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Abstract

Focal adhesions (FAs) are macromolecular complexes that provide a linkage between the cell and its external environment.
In a motile cell, focal adhesions change size and position to govern cell migration, through the dynamic processes of
assembly and disassembly. To better understand the dynamic regulation of focal adhesions, we have developed an analysis
system for the automated detection, tracking, and data extraction of these structures in living cells. This analysis system was
used to quantify the dynamics of fluorescently tagged Paxillin and FAK in NIH 3T3 fibroblasts followed via Total Internal
Reflection Fluorescence Microscopy (TIRF). High content time series included the size, shape, intensity, and position of every
adhesion present in a living cell. These properties were followed over time, revealing adhesion lifetime and turnover rates,
and segregation of properties into distinct zones. As a proof-of-concept, we show how a single point mutation in Paxillin at
the Jun-kinase phosphorylation site Serine 178 changes FA size, distribution, and rate of assembly. This study provides a
detailed, quantitative picture of FA spatiotemporal dynamics as well as a set of tools and methodologies for advancing our
understanding of how focal adhesions are dynamically regulated in living cells. A full, open-source software implementation
of this pipeline is provided at http://gomezlab.bme.unc.edu/tools.
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Introduction

Focal adhesions (FAs) are dynamic, multi-component protein

complexes that serve as points of integration for both mechanical

and chemical signaling, while playing a central role in a variety of

processes including cancer metastasis, atherosclerosis and wound

healing [1,2,3]. Characterizing how these structures dynamically

change is essential for understanding cell migration, which

requires that adhesions are continuously remodeled as the cell

moves forward. During motility, new adhesions are born at the

leading edge of a protruding lamellipodia. They then enlarge and

are either disassembled at the base of the protrusion in a process

known as adhesion turnover, or become longer-lived structures

that are eventually dismantled in the retracting tail at the rear of

the cell [4,5,6]. In this cycle as well as other FA-mediated

processes, FA dynamics are highly regulated by structural and

signaling molecules [7,8,9]. Alterations in the balance of these

regulating factors plays a key role in adhesion turnover and thus in

adhesion signaling and normal cell function.

Microscope imaging of FAs underlies a significant portion of our

current understanding of adhesion dynamics, with methods such

as total internal reflection fluorescence microscopy (TIRF)

providing high-resolution images suitable for quantitative analy-

sis[10]. However, challenges in image capture and downstream

analysis have generally led to the characterization of only a

relatively small number of hand-picked adhesions within any given

cell [7,8,11,12,13]. Recent technical and methodological improve-

ments have allowed for the automated detection and character-

ization of focal adhesions for high-throughput screening studies.

For instance, Paran and colleagues [14] have reported on the use

of a high-throughput high-resolution imaging system to screen a

plant extract library for effects on adhesion morphology and

distribution. The same high-throughput imaging system was used

to perform multicolor analysis on various adhesion components

[15] and this system was used in an siRNA screen against adhesion

related genes [16]. In these studies, researchers were able to obtain

molecular signatures of protein components within focal adhe-

sions, resolve sub-domains within adhesions, and identify clusters

of genes that had similar effects on focal adhesion morphology and

placement. These studies demonstrate the power of identifying

and characterizing large numbers of adhesions within a cell.

However, as the approaches used in these studies relied on cell

fixation, critical aspects of focal adhesion biology, including their

spatiotemporal dynamics, were lost.
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Here, we describe a novel system for the quantification of focal

adhesion dynamics. This approach utilizes high-resolution (60x

oil-immersion) time-series images of living cells generated with

TIRF. Image sequences are processed through an analysis system

that identifies individual adhesions based on user-defined criteria,

tracks their movement through time and collects associated

properties concerning their location, shape, size and intensity. As

adhesion properties throughout the lifetime of each adhesion are

quantified in this approach, a thorough picture of global adhesion

spatiotemporal behavior is captured.

To demonstrate the capabilities of this computational approach,

we focus on characterizing adhesions via the molecular scaffold

protein Paxillin, a core constituent of focal adhesions commonly

used in adhesion imaging [17]. Specifically, in this study we use

our image analysis system to characterize FAs labeled with EGFP-

Paxillin, generating high-resolution data sets of adhesion distribu-

tion, morphology, and turnover in migrating NIH 3T3 fibroblasts.

The results demonstrate that we can analyze adhesions in an

unbiased manner, with 103–104 adhesions analyzed per cell. With

wild-type Paxillin as a baseline for comparison, we use our system

to detect alterations in adhesion spatiotemporal properties in

response to the S178A mutation on Paxillin. Through this analysis

we show that the loss of this single phosphorylation site affects

adhesion site formation, size and assembly rates. We also verify the

broad applicability of the analysis system by also applying the

methods to examine time-lapse movies of EGFP-FAK. We are also

making the analysis system available under an open source license,

to allow the community to use our methods to analyze new

experimental systems. These results illustrate the benefit of

automated large-scale characterization of adhesion properties

and behaviors, allowing both large and subtle differences to be

readily detected.

Results

Quantitative Analysis of Focal Adhesion TIRF Images
To quantify aspects of focal adhesion spatiotemporal dynamic

behavior, we generated an NIH 3T3 fibroblast cell line expressing

both EGFP-Paxillin, to label FAs, and a myristoylated-Red

Fluorescent Protein (myr-RFP), to identify the cell edge. Cells

were plated on fibronectin and imaged with TIRF for 1–4 hours.

We then quantified FA dynamics through a multistage image

analysis pipeline (Figure 1). Briefly, after high-pass filtering, FAs

were identified and segmented with a watershed-based algorithm

(see Methods). Characteristics of adhesions identified and

quantified at each timepoint included properties such as area,

position and fluorescent Paxillin intensity. Dynamic properties of

adhesions, such as velocities and changes in fluorescent intensity,

were also determined by tracking and measuring adhesion

properties across time steps/images. At each consecutive time

step the appearance of new adhesions, called birth events, and the

disappearance of adhesions, called death events, were similarly

identified and recorded by the software.

