraffin, sectioned at 5 mm and stained

with standard Azan trichrome [34].

Holotomography
One specimen were killed by an overdosis of anaesthetic

(ketamine) and fixed in 3.7% formaldehyde solution and placed in

a small polypropylene tube for holotomographic imaging [35].

Images were obtained using X-ray synchrotron radiation at the

ID19 beam-line of the European Synchrotron Radiation Facility

(ESRF, Grenoble). Images were taken in the phase contrast mode,

with a pixel size of 7.46 and 10 mm at three (18, 83, 283, and

973 mm) and four (40 mm, 300 mm and 995 mm) sample-

detector distances, respectively. The beam energy was set

respectively at 20.5 and 17 keV. Twelve and nine hundred

radiographic images (204862048 and 102461024 pixels) were

acquired respectively using a FReLoN CCD Camera [36] at

different angles ranging between 0 and 180u. Dark current and

reference images without sample were recorded to perform flat

field corrections on the projections. Phase retrieval was performed

using the mixed approach described in [37]. Due to strong low-

frequency noise in the resulting reconstructions, phase-absorption

duality regularization [38] was incorporated, with the regularizing

term set to correspond to bone (refractive index-absorption index

ratio d/b= 284). After phase retrieval, tomographic reconstruction

was performed using a 3D version of the filtered back projection

algorithm to reconstruct the 3D refractive index distribution. From

this the 3D skull structure and soft tissue details was extracted.

Microscopic MRI
The experiments were carried out at 9.4T on a vertical

spectrometer (Inova,Varian) equipped with a 2T/m gradient coil

and a home-built ‘‘loop-gap coil’’ (12 mm inner diameter). Three

dimensional gradient echo experiments were performed with a

repetition time of 84 ms and echo times of 2.4, 70 and 100 ms.

The field of view was 1.661.161.1 cm3 and the acquisition matrix

was 25662566256 pixels, leading to a calculated resolution of

62.5643643 mm3. Three dimensional renderings were obtained

after semi-automatic segmentation of the skeleton, using Avizo 6.1

(VSG, Visualization Sciences Group, Merignac, France) and the

public domain program ImageJ (developed at the United States

National Institutes of Health).

Signals used in playback experiments
Signals were modified in the time and frequency domains using

Syntana software as follows:

1. Suppression of amplitude modulation. The advertisement call

of Atelopus franciscus is characterized by an increase in amplitude

from the beginning to the end of the call. To test whether or not

this amplitude variation is a useful parameter for species-specific

recognition we removed all amplitude variations while keeping all

the other acoustic parameters of the natural signal (Figs. 3, 7a). To

do so we used the analytic signal calculation which allows

amplitude de-modulation using the Hilbert transformation [33].

2. Inversion of the temporal structure. The advertisement call

consists of a temporal succession of pulses with an inter-pulse

period decreasing from the beginning to the end of the call. To test

the importance of this temporal succession, we built a reversed call

(Figs. 3d, 6).

3. Simplification of pulse syntax. The advertisement call

typically comprises two parts: the first part corresponds to a

succession of 20 pulses on average, emitted at a relatively slow rate

and low intensity level, and the second part corresponds to a

succession of 14 pulses on average, emitted at a relatively fast rate

and high intensity level. To investigate which kind of pulse elicits

territorial responses, we built two signals: one corresponding to the

first part only and the other to the second part only (see Figs. 3a,

6).

4. Modifications of pulse and inter-pulse durations. The calls of

A. franciscus show a distribution of pulse durations ranging from 2

to 6 ms with an inter-pulse duration ranging from 0.25 to

133.10 ms. To test the importance of these durations, we built 6

experimental signals. Using a synthesis method, we built pulses

with the natural intra-pulse frequency but that were shortened or

lengthened compared to the natural ones. As we chose to keep the

natural pulse rate (number of pulses by unit of time), the result was

a signal with the inter-pulse durations modified. Consequently, the

tempo (sound/silence duration) was modified but the natural

rhythm of pulse emission was kept. The decrease or increase of the

pulse durations (in %) was as follows: 260, 250, 230, +30, +50

and 60 (Fig. 7).

5. Suppression of low frequency modulation (low FM). Some

parts of the calls of A. franciscus are more or less modulated in

frequency. To test the importance of the FM in species-specific

recognition, a natural envelope was applied to a carrier frequency

without FM. The amplitude envelope applied was extracted from

a natural call, using the analytic signal calculation [33]. The

carrier frequency represented the average frequency of a natural

advertisement call (Figs. 3f, 6).

6. Shift of the frequency. According to our analysis, the calls of

A. francisus present a distribution of frequencies between 2700 and

3700 Hz. To estimate if the species-specific coding process is based

on the precise frequency values of the signal, a natural call was

shifted up in frequency. This was done by picking a data record

through a square window, applying short-term overlapping (50%)

FFT, followed by a linear positive shift of each spectrum, and by a

short-term inverse FFT [39]. The linear shifts of the spectra were:

+200, +400, +800, +1200 and 2000 Hz.

Playback design
Prior to the start of a test, we positioned the speaker at a

distance of 2.5 m from the subject, which is the typical distance

between adjacent territorial males [6]. We chose to test males that

had no neighbours within a 10 m diameter range to avoid
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interactions with other territorial males. Males were stimulated by

2 series of signals separated by 2 minutes of silence. One series, the

control series, consisted of 15 consecutive advertisement calls (with

34 pulses on average) separated by natural inter-call silences (mean

duration: 2.5 s). The second series, being the experimental one,

consisted of 15 experimental calls (a modified natural call or a

synthetic signal repeated) separated also by natural inter-call

silences. The order of presentation of both control and

experimental series was randomised. In natural conditions, the

response to an advertisement call was characterised by an obvious

behavioural change in the male’s attitude: it turned its body in the

direction of the sound source, called in reply (by an advertisement

and/or a territorial call), and then approached the loudspeaker.

The intensity of responses of tested males to playback signals was

evaluated by a five-point scale ranked as follows: class 0 (none) =

no reaction; class 1 (weak) = orientation towards the loudspeaker;

class 2 (medium) = orientation + approach towards the

loudspeaker + emission of an advertisement call (Audio S1); class

3 (strong) = orientation + approach + emission of a territorial call

(Audio S2); class 4 (very strong) = similar to class 3 but territorial

call emission after the first signal, fast approach in the direction of

the loudspeaker and stop in the vicinity (less than 2 m). This

behavioural scale is similar to the one used in a previous study

dealing with a related species of Harlequin frog [5].

Data analysis
The sign test [40] was used to compare the responses to

experimental signals and to the control signal. One-tailed sign tests

were computed using Statistica Version 1.5 at alpha = 0.05.

Supporting Information

Audio S1 Recording of a male advertisement call.
(WAV)

Audio S2 Recording of a male territorial call.
(WAV)

Video S1 3D reconstruction of the ear based on syn-
chrotron microtomography.
(AVI)

Video S2 3D animation illustrating the anatomy of the
head as revealed by microscopic MRI.
(AVI)
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