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Abstract

Background: Many attempts have been made to describe the origin of life, one of which is Eigen’s cycle of autocatalytic
reactions [Eigen M (1971) Naturwissenschaften 58, 465–523], in which primordial life molecules are replicated with limited
accuracy through autocatalytic reactions. For successful evolution, the information carrier (either RNA or DNA or their
precursor) must be transmitted to the next generation with a minimal number of misprints. In Eigen’s theory, the maximum
chain length that could be maintained is restricted to 100{1000 nucleotides, while for the most primitive genome the
length is around 7000{20000. This is the famous error catastrophe paradox. How to solve this puzzle is an interesting and
important problem in the theory of the origin of life.

Methodology/Principal Findings: We use methods of statistical physics to solve this paradox by carefully analyzing the
implications of neutral and lethal mutants, and truncated selection (i.e., when fitness is zero after a certain Hamming
distance from the master sequence) for the critical chain length. While neutral mutants play an important role in evolution,
they do not provide a solution to the paradox. We have found that lethal mutants and truncated selection together can
solve the error catastrophe paradox. There is a principal difference between prebiotic molecule self-replication and proto-
cell self-replication stages in the origin of life.

Conclusions/Significance: We have applied methods of statistical physics to make an important breakthrough in the
molecular theory of the origin of life. Our results will inspire further studies on the molecular theory of the origin of life and
biological evolution.
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Introduction

The puzzle about the origin of life has attracted the attention of

curious minds from the dawn of human civilization. Since the

development of molecular biology, it has been known that the

information carriers of living organisms, from humans to bacteria

and viruses, are DNA and RNA. An essential step in solving the

puzzle about the origin of life at a molecular level is to understand

the replication and evolution of information carriers. For this

purpose, Eigen [1,2] proposed a cycle of autocatalytic reactions.

Primordial life molecules are replicated through autocatalytic

reactions with a limited accuracy, i.e. an error rate in the order of

0:001*0:01 [3,4]. For successful evolution, genetic information

must be transmitted to the next generation with a minimal number

of misprints. With an error rate in the order of 0:001*0:01 [3,4],

the maximum length of information carrier that could be

maintained is estimated in Eigen’s theory [1,2] to be 100{1000.

For the most primitive genome, the length is estimated by Gil et al

[5] to be around 20000 nucleotides, and by Kun et al [6] to be

around 7000{8000 nucleotides. The former includes the core

bacterial gene set, and the latter includes only the key information

carrier. The big gap between 100{1000 and 7000{8000 is the

famous error catastrophe paradox.

In this paper, we use methods of statistical physics to solve the

error catastrophe paradox by carefully analyzing the roles of

neutral networks, in which each mutant in the network has about

the same reproduction rate as the master sequence [6,7], lethal

mutants, i.e., mutants with a zero reproduction rate [8,9], and

truncated selection, i.e., when the mutants with Hamming

distances from the master sequence larger than a critical value n
have a zero reproduction rate [10–12]. We calculate the impact of

neutrality for the neutral thick hierarchic tree, and derive simple

exact formulae for the case of the neutral network-like fitness

landscape. The importance of neutral network-like fitness

landscapes is widely known [13–15].

The neutrality phenomenon with perfect (the neutral mutants

have exactly the same fitness as the master sequence) and extensive

neutrality has been considered in [6,16,17], and a large increase in

the mean fitness due to neutrality has been found. However,

mutants with both perfect and extensive neutrality are not realistic

and cannot be found in real biological systems. A more realistic

case is imperfect extensive neutrality, to be discussed below.
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In the present paper, we consider different versions of neutrality:

the neutral network-like fitness landscape, which is very popular

among biologists, and the more involved thick hierarchic tree

landscape, to be defined later. In both cases, we derive analytical

results for the mean fitness and for the probabilities of the main

sequences appearing. Our result for the mean fitness of the neutral

network is consistent with the rigorous result of Nimwegen et al

[14]. In all cases we consider, the modification of the mean fitness

due to neutrality involves a small factor of the order 1=
ffiffiffiffi
L
p

. The

corresponding change in the critical chain length is negligible in

solving the error catastrophe paradox. We will discuss the

extensive neutrality [6,16,17] in the subsection Extensive
neutrality, below. According to our analysis of the experimental

data, the increase in mean fitness is also negligible for the observed

case of imperfect extensive neutrality.