An example of the segmentation results and characteristic

properties are shown in Figure 2. The segmentation methods

successfully identify the adhesions in each image regardless of the

background Paxillin fluorescence intensity (Figure 2A, B). The

dynamic nature of the adhesions during this experiment is clear

when all the adhesions identified are shown superimposed in a

single image (Figure 2C). The results also show several general

properties of the adhesions in wild-type cells (Figure 2D). In

general, adhesions are less than 0.2 mm2 in size, have axial ratios

less than 3 and exist for less than ten minutes, although there are

many adhesions that live longer. Both Paxillin fluorescence

intensity and the position of the adhesion centroids with respect

to the cell edge have skewed distributions. These results

demonstrate the capabilities of our system to provide high-

resolution and unbiased assessment of FA behavior.

Kinetics of FA Assembly and Disassembly
Of particular importance for understanding FA functions is the

assessment of adhesion behavior through time. Figure 3A–D

shows the methods used in determining FA assembly and

disassembly rates for individual adhesions. Figure 3A depicts an

image series of a single adhesion (highlighted in green) from birth,

through maturation and stability, and on to death. Using time

series information, we quantified the normalized intensity of each

adhesion over its lifespan (Figure 3B). Readily apparent are the

log-linear assembly and disassembly phases, which are automat-

ically fit to a log-linear model (see Methods for details). Our results

are consistent with previous work showing that adhesions assemble

and disassemble with log-linear progression [7]. Specifically, we

found that the log-linear fits for most of the adhesions produced R2

values above 0.7 (Figure S1). Note that the smaller number of

adhesions analyzed relative to Figure 2 is due to the need for a

minimum adhesion lifetime (.20 minutes) as well as other

requirements needed for the accurate quantification of assembly

and disassembly rates (see Methods). In the example shown in

Figure 3, a log-linear approximation describes 90.5% and 96.1%

of the variance in the rates of intensity increase and decrease,

respectively (Figure 3C, D). In between these two phases we define

Figure 1. Automating the analysis of focal adhesion images
requires a multi-stage pipeline. The first row shows several
representative images of fluorescently labeled Paxillin using TIRF
microscopy. In the second row, a cartoon depiction of the segmented
adhesions and the cell edge are shown. Identification of the adhesions
in each image allows a set of characteristic morphological and
fluorescence intensity-based features to be extracted. The third row
shows a single adhesion (highlighted in red) being tracked through the
short sample time course. The properties of each adhesion are tracked
over time, allowing the large scale dynamics of FA to be determined.
doi:10.1371/journal.pone.0022025.g001
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Figure 2. Applying quantitative image processing methods to FA images allows comprehensive characterization of FA properties.
(A) One frame from a 200 minute movie of NIH 3T3 cells expressing GFP-Paxillin (the scale bar represents 10 mm). (B) The same cell as in (A), with each
adhesion outlined in a different color. (C) The entire set of adhesions in an experiment can be visualized by overlaying the adhesions from each
microscopy image using a different color for the set of adhesions at each time point. This example includes the adhesions from 198 images. (D) A
range of properties can be extracted from the segmented FA. Five samples are provided. The area histogram was filtered to only include adhesions
with areas less than 5 mm2. The axial ratio histogram was filtered to only include adhesions with an axial ratio of 8 or less. The longevity histogram
includes all adhesions, while the inset only includes adhesions with longevity greater than 20. The histograms include data from 21 cells.
doi:10.1371/journal.pone.0022025.g002
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a stationary/mature phase where intensity remains relatively

stable (Figure 3B).

We used our system to characterize the rates of FA assembly and

disassembly by repeating the analysis detailed in Figure 3A–D on all

adhesions identified in the EGFP-Paxillin data set by our software

(n = 21 cells). Results were focused on FAs having lifetimes of at least

20 minutes, where the detected assembly or disassembly rate is

positive and the p-value of the rate model is below 0.05 (Figure 3E).

The mean rate of assembly of 0.03160.023 min21 is 55% greater

than that of disassembly (0.02060.014 min21). While these average

rates are slower than earlier published reports, the values

determined in previous studies were estimated from far fewer

measurements (typically dozens of adhesions) and can be found

within the variance of our data set. Thus, this automated

computational approach provides a comprehensive picture of the

breadth of adhesion assembly and disassembly dynamics without

biasing analysis toward any particular subset of adhesions.

Spatial Properties of FA Assembly and Disassembly
In addition to estimation of assembly and disassembly rates, the

analysis pipeline also collects spatial properties of FAs, allowing

spatial aspects of FA behavior and dynamics to be similarly

studied. Using the same set of experiments used to determine the

kinetics of assembly and disassembly, we asked where, relative to

the cell edge, adhesions tend to be born/die (Figure 4). The

majority (63%) of adhesions are born less than 5 mm from the cell

edge, with a mean distance from the edge at birth of 6.34 mm

(Figure 4A). In contrast, adhesions tend to die further from the

edge with only 27% of adhesions dying within 5 mm of the edge

(Figure 4B). The mean distance from the edge at death was

9.5 mm. This suggests the existence of two distinct, but partially

overlapping ‘‘zones’’ within which preferential birth or death of

FAs occurs. When looking at both FA birth/death location and

assembly/disassembly rate simultaneously, we find that higher

assembly rates are observed in births that occur near the edge

while no obvious effect of spatial location on the rate of

disassembly is apparent (Figure 4).

