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Abstract

Background: The tremendous output of massive parallel sequencing technologies requires automated robust and scalable
sample preparation methods to fully exploit the new sequence capacity.

Methodology: In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is
presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size
selection of both RNA and DNA. The automated sample preparation was compared to the standard manual sample
preparation.

Conclusion/Significance: The automated procedure was used to generate libraries for gene expression profiling on the
Illumina HiSeq 2000 platform with the capacity of 12 samples per preparation with a significantly improved throughput
compared to the standard manual preparation. The data analysis shows consistent gene expression profiles in terms of
sensitivity and quantification of gene expression between the two library preparation methods.
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Introduction

The massively parallel sequencing technologies continue to

evolve at a rapid pace increasing the data output and lowering

the cost per sample of sequencing [1,2,3]. The Illumina HiSeq 2000

and Life Technologies SOLiD4 are massively parallel sequencing

technologies capable of generating over 100 Gbp of sequence data

per run. This means that the bottleneck is no longer located in the

sequence reaction but in the sample preparation and data analysis.

As the number of samples that can be included in a sequencing run

increases, so does the complexity of the library preparation. To fully

exploit the potential of massive parallel sequencing and further

reduce the cost per sample it is essential to prepare many samples

robustly [4], with high throughput while minimizing the cross

contamination risk. Automation of sample preparation can increase

the reproducibility, scalability and ease of handling while minimiz-

ing the cost, risk of human error and cross contamination between

samples [5,6,7,8]. Recently, there have been several publications

relating to automation of library preparations [6,8,9] using DNA as

the input material. With the continuously decreasing cost of

sequencing it is becoming more feasible to consider replacing the

gene expression microarrays with RNA-Seq as a means to analyse

the transcriptome. Compared to microarrays, RNA-Seq data has

proven to be less biased, without cross-hybridization and have a

greater dynamic range [10,11,12,13]. The increase in sensitivity of

RNA-Seq data makes variant detection more powerful. However,

to efficiently use the sequencing power when performing tran-

scriptome analysis a robust and scalable automated library

preparation using RNA as input material is needed.

In this study, an automated protocol for transcriptome

preparation prior to massively parallel sequencing on the Illumina

HiSeq 2000 is described. The protocol was used to prepare

libraries for single read sequencing enabling digital profiles of gene

expression. The protocol utilises ethanol and tetraethylene glycol

to precipitate RNA onto carboxylic acid coated paramagnetic

beads instead of the standard ethanol precipitation and all

standard spin column steps were replaced with precipitation of

DNA using polyethylene glycol and sodium chloride as previously

described [6]. The automated protocol was evaluated by

comparing it to standard manual procedures with respect to

sample throughput, robustness, sensitivity and quantification of

gene expression.

Materials and Methods

Automation of Transcriptome Sample Preparation
The automation of the Illumina mRNA sequencing sample

preparation protocol (Cat# RS-930-1001) was set up using a

MagnatrixTM 1200 Biomagnetic Workstation (Nordiag ASA, Oslo,

Norway). The robust system provides a flexible software, suitable for
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customized protocols, and the robot is equipped with a 12-tip head