Applying statistical physical methods used in earlier papers

[18–28] to the Eigen model with lethal mutants and truncated

selection, we analyze the paradox of the origin of life. We find that

the combined action of lethal mutants and truncated selection

makes the error threshold reach the required genome length for

the origin of life and thus solves the paradox of the origin of life.

Here we use the concept from the statistical physics of spin

models [29] to review briefly Eigen’s theory of the cycle of

autocatalytic reactions [1,2].

The genetic information of a biological system is stored in the

DNA or RNA sequence. Eigen used models similar to the one-

dimensional Ising model [29] with L spins to represent DNA or

RNA of L bases, and considered the time evolution of the

probability distribution pi, 0ƒiƒM{1, of M~2L spin config-

urations Si:(s
(i)
1 , . . . ,s

(i)
L ) corresponding to M DNA or RNA

sequences, with z1 "spin" representing purines (R) and {1 "spin"

representing pyrimidines (Y) in a sequence. Every sequence Si is

assigned a value of the fitness function, ri. The number ri

represents the reproduction rate of Si.

In the simplest case of the single-peak fitness function, there is

only one peak configuration or master sequence, say S0, which has

the largest value of fitness function so that r0~Aw1, and ri~1 for

i=0, as shown in Fig. 1. Configuration S0 can be chosen to be

(1,1, . . . ,1), i.e., all spins take z1, without the loss of generality.

The j-th sequence Sj can change into the i-th sequence Si via

mutation. The Hamming distance between configurations Si and

Sk, i.e., the number of minimal mutation flips from Sk to Si, is

denoted by d(k,i). In the truncated selection, the fitness function is

zero after some Hamming distance from the master sequence. A

typical example is shown in Fig. 2.

In Eigen’s theory [1,2], an information carrier reproduces at a

certain rate ri, producing offspring of the parental type with the

probability Qii and offspring of the mutant type Sk (k=i) with the

probability Qki. The probabilities pi for different types (sequences)

Si, i~0, . . . ,M{1, satisfy the set of equations

dpi

dt
~fQiiri{

X
k

rkpk(t)gpi(t)z
X
k=i

Qikrkpk(t): ð1Þ

Here, pi satisfy the normalization condition
PM{1

i~0 pi~1; the

elements of the mutation matrix are Qki~qL{d(k,i)(1{q)d(k,i); q is

the probability of errorless replication per nucleotide. The

diagonal terms of the mutation matrix are Qii~qL:Q:e{c,

where c~{L ln (q)&L(1{q) is the parameter of mutation in the

Eigen model. Two sequences Si and Sk are neighbors if and only if

d(k,i)~1. For i~0, the second term on the right-hand side of Eq.

(1) represents the back mutation from mutants to the master

sequence.

For the single peak fitness landscape with r0~A and ri~1, for

1ƒiƒM{1 (Fig. 1), Eigen derived the following restriction for

the length of genome [1,2]

1vQA or Lv

ln (A)

1{q
~Lmax, ð2Þ

for (1{q)vv1, where Lmax is the maximal allowed genome

length. If we neglect with a 1=L accuracy a small contribution

from the second term in the right-hand side of Eq. (1), i.e., from

back mutations, we can easily show that the steady state

probability p0 for the master sequence and the mean fitness R
are given by

p0~p̂p0(A,Q):
QA{1

A{1
, R:

XM
i~1

piri&QA: ð3Þ

We can also use p0 and R of Eq. (3) to derive Eq. (2) from the

condition p0w0 or Rw1. In Ref. [22], we have derived Eq. (2) as

a special case of the Eigen model with a general fitness function

and degradation rates.