Analysis of EGFP-labeled FAK adhesions
To support the use of these methods in the study other FA

proteins, we expressed FAK labeled with EGFP. After gathering

time-lapse movies of 10 cells tracking the position of FAK in NIH

3T3s using TIRFM, we applied the same set of algorithms to

determine the assembly and disassembly rate of the FAs. The rates

of assembly and disassembly of FAs were found to be statistically

indistinguishable when comparing labeled Paxillin to labeled FAK

in live cells (Figure 5). In contrast, subtle but statistically significant

differences in adhesion areas and axial size were found when

comparing EGFP-Paxillin vs EGFP-FAK labeled adhesions

(Figure S2). This result is not unexpected as different spatial

and/or stoichiometric relationships are expected for both Paxillin

and FAK within FAs [18,19]. These results further indicate the

capability of this system to be generally applicable to the

measurement of other adhesion components besides Paxillin.

Figure 4. Spatial properties of FA positions at birth and death. (A) The majority of adhesions are born within 5 mm of the cell edge and the
greatest variance in assembly rates are also observed in this 5 mm band. (B) The distribution of the distance of death location from the cell edge
indicates that adhesion disassembly typically occurs along a broader band from the cell edge as compared to the position at adhesion birth. Also, the
variance in disassembly rate is roughly the same regardless of the position at adhesion death. This data was collected from 21 EGFP-Paxillin cells.
doi:10.1371/journal.pone.0022025.g004

Figure 3. Automated measurement of focal adhesion dynamics. (A) Each of the adhesions in the cells is tracked, allowing the position and
properties of single adhesions and populations to be assessed. Here a single adhesion (in green), the surrounding adhesions (in blue) and the cell
edge (in red) are followed for 49 minutes. The cell edge is only outlined in the first frame. The scale bar is 10 mm. (B) The intensity of EGFP- Paxillin in
the tracked adhesion in (A) through time. The green, yellow and red lines are smoothed using the Lowess algorithm and correspond to the assembly,
stable and disassembly phases, respectively. (C) The normalized log-linear fit of the Paxillin intensity through time during the assembly phase of the
adhesion in part (B). The inset depicts several of the images from which the Paxillin intensity was gathered. (D) The normalized log-linear fit of the
Paxillin intensity through time during the disassembly phase of the adhesion in part (B). The inset depicts several of the images from which the
Paxillin intensity was gathered. (E) The assembly and disassembly rates for adhesions whose Paxillin intensity curve fits have R2 values of 0.9 or
greater. The top and bottom lines of the boxes indicate the 3rd and 1st quartiles respectively, while the bold central lines indicate the median values.
The whiskers extend up to 1.5 times the interquartile range.
doi:10.1371/journal.pone.0022025.g003
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Paxillin S178A Mutant Perturbation
The previous results establish the ability of our approach to

quantify various adhesion properties and behaviors. Furthermore,

the ability to identify and characterize very large numbers of

adhesions provides the potential to detect changes in adhesion

phenotype that are difficult or impossible to characterize manually

and/or with small numbers of measurements.

As a proof-of-principle, we utilized our system to investigate the

effect of a Paxillin mutation (Serine 178 to Alanine) on several

aspects of FA behavior. Specifically, a principal regulatory

mechanism of Paxillin is phosphorylation, with over 40 sites of

phosphorylation currently identified [9]. The roles of many of

these phosphorylation sites have yet to be characterized, but many

of those that have been studied demonstrate strong effects on cell

migration. Of particular interest is the c-Jun N-terminal kinase

(JNK) phosphorylation site Serine 178 (S178). Preventing JNK

phosphorylation through mutation of this Serine to Alanine, or by

inhibition of JNK signaling, inhibits cell motility [20,21]. More

recently, it has been shown that phosphorylation of S178 enhances

Paxillin’s interaction with FAK, resulting in tyrosine phosphory-

lation at residues 31 and 118 [22]. Furthermore, expression of the

phosphomimetic Y31D/Y118D Paxillin can rescue the S178A

mutant phenotype. This and related work suggests that JNK

phosphorylation of Paxillin may be an important early step in

adhesion formation. However, the effects of this mutation on

adhesion dynamics have not been well characterized.

Using our analysis system we found that the S178A mutation

induced a number of significant effects on the morphological,

dynamic and spatial properties of adhesions. The mean area of the

S178A mutant adhesions decreased by 23%, while the mean axial

ratio decreased by 5% in the S178A mutants (Figure 6). Perhaps

most relevant to the observed alterations in cell motility, there is an

approximately 42% reduction in the median rate of adhesion

assembly (Figure 7A). We also observe a smaller (30%) but

statistically significant decrease in median disassembly rate

(Figure 7B). Thus, the kinetics of FA assembly and disassembly

are strongly affected by this mutation, but in a non-symmetric

manner.

We previously observed that adhesions in wild-type cells have

different distributions of birth and death positions relative to the

Figure 5. The assembly and disassembly rates of EGFP-Paxillin and EGFP-FAK adhesions are the same. The blue numbers in each plot
are the p-values of the difference in median values between the EGFP-Paxillin and EGFP-FAK adhesions. P-values were calculated using the
bootstrapped confidence intervals with 50000 replicates. Data from 10 cells are included.
doi:10.1371/journal.pone.0022025.g005

Figure 6. The S178A mutation in Paxillin decreases adhesion size and axial ratio. There are 44685 adhesions in the wild-type and 73305
adhesions in the S178A data sets. The p-values were calculated using the Wilcox Rank Sum test. Data from 9 cells are included in the S178A data set.
doi:10.1371/journal.pone.0022025.g006
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cell edge. In comparison to WT cells, we find that the median

distance from the edge at birth is greater by 30% in S178A

mutants (Figure 7C). There is no significant difference between

WT and mutant cells with regard to where an adhesion dies,

suggesting that spatial aspects of the disassembly process (i.e.

where disassembly occurs) is not dependent and/or sensitive to

JNK phosphorylation (Figure 7D).