with an adjustable magnet capable of running custom made

magnetic bead based applications. The robot is also equipped with

one Peltier type (4–95uC), regulated heating/cooling station where

all enzymatic reactions were performed, and one PCR cooling block

(Eppendorf AG, Hamburg, Germany) for storage of heat sensitive

reagents. The mRNA sequencing sample preparation begins with a

purification of the poly-A containing mRNA molecules by using

Sera-mag magnetic oligo(dT) beads, followed by a fragmentation of

the purified mRNA molecules using divalent cations under elevated

temperature. The fragmentation was followed by a purification of

fragmented RNA using ethanol and tetraethylene glycol (EtOH/

TEG; Sigma-Aldrich, St. Louis, MO USA) as a precipitation buffer

with DynabeadsH MyOneTM carboxylic acid paramagnetic beads

(CA-beads; Invitrogen, Carlsbad, CA USA) as solid support

(described in paragraph ‘Evaluation of RNA Precipitation using

EtOH/TEG and CA-beads’). The purified fragmented RNA was

synthesized into cDNA and isolated using precipitation on CA-

beads with PEG 6000 (Merck, Whitehouse station, NJ, USA) and

NaCl (Merck) as precipitation buffer and eluted in EB buffer

(Qiagen, Hilden, Germany) as previously described [6]. The

overhang of the cDNA samples were polished into blunt ends,

adenylated and adaptors were ligated. The sample was then subject

to a PEG/NaCl CA-purification to remove fragments lower than

200 base pairs (bp) and enriched by PCR before a final PEG/NaCl

CA-purification. The automated protocol has replaced all MinE-

luteTM, Qiaquick PCR purification columns and the gel-cut with

automated PEG/NaCl precipitation on CA-beads as previously

described [6]. The ethanol precipitation in the standard mRNA

sample preparation protocol has been replaced in the automated

version with an EtOH/TEG precipitation on CA-beads. In all other

aspects the manual and the automated sample preparations follows

the mRNA sequencing sample preparation instruction (Cat# RS-

930-1001) by the manufacturer (Illumina, San Diego, CA, USA).

For more details regarding materials and reagents, see Text S1.

Cell Cultivation
The glioblastoma cell line U-251MG (Prof. Bengt Westermark,

Uppsala University) was cultivated at 37uC in a 5% CO2

environment in Minimum Essential Medium Eagle (EMEM)

(Sigma-Aldrich) with an addition of 10% Fetal Bovine Serum

(FBS;Invitrogen). The cells were harvested at 60–70% confluency.

RNA Extraction
The cells were harvested and the RNA was immediately

extracted using the RNeasy extraction kit according to the

manufacturer instructions (Qiagen, Hilden, Germany). The

isolated total RNA was analyzed using a 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA) with the Bioana-

lyzer RNA 6000 Nano kit.

Evaluation of RNA Precipitation using EtOH/TEG and
CA-beads

The automated protocol takes 120 ml of EtOH/TEG precip-

itation solution to 25 ml of CA-beads resuspended in 38 ml of

binding buffer (20 mM Tris-HCl pH 7,5, 1 M LiCl, 2 mM

EDTA) and 2 ml of samples to capture the RNA. The beads with

captured RNA were washed once with EtOH and the RNA was

eluted using 10 ml of elution buffer (10 mM Tris-HCl).

The RNA precipitation efficiency was evaluated by varying the

final concentration of EtOH and TEG while precipitating High and

Low RiboRulerTM RNA ladders (Fermentas, Burlington, Canada):

200–6000 nucleotides, 100–1000 nucleotides respectively, and

20–100 nucleotides Small RNA marker (Abnova, Tapei city,

Taiwan). The results were analyzed using a 2100 Bioanalyzer with

the Bioanalyzer RNA 6000 Nano kit for the RiboRulerTM ladders

and Small RNA kit for the Small RNA marker.

Transcriptome Sample Preparation for Sequencing
A total amount of 3 mg per sample of high-quality total RNA

(RNA integrity number = 10) was used as input material for the

mRNA sample preparations. Samples, from the same biological

material, were prepared in quadruplicates for both manual and

automated preparations according to the mRNA sequencing

sample preparation instruction (Cat# RS-930-1001) by the

manufacturer (Illumina, San Diego, CA, USA). To assess the

quality of the samples throughout the sample preparation each

module of the protocols were monitored using a 2100 Bioanalyzer

or Experion automated electrophoresis system (Bio-Rad Labora-

tories, Hercules, CA, USA). All sample preparation reagents were

taken from the Illumina mRNA sample preparation kit or ordered

from vendors specified in the mRNA sample preparation protocol,

except for automation specific reagents: carboxylic acid beads used

for precipitation; the EtOH/TEG and PEG/NaCl precipitation

buffers. The final EtOH/TEG concentration used in the

automated library preparation was 70% and 5% respectively.

The final PEG/NaCl concentrations used were 15.6% PEG and

0.9 M NaCl except for the CA-beads purification after adapter

ligation, which used a final PEG/NaCl concentration of 10.4%

and 0.9 M respectively to remove fragments below 200 bp.