The error rate (1{q) has a value between 0:01 and 0:001 [3,4],

restricting the length of early information carriers to some number

between 100 and 1000 for ln A&1, which is much smaller than

7000 or 8000 for the most primitive genome, as estimated by Kun

et al [6], mentioned above. This is the famous error catastrophe

paradox.

One hope of increasing the information content has been

connected with the idea of neutral network-like fitness landscapes

Figure 1. Fitness rn versus Hamming distance n from the peak
sequence for the single-peak fitness landscape.
doi:10.1371/journal.pone.0021904.g001

Figure 2. Fitness rn versus Hamming distance n from the peak
sequence for the truncated fitness landscape.
doi:10.1371/journal.pone.0021904.g002
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[6,17]. However, the quantitative impact of this phenomenon has

not been rigorously investigated. Truncated fitness landscapes

have been discussed in [10] with regard to Muller’s ratchet.

Summers and Litwin [11] investigated the extreme form of

truncated fitness with only one Hamming class for viable mutants,

and claimed the absence of an error-threshold relation in virus

populations. In this paper, we use methods developed in [22] to

solve analytically the model with lethal mutations and truncated

fitness, and find that lethal mutants and truncated selection

together can solve the paradox of the origin of life.

Results

Neutral Landscapes and Critical Chain Length
Neutral network. If two neighboring sequences (also called

‘‘nodes’’) have almost the same reproduction rate, the mutation

from one node to another barely changes the reproduction rate.

Such a mutation is called neutral mutation. In a neutral network,

every node of the network has almost the same reproduction rate

as the master sequence and every node in the network can be

connected to the master sequence via a series of neutral mutations.

In the neutral network, the number of neighboring nodes of a

given node Si is called the connectivity or degree of that node and

is denoted by gi. The probability of Si appearing is pi. The total

probability P of the neutral sequences is P~
P

i pi, where the

summation is over all nodes in the neutral network. The mean

degree is given by �gg~
P

i gipi=P. Now we have the fitness Aw1
on the neutral network and fitness 1 outside the network.

In the infinite genome length limit (L??) the principal term

for the mean fitness of the neutral networks and the total

probability P of the neutral sequences are expected to be very

close to those for the single peak fitness given by Eq. (3), hence

P{p̂p0(A,Q)%1, k:R{QA, k%1: ð4Þ

Here, R:Siripi is the mean fitness computed over all sequences.

The error threshold is defined from the condition QAzk~R~1.

We consider the case that in the network there is a node with a

maximal degree (also called the ‘‘0-th sequence’’), for which the

degree g:g0ww1, and other nodes have small degree, *1.

Having a large parameter g, we can solve the evolution problem in

the neutral network within 1=
ffiffiffi
g
p

accuracy. We assume, and our

calculations confirm this conjecture, that the impact of neutrality

on the mean fitness must be defined by the largest degree of the

neutral network. We denote by p0 the probability of having a

sequence with g neutral neighbors, and by p1 the probability of

any of these g neutral sequences. Consider the steady state solution

of Eq. (1). With the accuracy 1=g, we obtain the system of

equations for p0 and p1:

p0k{p1
cgQA

L
~0, p1k{p0

cQA

L
~0: ð5Þ

In the first equation in Eqs. (5), we omit the contribution from

L{g non-neutral neighbors. In the second equation, we omit the

contribution from the second Hamming class. Both these

corrections are proportional to 1=g. Using the balance condition

p1g~(QA{1)=(A{1), we solve Eq. (5) to obtain

k~cQA

ffiffiffi
g
p

L
, p0~

QA{1

(A{1)
ffiffiffi
g
p , p1~

QA{1

(A{1)g
: ð6Þ

Thus, k%1, which is consistent with Eq. (4).

The above calculations illustrate well that the impact of neutrality

is determined by the maximal degree g, and its effect on the critical

chain length is only of the order *
ffiffiffi
g
p

=Lv1=
ffiffiffiffi
L
p

because gvL.