Finally, we compared the length of time spent in the assembly,

stationary, and disassembly phases for cells expressing either WT

or S178A EGFP-Paxillin. Results suggest that the S178A mutation

causes adhesions to be longer-lived, spending a greater amount of

time in the assembly phase than WT cells and lesser time in the

disassembly phase (Figure 8). There is no difference in time spent

in the stability phase. As a whole, our results demonstrate the most

pronounced effects of the S178A mutation occur in the assembly

phase: position at birth, assembly rate, and time spent assembling.

Discussion

We have described the development of a set of computational

tools suitable for the global characterization of FA spatiotemporal

dynamics and assessing the results of network perturbation on

adhesion properties and behavior. The S178A mutation was

presented as a proof-of-concept perturbation study for the

application of these tools to the analysis of complex FA

phenotypes. Through this analysis, we were able to show that

adhesion dynamics fall into distinct behavioral subtypes occurring

in different regions of the cell, and that the S178A Paxillin mutant

causes significant changes in FA assembly and disassembly. While

requiring further investigation, these observations suggest a

potential mechanism for the previously observed migration defects

[20] and suggest that JNK, via Paxillin, may play a significant role

in the control of the FA lifecycle.

Figure 7. The S178A mutation in Paxillin alters adhesion assembly and disassembly. (A and B) The rate of adhesion assembly and
disassembly are significantly decreased by the S178A mutation. The S178A median FA assembly rate is decreased by 42% compared to the wild-type
cells, while the median disassembly rate is decreased by 36%. (C and D) The S178A mutation shifts the median adhesion birth location away from the
cell edge, but has no effect on the location of cell death. The S178A median adhesion birth position is 31% greater than wild-type median birth
position. The median position at adhesion death is decreased by 4% between the S178A and wild-type cells. P-values were calculated in the same
manner as in Figure 5.
doi:10.1371/journal.pone.0022025.g007
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The computational tools presented allow the entire FA life span

to be analyzed. These tools include an automated adhesion

detection, segmentation and tracking system; extracting a range of

properties valuable for understanding FA development. All of

these methods were tested using simulated data that replicated

many of the observed experimental processes, confirming these

methods are able to accurately quantify adhesion properties under

controlled conditions (see Figure S11, Figure S12, Figure S13 and

methods). The differences detected between the wild-type and

S178A mutants are robust, being preserved through a range of

parameter choices for the adhesion detection limit and the

minimum length of the assembly and disassembly phases. The

rate at which images were taken in this work (1 sample/min) also

appears to be over the sampling rate needed to accurately measure

the assembly and disassembly rates of long-lived adhesions (Figure

S9 and Figure S10).

Our analysis system integrates methods for automatically

identifying and extracting rates of FA assembly and disassembly.

We find that the assembly and disassembly rates detected using

these automated methods encompass the rates determined using

manual methods [7], while quantifying vastly greater numbers of

adhesions. We also find that adhesions labeled with an alternate

adhesion marker, FAK, also allows a similar number of adhesions

to be quantified and that these adhesions are similar to those

detected using fluorescently labeled Paxillin. Differences in the

mean rates detected by manual versus automated searches can be

attributed to several factors. First, the rates determined using

manual methods originate from user-specified adhesions of

interest. Such adhesions may be chosen based on specific

localization properties, such as selecting only those adhesions

found within particular cell regions, while the presented results do

not make any distinction between adhesions present in different

cellular structures a priori (though the properties of adhesions at

particular locations can be determined a posteriori). In addition, due

to our emphasis on observing the birth, death and taking multiple

samples during the assembly and disassembly phase of an

individual adhesion, our rate analysis focused on long-lived

adhesions, which might have different properties than those

measured in studies encompassing primarily short-lived adhesions.

Finally, as our software analyzes all adhesions regardless of the

brightness of the adhesion, we avoid biases that may occur

through, for example, preferential selection for analysis of large or

highly visible adhesions. Thus, the automated methods described

here greatly extend the types of adhesions that can be readily

analyzed, as well as the range of properties that can be quantified.

The spatial properties of FA birth and death suggest that FAs

have distinct regions where assembly and disassembly events are

most concentrated. These assembly and disassembly regions

overlap, but remain distinct. The greatest concentration of

assembly events occurs within 5 mm of the cell edge. Previous

Figure 8. The lengths of the assembly and disassembly phases in S178A mutant FAs are significantly different from those in the
wild-type, while the stability phase lengths are unaffected. The phase length values include all adhesions where the log-linear models fit with
a p-value of 0.05 or less. Error bars indicate 99% confidence intervals on the mean phase length as determined through 50,000 bootstrap samples. A
double asterisk (**) indicates p,1025 and single asterisk (*) indicates p,0.05. Wild-type N Values: Assembly (1068), Stability (465), Disassembly (1392);
S178A N Values: Assembly (2106), Stability (870), Disassembly (1802).
doi:10.1371/journal.pone.0022025.g008
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studies in the same cell line indicate that this 5 mm range coincides

with the end of the lamellipodia and the beginning of the lamella,

where the structure of the actin cytoskeletal network changes

significantly. Recently published data indicate that this transition,

where stable actin structures differentiate into branched structures

that exert force on the leading edge for protrusion, is determined

by interactions between the cytoskeleton and adhesion proteins

[23]. Further investigation will be required to more fully interpret

this observation and its relation to the lamella-lamellipodium

interface [24].

Our analysis enabled us to quantify differences in FA dynamics

caused by mutation of Paxillin at a JNK phosphorylation site. Both

adhesion assembly and disassembly were affected. In addition to

these strong perturbations, more subtle changes in FA dynamics

and localization were also detected, including a decrease in

adhesion size. In agreement with our results, a recent siRNA

screen of FA proteins within fixed cells that included JNK

knockdown also measured decreases in adhesion size [16].

Based on our results, a summary model of the FA lifecycle in

both wild-type and S178A cells is depicted in Figure 9. Shown to

scale, the S178A mutation shows distinct effects on both the

assembly and disassembly phases of FA development, but these

effects are different in magnitude. Determining what FA

development signals are involved in perturbing assembly, stability

and disassembly is an ongoing process, but these proof of principle

TIRF experiments demonstrate the capabilities of the software

analysis system to make biologically significant new observations.