Clustering and Sequencing
The clustering was performed on a cBot cluster generation

system using an Illumina HiSeq single read cluster generation kit

according to the manufacturer’s instructions. One of the

automated replicates (Aut3) failed in the clustering due to a

malfunctioning pump on a cBot and was therefore sequenced

individually in a separate sequencing run. The manual and

automated library preparations were sequenced on an Illumina

HiSeq 2000 as single-reads to 100 bp using 1 lane per sample on

the same flow-cell (first sequencing run), except for Aut3 that failed

in clustering and was run on a separate flow-cell using the same

parameters (second sequencing run). All lanes were spiked with

1% phiX control library. The two sequencing runs were

performed according to the manufacturer’s instructions and

generated a total of 477 million reads from the prepared libraries

that passed the illumina Chastity filter; these reads were included

in the study.

Sequence Analysis
All sequences were analysed using the CASAVA v1.7 (Illumina,

San Diego, CA, USA). The reads were aligned to the human

genome reference Hg19 using Eland2 and variant detection was

performed using the readBase method within the CASAVA

software. Annotations from RefSeq, downloaded from UCSC

Genome Browser, were used to assign features to genomic

positions.

Results

RNA Purification
The automation of the mRNA sample preparation protocol

outlined in Figure 1 was established in modular fashion, to

facilitate incorporation of future changes. The EtOH/TEG

precipitation of RNA on CA-beads was evaluated using RNA

ladders, spanning from 20 to 6000 nucleotides, to determine the

robustness and RNA precipitation length cut-off. A titration of

Transcriptome Preparation for Massive Sequencing
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EtOH and TEG were performed (Figure S1) and by using the

optimal final concentration of 70% EtOH and 5% TEG, a capture

yield over 80% was obtained in the length interval of 100–6000

nucleotides (Table S1). The high reproducibility of the selected

precipitation conditions is shown in Figure 2. Lowering either the

EtOH or TEG concentration affects the yield of the precipitated

RNA but not the length of the fragments that are precipitated.

The minimum fragment length that could be precipitated was 40

Figure 1. A schematic view of the automated process. Module 1: Isolation of poly-A containing mRNA from total RNA. Module 2:
Fragmentation followed by precipitation on carboxylic acid coated beads (CA-purification). Module 3: cDNA synthesis of purified and fragmented
mRNA. Module 4: End repair, 39 adenylation, adaptor ligation and a CA-purification to remove fragments lower than 200 bp. The samples are then
enriched by PCR before a final CA-purification.
doi:10.1371/journal.pone.0021910.g001
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nucleotides but the yield for fragments lower than 100 nucleotides

were much reduced (data not shown).

Sample Preparation
The automated and manual sample preparation follows the

mRNA sequencing sample preparation instruction (Cat# RS-930-

1001) by the manufacturer (Illumina) in every aspect unless

previously specified.

To be able to compare the automated and manual transcrip-

tome preparations, quadruplicates of total RNA were prepared

from the same biological material for each sample preparation.

The library preparations were monitored using the 2100

Bioanalyzer after cDNA synthesis and PCR enrichments

(Figure 3). Both the manual and automated preparation showed

highly reproducible size distributions after cDNA syntheis

(Figure 3A and 3B) and PCR amplification (Figure 3C and 3D)

with a final yield of 13–17 ng/ml (Table S3). The yield after the

cDNA synthesis is summarised in Table S2.

The throughput of the automated preparation was significantly

greater than the manual preparation. Automated processing of 12

samples takes 10 hours and 40 minutes with approximately 1 hour

and 15 minutes of hands-on time using pre-aliquoted reagents to

prepare the robot. The manual preparation of 4 samples takes

13 hours, with approximately 6 hours of hands-on time. Enrich-

ment and evaluation of the finished library preparations were

equal in sample throughput for both automated and manual

preparations and were therefore not included in this comparison.