We can also derive the probability for a sequence with larger

Hamming distances from S0. For this purpose, let us assume now

that a neutral mutant from the first class has a neutral neighbor from

the second class with a relative probability p2. It follows from Eq. (1)

that p2k~cQAp1=L or p2~p1=
ffiffiffi
g
p

, which gives

p2~
QA{1

(A{1)g3=2
: ð7Þ

Repeating the derivations for the probability of a neutral sequence

at Hamming distance l (along the neutral network) pl , l§1, we can

show that the probability of having neutral sequences at the

Hamming distance l along the neutral network from the master

sequence is:

pl~
QA{1

(A{1)g(1zl)=2
: ð8Þ

We can use results by Nimwegen et al [14] to check the

reliability of our result. For a very small c, Eqs. (4) and (6) in [14]

by Nimwegen et al can be written as

pi�gg~
X

j

Gijpj , k:R{QA~cQA
�gg

L
, ð9Þ

where G is the adjacency matrix of the neutral network: Gij~1 if

types i and j are neighbors, and otherwise Gij~0. In the case of

the Eigen model, considered in the current article, Eq. (9) is

derived for the finite c as well. Equation (9) could easily be solved

for the types of neutral network shown in Figs. 3 and 4.

For the neutral network type of Fig. 3, we obtain

�gg&
ffiffiffi
g
p

zO(1=g), ð10Þ

of which the derivation is presented as Case 5 in Materials and
Methods. Equations (9) and (10) are consistent with Eq. (6).

For the neutral network type of Fig. 4 with a large degree g, we

have

�gg&
ffiffiffi
g
p

z
1

2
ffiffiffi
g
p , ð11Þ

Figure 3. Neutral network-like fitness landscapes. There is a
sequence with g~8 neutral neighbors and a tail of neutrals with the
length l~2.
doi:10.1371/journal.pone.0021904.g003
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of which the derivation is presented as Case 6 in Materials and
Methods. Thus our results are consistent with those obtained by

Nimwegen et al [14].

As another test of Eq. (6), we present the derivation for the

simplest case of one central sequence and its g neutral neighbors i,

1ƒiƒg, as follows. Nonzero matrix elements of Gij are

G0i~Gi0~1. Due to the symmetry, Eq. (9) transforms into the

system of equations: p0�gg~p1g, and p1�gg~p0. Multiplying the first

equation by the second gives �gg~
ffiffiffi
g
p

. With such a result in the

second expression of Eq. (9), we can obtain the first expression of

Eq. (6). Thus our results are consistent with those obtained by

Nimwegen et al [14].

Mesa-type fitness landscape. The mean fitness of the mesa

landscape has been calculated first in [21–23], then later analyzed

in [28]. In a typical case, the high fitness extends to the Hamming

distance of l0, i.e., Jlƒl0~A and Jlwl0~1, where Jl:ri is the

fitness at Hamming distance d~l from the wild sequence S0, see

e.g., Eq. (13) in [22] with l0~L(1{k0)=2 and k0 is defined in

[22]. We derive rigorous solutions for several cases in ‘‘Correction

terms for meta-type fitness landscapes’’ in Materials and
Methods.

Solutions for various fitness landscapes are presented in Table 1.

We note that because of the neutrality, there is a slight increase in

the values of the mean fitness: QA?QA(1zcc=
ffiffiffiffi
L
p

), where c*1.

Results for Case 3 and Case 4 in Table 1 show how by removing a

single point, the 1=
ffiffiffiffi
L
p

correction term changes. This sensitivity of

the mutant spectrum is quite typical. These results were derived by

the 1=
ffiffiffiffi
L
p

expansion. Higher-order correction terms can be

derived as well, i.e., the accuracy of the results included in Table 1

can be controlled.

Table 1 implies that the change in mean fitness and error

threshold (defined by equation R~1) due to neutrality are rather

small, of the order 1=
ffiffiffiffi
L
p

.

The expression of Eq. (5) in [22] can be considered as the mean

fitness R of the model defined by Eq. (1) in [22]. We have used Eq.