Development of new and/or improved analysis modules is

ongoing. In prior studies, analysis of the cell edge velocity has

proven to be a robust phenotype that can be used to quantify the

effect of many different perturbations to the signaling networks

that control cellular motility [25]. Integration of this type of data

will allow the rates of cell edge movement to be analyzed in terms

of FA phenotypes. Such studies will help to bridge the gap between

FA dynamics and the well-developed fields of cell edge and

cytoskeletal dynamics. The data sets collected using the software

also provide information about the specific properties of the

adhesions during each phase of their lifecycle. There are also

several types of measurements that we plan on adding to the

analysis system to help quantify polarized cells behaviors, such as

adhesion sliding. We also expect to continue to develop the spatial

analysis methods beyond the ‘‘distance from the cell edge’’

measure used here. Such spatial methods will also be important in

understanding polarized cell behaviors.

In summary, we have described a system for quantifying the

spatiotemporal dynamics of FAs, generating highly-detailed

descriptions of FA behavior based on large populations, and

further enabling high-content screening methods to be applied to

understanding the perturbation of FA signaling networks. The

system was applied to quantifying the differences in FA

development generated through a single amino acid mutation of

the FA scaffolding protein Paxillin. Future studies of other FA

perturbation methods with high-content analysis methods should

provide a comprehensive picture of the role of FA signaling

proteins in the control of FA development and localization.

Methods

Cell Culture
NIH 3T3 fibroblasts and 293 LinXE ecotropic packaging cells

were cultured in 5% CO2 at 37uC in Dulbecco’s modified Eagle’s

medium (DMEM, Mediatech) supplemented with 10% fetal calf

serum, 1% L-Glutamine, and 1% penicillin-streptomycin. Fibro-

blasts were imaged in Ham’s F-12K medium without phenol red

(SAFC Biosciences) with 2% fetal bovine serum, 15 mM HEPES,

1% L-Glutamine, and 1% penicillin-streptomycin.

To make stable cell lines, retroviral vectors were transfected into

293 LinXE cells plated in 6 cm dishes with Fugene 6 (Roche)

according to the manufacturer’s protocol (using 18 mL of Fugene 6

and 4.5 mg of DNA). The media was replaced after 12 hours. Viral

supernatant was harvested 48 hours after media replacement,

passed through a .45 mm syringe filter and then added to NIH

3T3s plated at subconfluent densities at a ratio of 1:3 (viral

supernatant/normal media). Cells were infected for several rounds

until they reached expression levels sufficient for live cell imaging.

All of the constructs used in this study have been verified to

colocalize with endogenous proteins [20,26,27]. No differences

were detectable in the expression levels of the EGFP-Paxillin and

EGFP-PaxillinS178A constructs (Figure S3).

Microscopy
Prior to imaging, NIH 3T3s were plated onto coverslips coated

with 5 mg/mL Fibronectin (Sigma) for 30 min. Fibroblasts

expressing EGFP-PaxS187A required 2–3 hours to adhere to the

Figure 9. Summary of results and conceptual model of how the S178A mutant affects the adhesion life cycle. Durations and slopes are
shown to scale.
doi:10.1371/journal.pone.0022025.g009
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coverslips due to a spreading defect. Immediately before being

transferred to a sealed imaging chamber, complete culture media

was replaced with imaging media. Imaging experiments for all

cells used in this study were conducted within the first 8 hours

after plating.

Imaging was performed on an Olympus IX81 motorized

inverted microscope equipped with a ZDC focus drift compensa-

tor and a TIRFM illuminator, a 60X 1.45 NA PlanApoN TIRFM

objective, a cooled digital 12-bit CCD camera (CoolSnap, Roper

Scientific), a 100 W Mercury arc lamp, and MetaMorph imaging

software. The 488 nm laser line from a Krypton-Argon ion laser

(Series 43, Omnichrome) was controlled with a custom laser

launch/AOTF (LSM Technologies). Imaging of the cells express-

ing EGFP-FAK was performed on a Nikon Eclipse Ti inverted

microscope equipped with the Perfect Focus System, a TIRF

illuminator, a 60X 1.45NA PlanApoN TIRF objective, a a cooled

digital 16-bit EMCCD camera (QuantEM: 512SC, Photometrics),

an Argon ion laser (Melles Griot) controlled with a custom laser

launch/AOTF, and Nikon Elements imaging software. Images

were acquired with 262 binning, except for images of EGFP-FAK

expressing cells, which were acquired with 161 binning. Images

were gathered once every minute. Illumination intensity was

controlled with either the AOTF (TIRF excitation) or neutral

density filters (epifluorescence excitation). Simultaneous TIRF

images of EGFP and epifluorescence images of RFP were acquired

using an 80/20 (TIRF/Epifluorescence) splitter mirror, a custom

dichroic mirror (Chroma) and the following band-pass filters:

EGFP (HQ 525/50); RFP (HQ580/30, HQ 630/40). In total, 21

EGFP-Paxillin, 9 EGFP-PaxillinS178A and 10 EGFP-FAK cells

were included in this study. The EGFP-Paxillin experiments were

conducted over four days, while the EGFP-PaxillinS178A

experiments were conducted over three days and the EGFP-

FAK experiments were conducted over three days.

Image Processing
Methods to identify individual FAs were adapted from [28],

with some modification. Briefly, each image taken during an

experiment was high pass filtered, using a round averaging filter

with a radius of 11 pixels (4.95 mm diameter). The high pass

filtered images were threshholded by an empirically determined

value set to identify adhesion pixels. The water segmentation

method was used as described, but with the following modifica-

tions. When a pixel acts as bridge between two large adhesions,

where large is defined as 40 or more pixels (1.85 mm2), the bridge

pixel is assigned to the adhesion whose centroid is closest to the

bridge pixel. Also, holes in any single adhesion were filled using the

same water segmentation algorithm. Between 200 and 600

adhesions were found in each image from the experimental data.