Analysis of Sample Preparation by Sequencing
The automated and manual sample preparations were

sequenced on an Illumina HiSeq 2000 to be able to compare

yield, quality, sensitivity and gene expression quantification. The

manual sample preparation produced slightly more clusters than

the automated sample preparation but both methods generated

comparable percentage clusters passed filters, percentage of base

calls above 30 (%Q.30) and number of reads, except for Aut3

which was sequenced on a separate flow-cell (Table 1). It is

customary to spike in standard phiX library to 1% to be able to

monitor the sequence run performance. The mean percentage

phiX error rate for the first sequencing run was 2.06, which is

above the allowed threshold of 2.0 specified by the manufacturer’s,

indicating a suboptimal sequencing run; a measure which is

independent of the quality of loaded library preparations.

We define an expressed gene as having a normalised exonic

read density value above 0.3, which is measured in reads per

kilobase of exon per million mapped sequence reads (RPKM;

[12]). The total number of expressed genes found within all

replicates for each preparation was similar in both the automated

and manual sample preparations. Of all expressed genes present in

both the automated and the manual sample preparations 96.9%

can be found in all replicates in both libraries (Figure 4A). The

majority of uniquely expressed genes in the automated and

manual preparation were weakly expressed with a median RPKM

value of 0.65 and 0.45 respectively (Figure S3). The distribution of

expressed genes within each preparation and replicate were similar

(Figure S2).

The correlation of RPKM values between replicates within the

automated and manual preparations were excellent with the mean

coefficient of determination (R2) value of 0.974 and 0.994

respectively (Figure 4B). If the Aut3 sample, which was sequenced

in the second sequencing run is excluded from the analysis the

mean R2 value for the automated samples preparation was 0.992.

There were good correlations between manual and automated

sample preparation replicates with mean R2 value of 0.946

(Figure 4C).

Discussion

This study describes an automated transcriptome preparation for

massively parallel sequencing. The automated library preparation

procedure was evaluated by comparing it to standard manual

library preparation from the same biological material. The

evaluation shows that the automated preparation has significantly

higher throughput compared to the manual preparation. The two

library preparations were comparable in percentage clusters passed

filters, %Q.30, and number of reads when sequenced on the same

flow-cell. Having to sequence one of the technical replicates in a

separate sequencing run, due to a malfunction on the cluster station,

gave lower correlation for this replicate compared to the technical

replicates sequenced on the same flow-cell. Although, this does not

prove that there is greater variation between sequencing runs than

within samples sequenced on the same flow-cell, it does suggest that

care should be taken to sequence as much as possible within the

same sequencing run [4,13].

Due to the fast evolution of massively parallel sequencing

technologies the sequence capacity is likely to increase in the

future, further emphasizing the need for robust, scalable sample

preparations. Therefore, the automated protocol is organized into

separate modules to be able to accommodate updates in library

preparations and using different sources of input material i.e. total

RNA, ribosome depleted RNA, mRNA or cDNA (Figure 1). This

will make sure that the automated protocol easily can be scaled up

and adapted to new upgrades in library preparation such as the

new TruSeq RNATM sample preparation protocol. Currently, we

are working on further increasing the capacity of the automated

RNA protocol to being able to handle 24 samples at a time with

only a 10% increase in total library preparation time.

Figure 2. Precipitation of Low and High RiboRulerTM. Bioanalyzer
gel image showing precipitation of Low and High RiborulerTM ranging
from 100 to 6000 nucleotides. Sample loaded from left to right are: Lane
1, Low RiboRulerTM; Lane 2–4, triplicates of the precipitated Low
RiboRuler; Lane 5, High RiboRulerTM; Lane 6–8, triplicates of precipitated
High RiboRulerTM. The samples were analyzed using Bioanalyzer 6000
Nano kit.
doi:10.1371/journal.pone.0021910.g002
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Precipitating RNA using standard ethanol precipitation or spin