(5) in [22] to discuss the effect of the flat fitness function, defined by

Eq. (13) in [22]. It is easy to show that the modification of R is of

the order Ac
ffiffiffiffiffiffiffiffiffiffiffiffi
4l0=L

p
for 1{k:2l0=Lvv1. The 1=

ffiffiffiffi
L
p

result

derived first in [22], was observed later in [28].

Neutral thick hierarchic tree-like fitness landscape with

decreasing thickness of branches. The third scenario of

neutrality is connected with a neutral thick hierarchic tree fitness

landscape. It is a solvable model for the fitness landscape, where

the genome is fractured into several parts with regard to the

neutral property. For the Hamming distance l~1 from the peak

configuration S0 with fitness A, there are (1{n)L sequences with

fitness 1 and nL sequences with fitness A. At the Hamming

distance l there are nlL neutral mutants. Such classification is

continued until the Hamming distance K from the peak

configuration S0. The sequence with a Hamming distance larger

than K always has the fitness 1. In this model, the fraction of

neutral mutations decreases with the Hamming distance

exponentially until the maximal Hamming distance K .

We derive a close system of exact algebraic equations for any

finite K , then check the quick convergence of the mean fitness shift

with the K . We assume that such a model is close to the reality. In

‘‘Corrections for neutral landscape with thick hierarchic tree’’ in

Materials and Methods, we calculated the corrections to the

mean fitness. We find for the mean fitness the correction factor to

be only of the order 1=
ffiffiffiffi
L
p

.

Following the results of [8,30] for one point neutral mutants we

take the value n~0:27; in ‘‘Corrections for neutral landscape with

thick hierarchic tree’’ in Materials and Methods we further

take K~3 for our thick tree model to obtain

k~0:549cQA=
ffiffiffiffi
L
p

: ð12Þ

The thick neutral-network fitness landscapes considered here

change the error threshold only by a few percent, and certainly

cannot solve the error-catastrophe paradox of the origin of life.

Extensive neutrality. Let us discuss different versions of

extensive neutrality to clarify limits of applications for our non-

extensive neutrality formulas. The main question we should

address is, in which situations will the extensive neutrality change

our result about the 1=
ffiffiffiffi
L
p

factor? First of all, we consider several

situations with ‘‘thick’’ neutrality sub-manifolds (parts of neutral

manifolds, connected with each other via neutral pathways),

including partially mesa landscape, thick sub-manifold with a long

thin tail, two thick sub-manifolds connected by a thin path, and

two overlapping mesa landscapes.

In the section ‘‘Neutral selective Value’’ of [22], we have

considered the ‘‘Partially mesa landscape’’. Consider some fraction

n of alleles. Any mutations of these alleles with the total number d
or less is neutral. We define such a landscape as a ‘‘partially mesa

landscape’’.

For the increase of mean fitness due to neutrality in such

landscapes, the left-hand side of Eq. [19] in [22] gives:

dR~½Ae
c({1zn

ffiffiffiffiffiffiffiffiffi
1{k2

0

q
)
{AQ�*2cQA

ffiffiffiffiffi
nd

L

r
ð13Þ

where we consider the case (1{k0)=2:d=(nL)%1 and denote

Q~ exp ({c). If the fitness does not depend on the values of

nucleotides in some part of a genome with the length nL, then the

error threshold changes *n because the effective genome length

becomes shorter, L(1{n). In such a case of a partial mesa

Figure 4. Neutral network-like fitness landscapes. There are two
sequences with g~8 neutral neighbors, with l~2 distance between
two centers.
doi:10.1371/journal.pone.0021904.g004

Table 1. Correction terms k:R{QA (in the third row) for 4
different cases of mesa-type fitness, where R is the mean
fitness and A is the fitness at the wild sequence S0.

case 1 2 3 4

rl r0~r1~A r1~A r1~r2~A r0~r1~r2~A

k cQAffiffiffiffi
L
p O(

1

L
)

ffiffiffi
2
p

cQAffiffiffiffi
L
p

ffiffiffi
3
p

cQAffiffiffiffi
L
p

1. rl:A is the fitness at the Hamming distance d~l from S0 .
2. rl~1 for all rl that are not explicitly included in the table.
doi:10.1371/journal.pone.0021904.t001
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landscape (k0~0 in Eq. (13)), there is no small factor (1=
ffiffiffiffi
L
p

), the

case considered in [6,16,17]). Equation (13) coincides with Eq.(4)

in [17] for k0~0.