The average signal-to-noise ratio was 6.04 as calculated by

dividing the mean of the adhesion intensity by the standard

deviation of the backgound pixels [29]. After each focal adhesion

has been identified, characteristic adhesion properties, such as

those in Figure 2, are then collected.

Cell edges were found by analyzing the myr-RFP images using a

method similar to that described in a prior publication [30]. This

method automatically identifies a single threshold which splits the

myr-RFP images into cell body and background regions. Briefly, a

histogram of all the intensity values for a single image was

collected and split into 1000 equal sized bins. The counts of each

bin were then smoothed with the loess algorithm (Polynomial

order 2, 5% of data included in each fit). This smoothed histogram

has two peaks corresponding to the background region and the cell

body. The local minima and maxima in the smoothed histogram

are found and the two maxima at the lowest pixel intensity bins

identified. The threshold for image segmentation is set to the

minima between the set of maxima found in the prior step. After

thresholding the image, the connected regions are identified and

the regions less than 10 pixels in area are discarded. The cell edge

is defined by the border pixels of the connected regions.

FA Tracking
With the focal adhesions identified in each image of the

experimental data set, another series of algorithms were designed

to track the focal adhesions through each sequential image. The

tracking algorithm is based on a birth-death model of a FA lifetime

(Figure S4). In each sequential image a FA can either be born,

continue into the next time step, merge or die. The birth-death-

merge processes are detected by examining the properties

extracted from the segmented adhesions. The results of this

tracking algorithm are assignments of the FAs identified in each

image into lineages that track the development of the FAs during

the course of the experiment.

The tracking algorithm is initialized with all the adhesions

detected in the first frame of the image sequence. The first step of

the tracking algorithm attempts to locate FAs that correspond to

one another in the next time step of the experimental data (Figure

S4). This first step assumes that if a focal adhesion in the first frame

overlaps with a focal adhesion in the subsequent frame, these

overlapping adhesions correspond to one another. When an

adhesion overlaps with more than one adhesion in the following

frame, the adhesion with the greatest percentage of overlap is

assigned as the match. If a FA does not overlap with any of the

FAs in the following image, the FA closest to that adhesion in

terms of the Euclidean distance between each adhesion’s centroid

is assigned as a match. Adhesions in the next frame that are not

selected via either of these methods, but still overlap with an

adhesion in the current frame are marked as being created via a

split birth event. Adhesion births that are the result of split events

are dealt with in later filtering steps. All of the living focal

adhesions are assigned a corresponding FA in the following image

by these percentage overlap and centroid distance rules.

This process of assigning live adhesions in one frame to

corresponding adhesions in the following frame produces sets of

adhesions that are predicted to merge. Some of these merge events

are true merge events where one adhesion has joined with another,

while others are adhesions which die, but are erroneously assigned

as merge events. When a FA does not overlap with the FA it is

predicted to become, this FA is assumed to have died and its

lineage is ended. These adhesions are also marked as having

undergone a death, which will be used in later filtering steps. For

the remaining merge events where more than one adhesion has

been predicted to merge in the next frame, one of the merging FA

lineages is selected to continue, while the other FA lineage is

predicted to end. When the adhesions predicted to merge differ in

size by at least 10%, the larger adhesion’s lineage is continued. If

the merging FA’s sizes do not differ by at least 10%, the lineage

whose current centroid is closer to the adhesion centroid in the

following image is predicted to continue. By this sequence of rules,

each merge event is resolved so that corresponding FAs in

experimental data images are determined.

After tracking live adhesions and resolving the merge and death

events, the last step involves starting lineages that correspond to

newly born adhesions. New lineages are started for the adhesions

that had no match in the prior frame (birth events). This process of

tracking the live adhesions, resolving merge and death events and

starting new lineages is repeated for each image in the

experimental data sequence until adhesion data from all the

images have been processed. On average 2128 adhesions were
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tracked for each EGFP-Paxillin cells, 8145 adhesions for each

EGFP-PaxillinS178A cells and 5184 adhesions for each EGFP-

FAK cells. The differences in the average number of adhesions are

due to longer experiments in the EGFP-PaxillinS178A and EGFP-

FAK data sets. Representative videos are included in Supporting

Information (Videos S1, S2, S3).

Calculating Assembly and Disassembly Rates
With the adhesions tracked through each experiment, the

characteristic properties determined for each adhesion in each

frame of the time-lapse movie are collected into a set of data time

series representing the properties of each adhesion through time.

One type of time series follows the mean intensity of Paxillin

through time, making it possible to estimate the rates of assembly

and disassembly of Paxillin for each adhesion. An automated

method to estimate the rates of assembly and disassembly was

developed. This program automatically fits linear models to the

log-transformed time series of Paxillin intensity values for both the

assembly and disassembly phases of the FA life cycle.

A log-linear fitting method was adapted and extended to allow

for the automated determination of assembly and disassembly

phase lengths [7]. Briefly, log-linear models are fit to all the

possible assembly and disassembly phases greater than or equal to

a user specified minimum length. The assembly phase is assumed

to occur at the beginning of the time series, whereas the

disassembly phase is assumed to end with the last point in the

time series. Each of the fits collected were normalized by either the

first (assembly rate calculations) or last point (disassembly rate

calculations) in the time series and log-transformed, as described

[7].

In the second part of the algorithm, the optimum lengths of the

assembly and disassembly phases were determined via a search for

the maximum sum of adjusted R2 values of the model fits. It was

assumed that the assembly and disassembly phases did not overlap.