columns are tedious, difficult to automate and scale up. Our novel

EtOH/TEG precipitation procedure using CA-beads as a solid

support is readily automated, fast and reproducible. We have

shown that we can precipitate RNA fragments sized between 100–

6000 nucleotides with yields above .80% making it an attractive

general method for isolating RNA from a solution

In conclusion, this is the first demonstration of an automated

transcriptome preparation for massively parallel sequencing

performed for the Illumina HiSeq 2000 instrument. The protocol

is robust, user friendly and has 14 times higher sample throughput

than the manual sample preparation. It is flexible and can easily be

updated to accommodate updates to the mRNA library prepara-

tion protocol and can also be extended to other massively parallel

Figure 3. Length distribution and amount of manual and automated libraries after cDNA synthesis and enrichment by PCR. Samples
1–4 for each method are coloured in red, green, blue and cyan respectively. A: Manual samples after the cDNA synthesis. B: Automated samples after
cDNA synthesis. The peak around 1000 bp for sample 1 (red curve) corresponds to a single bead remaining from the CA-purification. This peak has
been removed from calculation of the total concentration. C: PCR enriched manual samples. D: PCR enriched automated samples. A and B is analyzed
using the Bioanalyzer DNA High Sensitivity kit while C and D is analyzed using the Bioanalyzer DNA 1000 kit.
doi:10.1371/journal.pone.0021910.g003

Table 1. Summary of information for the sequencing runs.

Sample Preparation Flow-cell Lane
Conc
(pmol)

Cluster density
(K*/mm2)

PF Clusters
(K*/mm2)

Clusters
PF (%)

#Reads
PF (M*) %Q.30

U-251MG Manual library 1 1 1 7 636 498 78.6 61.2 62.8

U-251MG Manual library 2 1 2 7 592 472 79.8 58.0 62.5

U-251MG Manual library 3 1 3 7 679 516 76.2 63.3 61.4

U-251MG Manual library 4 1 4 7 709 528 74.8 64.9 60.8

U-251MG Automated library 1 1 5 7 659 506 76.8 62.1 60.7

U-251MG Automated library 2 1 6 7 655 501 76.6 61.5 61.0

U-251MG Automated library 3 2 8 6 474 418 88.1 51.3 74.6

U-251MG Automated library 4 1 8 7 566 450 79.6 55.3 61.0

*K = 103, M = 106.
doi:10.1371/journal.pone.0021910.t001
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platforms. The EtOH/TEG precipitation is readily automated for

rapid and easy handling and can be used in general, whenever

RNA needs to be isolated from a solution. The automated

transcriptome preparation protocol here described will alleviate

the bottleneck of sample preparation in RNA sequencing.

Supporting Information

Figure S1 Titration of EtOH and TEG on High Ribo-
RulerTM. Bioanalyzer gel image showing titration and precipi-

tation effect on High RiboRulerTM. Precipitation solution used for

samples from left to right are: Lane 1–20% EtOH and 1% TEG;

Lane 2–20% EtOH and 5% TEG; Lane 3–20% EtOH and 15%

TEG; Lane 4–50% EtOH and 1% TEG; Lane 5–50% EtOH and

5% TEG; Lane 6–50% EtOH and 15% TEG; Lane 7–70%

EtOH and 1% TEG, Lane 8–70% EtOH and 5% TEG; Lane 9 -

High RiboRulerTM. The samples were analyzed using Bioanalyzer

6000 Nano kit.

(TIF)

Figure S2 Venn diagram comparing number of ex-
pressed genes for each preparation method. A–D

technical replicates within each preparation method.

(TIF)

Figure S3 RPKM values of uniquely expressed genes
from the automated and manual preparations.
(TIF)

Table S1 Yield for precipitation of Low and High
RiboRulerTM in triplicates.
(TIF)

Table S2 cDNA concentration between 200 and 1000 bp
for manual and automated sample preparation, respec-
tively. The samples were analysed using Bioanalyzer DNA High

Sensitivity kit.

(TIF)

Table S3 Final library DNA concentration between 220
and 700 bp for manual and automated sample preparation,

Figure 4. Comparison of gene expression levels and determination scores between the two methods. A: Venn diagram comparing
number of expressed genes in both preparation methods. B: Boxplot of determination scores (R2) between the two methods and technical replicates.
C: Comparison of two automated technical replicate RNA-Seq determinations, measured in RPKM values.
doi:10.1371/journal.pone.0021910.g004
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respectively. The samples were analysed using Bioanalyzer DNA

1000 kit.

(TIF)

Text S1 Detailed description of automated protocol and
material and reagents.
(DOCX)
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