It has been observed in experiments that there are rather long

neutral pathways in a sequence space. Figure 3 is a schematic

diagram of a landscape with long neutral paths in sequence space.

But such long paths cannot significantly change the mean fitness,

as has been well illustrated by Eq. (10) of the present paper. The

long tail contribution to mean fitness is negligible compared with

the "thick" part of the neutral manifold (supposed to be a partially

mesa landscape), and the latter gives an increase of mean fitness

O(
1

L
).

If we have several ‘‘thick’’ parts of a neutral manifold,

connected together by thin neutral paths, the common increase

of mean fitness due to neutrality is just equal to the increase by one

with the maximal "thickness". Figure 4 is a schematic diagram for

such a landscape with two ‘‘thick’’ parts of neutral manifold

connected together with a thin neutral path. Equation (11)

illustrates this phenomenon in the case of two identical "thick"

neutral sub-manifolds, connected with the thin neutral path.

Let us consider overlapping mesa landscapes. In the simplest

case, we have two reference sequences at the Hamming distance d,

and the sequences are neutral until n mutations from either of the

reference sequences.

We performed numerics for the parallel model [18], which is

closely connected with the Eigen model [20]. In Table 2, we

provide the results of the mean fitness for different distances

between central sequences. We see only a slight increase in the

neutrality impact O(1=L), and the maximal fitness increase

appears at a small distance d~2. While we have done numerics

only for two overlapping mesa landscapes, it is reasonable to

assume that the same O(1=L) scale of corrections should still be

valid in cases with several overlapping mesa landscapes.

The results listed in Table 2 are for the parallel model with c~1
mutation rate per genome and J~2 difference between fitnesses of

the sequences on the neutral manifold and the reminder sequences.

Experimental data analysis for the effect of extensive

neutrality. Until now we have assumed a perfect neutrality,

when the neutral mutants have exactly the same fitness as the

master sequence S0. Let us now analyze the experimental data of

[8,30], to clarify the possible modification of our theoretical

conclusions for imperfect neutrality, corresponding to observed

data. The authors of [8,30] defined as ‘‘neutral’’ sequences having

E~0:038 less relative fitness than the master sequence has. How

large is such a decrease in fitness? Our formulas for the neutral

network are valid when the nearest neighbors have a decrease in

relative fitness E%
cffiffiffiffi
L
p . Otherwise, when 1&E&

cffiffiffiffi
L
p , Eq. (5) gives

another result for the change in mean fitness, when we have a

central sequence with fitness A and its g~nL neighbors with

fitness A(1{E):

k~
c2QAn

EL
: ð14Þ

Consider now the case of extensive neutrality: we assume that

the multiple neutral mutations act independently, and thus the

relative Wrightian fitness after n neutral mutations is [31]

A(1{E)n: ð15Þ

Using Eq. (5) from [22], we again obtain Eq. (14). Thus the

nearest neighboring neutral mutants make the bulk of the

contribution to the increase in mean fitness due to neutrality,

according to the data by [8,30].

All our formulas are for the selective phase where c*1. Putting

L~10000, E~0:038,n~0:27, we find that the error threshold is

changed by only 0:1%. This result does not change even if we take

into account the epistasis, observed in [30].

Lethal Mutants
The existence of lethal mutants is well established experimen-

tally [8] and there have been several approximate results [32,33].

A rigorous investigation of the phenomenon started only recently.

In [9], we calculated the exact mean fitness for the model with a

general symmetric fitness landscape and lethal mutations,

including the case of the single peak landscape as a special case.

The exact error threshold for the latter case was derived by Tejero

et al. [35], who also used approximate methods and ideas of [36] to

study the extinction threshold.