In the rare cases where there are multiple combinations of

assembly and disassembly phase lengths that produce the highest

sum of adjusted R2 values, the combination with the longest

combined assembly and disassembly phase lengths is selected. The

stability/maturity period was then defined as the length of time

between the assembly and disassembly periods.

Results Filtering
Several filters are used to analyze the data sets collected with

these analysis methods. When determining the assembly and

disassembly rates, only adhesions with at least 20 Paxillin intensity

time points were analyzed. This ensured that there was sufficient

data available to correctly detect the assembly and disassembly

rates. Adhesions whose birth was the result of a split event with

another adhesion were also excluded from the assembly rate

calculations, while adhesions whose lineage ended with a merge

event were excluded from the disassembly rate calculation.

Assembly and disassembly fits whose linear model p-values were

above 0.05, indicating that the slope of the linear model was not

significantly different from zero, were also excluded from the data

set.

A separate set of filters was used to determine the length of each

phase (assembly, stability and disassembly) in the adhesion

intensity time series data. In order to estimate the length of time

an adhesion spends in the stability phase, we required that both

the assembly and disassembly phases be observed. In addition, the

adhesion birth could not have been the result of a split event and

the death of the adhesion not the result of a merge. The filter also

excluded those adhesions where the p-value of either the assembly

or disassembly linear model was greater than 0.05.

Parameter Testing
To test the sensitivity of results on parameters used for defining

the threshold for adhesion detection, the minimum length of the

assembly and disassembly phases and the rate of image sampling,

we re-executed our analysis while varying these parameters. The

threshold for adhesion detection was varied between 0.05 and

0.10, with no significant effect on the percentage change between

the wild-type cells and the S178A mutant cells in either the

assembly or disassembly rates (Figure S5 and Figure S6). Varying

the required length for assembly and disassembly rate calculation

similarly had no significant effect on percentage change between

the wild-type and S178A mutant cells of the rates of assembly or

disassembly (Figure S7 and Figure S8). Finally, we tested the

results of changing the image sampling rate by discarding every

other collected image in the same set of experiments (Figure S9).

Discarding half of the images did not significantly affect the

assembly or disassembly rates, but did have a slight effect on the

distribution of the adjusted R2 values (Figure S10). From these

parameter testing examples, we concluded that selection of a single

set of parameters as determined by the user, provided a robust

description for any of the differences between cell lines in terms of

assembly and disassembly rates.

Software Testing
In order to test the baseline performance of the algorithms, a set

of gold standard images were produced with sets of FAs having

specific, predefined properties. In general, validation tests

consisted of simulating a time-lapse microscope field of view that

mimicked the observed properties of the adhesions (Figure S11A).

Since our results are consistent with prior findings based on

manual methods of adhesion identification, the simulated range of

properties was set to be similar to those observed in the

experimental data. For all simulated experiments, a Gaussian

noise model (mean 0, variance of 2*1023) was used as a

background to simulate the cell environment. These parameters

were chosen as they produced distributions of short-lived

adhesions that were empirically similar to those observed

experimentally. Also, all simulated adhesions were circular and

the same background noise model was used to perturb intensities

assigned by the software to each simulated adhesion.

Three types of simulations were conducted: stationary, moving

and kinetic. The stationary simulation consisted of simulating a

field of view that included rows and columns of unmoving

adhesions. The intensity of the adhesions were varied along the

columns between mean intensities of 0.05 and 0.47 (95% of the

detected adhesions in the experimental data fall between

normalized average Paxillin intensities of 0.21 and 0.52). Ten

different adhesion radii were simulated along the rows, varying

between 0.5 and 5 pixels. The adhesions at low mean intensity

values were not reliably discernable below intensity level 0.17.

Adhesions above this level were readily detected with both the

predicted intensities and sizes (Figure S11).

The moving simulation was designed to probe the tracking

algorithm’s performance in following adhesions of various sizes

and intensities. The simulation consisted of sliding the adhesions

across the field of view at different rates (Figure S12A). As

expected, the smaller adhesions were more difficult to track, with a

nearly linear relationship between the ability to track an adhesion

moving at a certain rate and its corresponding radius (Figure

S12B). As long as the adhesion is detectable, there does not appear

to be any differences in the intensity versus tracking accuracy (data

not shown).

To conduct the adhesion kinetics tests, sets of adhesions were

simulated that went through logarithmic assembly and disassembly
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phases. The assembly and disassembly rates were varied by

shortening or lengthening the amount of time each adhesion spent

reaching its maximum intensity. The stability period in each of

these adhesions was set to five frames. Assembly and disassembly

lengths between 10 and 20 were all tested. In order to avoid

biasing the automated assembly and disassembly phase fitting

software to higher phase lengths, the minimum phase length was

set to five time points during image analysis. Overall, the software

was able to reliably extract both the expected assembly and

disassembly rates and length of time spent in each phase (Figure

S13). There were several samples in the longer phase lengths that

were predicted to have substantially shorter assembly and

disassembly phase lengths than that specified by the software,

but these simulated adhesions were in the minority and did not

significantly affect the confidence intervals around the mean

assembly and disassembly lengths. These simulations further

support the accuracy of results derived from applying the same

sets of algorithms to the analysis of adhesions in living cells.

Statistical Tests
Two different types of tests were used to determine the statistical

significance of the differences between the adhesions in the wild-

type, S178A and labeled-FAK adhesions. To compare datasets

with ,2000 points, bootstrap resampling was used to determine

either the mean or median distribution. From these distributions

the p-value was determined using the percentile method. The

bootstrap method was too computationally intense to compare

datasets, such as the area and axial ratio of the adhesions, with

significantly more points than 2000 data points. Instead, the

Wilcox Rank Sum test was used to find the p-value in these cases.

Software Availability
The most recent version of the software system is available from

the Gomez lab website (http://gomezlab.bme.unc.edu/tools). In

addition to the source code, released under the BSD license, there

is a sample movie that can be used to test the success of installing

the analysis system. The software has been tested on Mac

OS610.5 and Ubuntu Linux 10.04.

Supporting Information

Figure S1 The assembly and disassembly log-linear mod-
els fit the Paxillin intensity time courses with high R2

values. The red lines indicate the median length-adjusted R2 values.

(PNG)

Figure S2 Adhesions labeled with EGFP-FAK are larger
in mean area and have a larger axial ratio than those
labeled EGFP-Paxillin. There are 51836 adhesions in the FAK

data set and 44685 adhesions in the Paxillin data set. The p-values

were calculated using the same methods as Figure 6.

(PNG)

Figure S3 There are no significant differences between
the expression levels in the EGFP-Paxillin and EGFP-
PaxillinS178A cell lines. The average intensity of fluorescence

inside the cell is shown in three different ways: the overall cell

intensity (A), inside the cell not including the adhesions (B) and

only the adhesions (C). The error bars are 95% confidence

intervals determined using 50,000 bootstrap samples on the mean

value.

(PNG)

Figure S4 Flow chart for the tracking software adhesion
following algorithm.
(PNG)

Figure S5 Changing the adhesion detection threshold
does not affect the differences in the assembly rates
between S178A mutant and wild-type cells. Each boxplot

contains all the adhesions with significant linear fits (linear model

p-value below 0.05). The p-values in each boxplot are for the

difference in medians between the wild-type and S178A data sets

in each boxplot.

(PNG)

Figure S6 Changing the adhesion detection threshold
does not affect the differences in the disassembly rates
between S178A mutant and wild-type cells. Each boxplot

contains all the adhesions with significant linear fits (linear model

p-value below 0.05). The p-values in each boxplot are for the

difference in medians between the wild-type and S178A data sets

in each boxplot.

(PNG)

Figure S7 Changing the minimum length of the assem-
bly phase does not significantly affect the differences in
the assembly rate between the wild-type and S178A
mutant cells. Each boxplot contains all the adhesions with

significant linear fits (linear model p-value below 0.05). The p-

values in each boxplot are for the difference in medians between

the wild-type and S178A data sets in each boxplot.

(TIFF)

Figure S8 Changing the minimum length of the disas-
sembly phase does not significantly affect the differenc-
es in the assembly rate between the wild-type and S178A
mutant cells. Each boxplot contains all the adhesions with

significant linear fits (linear model p-value below 0.05). The 95%

confidence intervals on the percent change in the median assembly

rate between the wild-type and S178A adhesions overlap in all

minimum length settings. The p-values in each boxplot are for the

difference in medians between the wild-type and S178A data sets

in each boxplot.

(PNG)

Figure S9 Reducing the time between each frame only
has mild effects on the assembly and disassembly rates
in the wild-type cells. The label ‘All’ indicates that none of the

images were excluded to estimate the rates, while ‘Sampled’

indicates that every other image from each experiment was

discarded. To compensate for the shortened experimental time,

the minimum number of points needed to determine an assembly

or disassembly rate was reduced to 5 for the sampled data sets.

Each boxplot describes the data from all the adhesions with

significant linear fits (p-value below 0.05).

(PNG)

Figure S10 Reducing the time between each frame only
has mild effects on the assembly and disassembly rates
in the S178A cells. The label ‘All’ indicates that none of the

images were excluded to estimate the rates, while ‘Sampled’

indicates that every other image from each experiment was

discarded. To compensate for the shortened experimental time,

the minimum number of points needed to determine an assembly

or disassembly rate was reduced to 5 for the sampled data sets.

Each boxplot describes the data from all the adhesions with

significant linear fits (p-value below 0.05).

(PNG)

Figure S11 Evaluation of the analysis system’s ability to
extract quantitative properties from simulated station-
ary focal adhesions. (A) The last frame of the stationary

simulation, with each adhesion outlined in a color depending on
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when in the movie it was born. The adhesions in blue have been

detected for the longest time, while those in red and orange have

been detected for the shortest amount of time. The simulated

adhesions in columns 1–3 are all too faint to be reliably detected

for the length of the simulation experiment, while those in column

4 are near the limit of detection. (B) The exponential distribution

of adhesion longevity appears similar to that observed in the

experimental data. The longevity of all the detected adhesions was

correctly identified as 25 minutes. (C and D) The average adhesion

intensity (C) and mean adhesion area (D) were correctly identified

in the adhesions that were detected for their entire 25 minute

lifespan. The red lines in C indicate the true values.

(PNG)

Figure S12 Evaluation of the tracking algorithm’s
ability to follow adhesions of various sizes and speeds.
(A) A sample frame from the simulated adhesion motion

experiment where the adhesions were moved at 1 pixel per frame.

The top row of adhesions of only a single pixel could not be

followed. (B) As the movement speed of the simulated adhesions

increases, only larger adhesions can be reliably tracked.

(PNG)

Figure S13 Evaluation of the rate and phase length
detection algorithm using simulated focal adhesion
images. (A and C) The predicted median assembly (A) and

disassembly (C) rates were extracted correctly by the algorithm. (B

and D) The predicted lengths of both the assembly (B) and

disassembly (D) were also correctly identified by the algorithm. All

the red lines indicate the expected values of the properties in each

plot.

(PNG)

Video S1 Example movie showing the results of track-
ing the EGFP-Paxillin labeled adhesions. The left panel

shows the normalized raw experimental data, while the right hand

side shows each adhesion outlined in a different color. As the

movie plays, the highlighting color remains the same for each

unique adhesion. The scale bar is 10 mm.

(MOV)

Video S2 Example movie showing the results of track-
ing the EGFP-PaxillinS178A labeled adhesions. The left

and right panels are the same as in Video S1. The scale bar is

10 mm.

(MOV)

Video S3 Example movie showing the results of track-
ing the EGFP-FAK labeled adhesions. The left and right

panels are the same as in Video S1. The scale bar is 10 mm.

(MOV)
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