The extinction phenomena in bacteria originate from ‘‘inter-

nal’’ degradation: a mother bacterium is replaced by two daughter

bacteria (with possible mutations), therefore the mother disappears

after the self-replication cycle. In contrast to the case of bacteria,

we assume that the self-replicating RNA molecule does not

disappear after providing copies, and therefore can participate in

self-replicating events multiple times. Therefore, there is neither an

‘‘internal’’ degradation process nor connected extinction threshold

phenomenon in our case; see the subsection Extinction
threshold in Materials and Methods. Here we will calculate

the probability distribution for a single peak fitness model with

lethal mutations, which was not done in [34] and [35].

Let us consider a single-peak fitness model, in which lethal

mutants are randomly distributed in the sequence space. First of all

we define accurately the distribution of lethal mutants (zero fitness)

in the sequence space. The number M of non-lethal sequences

scales as some degree of the total sequence number,

M*(2L)c, 0vcv1: ð16Þ

How can we dilute the sequence space by lethal sequences? Let us

choose a reference sequence S0 (the sequence with a high fitness A

in the case of a single peak fitness model). In the first Hamming class

with Hamming distance d~1 from S0, we have L1:(1{l)L non-

lethal mutations and lL lethal mutations; in the second class with

d~2, there are L2:L(1{l)½L(1{l){1�=2!~L1(L1{1)=2!
non-lethal sequences;…; in the n-th class with d~n, there are

Ln:L1!=½(L1{n)!n!� non-lethal sequences. Thus the total number

of non-lethal sequences is

Table 2. Numerically obtained mean fitness Rnum for the
parallel model with two overlapping mesa landscapes around
two sequences, with Hamming distance d between central
sequences, and with the maximal neutral mutation number
n~5.

d 0 1 2 3 4 5

Rnum 1.033287 1.033386 1.033395 1.033288 1.033287 1.033287

doi:10.1371/journal.pone.0021904.t002
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M~
XL1

n~0

L1!

½(L1{n)!n!�~2L(1{l):

Comparing this M with that of Eq. (16), we have c~(1{l): In

the above derivation, we assume that any sequence having several

mutations, including at least one lethal mutation from the one-

point lethal mutation list is also lethal, and we ignore the

combinations of deleterious mutations (synthetic lethal). Such a

picture is quite realistic for RNA viruses [8,30].

For the lethal mutants with parameter l, in the subsection

Lethal mutants in Materials and Methods, we derive with

1=L accuracy

p0~Ql Q1{lA{1

A{1
: ð17Þ

In the infinite population limit, the error threshold can be

determined by the condition

p0w0:

Thus from p0 in Eq. (3), one can obtain the error threshold in

Eq. (2) derived by Eigen. In the infinite population limit, p0 in Eq.

(17) implies that the error threshold for the case with fraction l of

lethal mutants is given by

AQ1{l~1: ð18Þ

Current experiments suggest that the probability l of one point

lethal mutants is l*40%, i.e., about twice as high as the

probability of hitting the neutral mutants [6,8]. For l~40%, the

error threshold constraint is relaxed by a factor of 5=3. This is

insufficient to solve the error threshold paradox. It could be solved

by increasing the degree of lethality l and involving the truncated

selection (see next section). Equation (18) shows that while the

lethal mutations change the error threshold, the fraction of the

master sequence decreases with the high mutation rates (small Q).

If there is an extinction threshold in the population (the population

disappears below a minimal value of the mean fitness) [35–37],

then even the lethal mutations cannot rescue the situation: the

selective phase disappears.

The existence of the error threshold is a fundamental

phenomenon, connected with the Shannon optimal codes in

information theory [38], while the extinction threshold is a case

dependent, non-universal phenomenon.

Truncated selection with lethal mutations
Consider a fitness landscape with ‘‘truncated selection’’ (Fig. 2)

[10–12]. We take r0~A; rl~1, 1ƒlƒn; and, rl~0 for lwn,

where n is the truncation parameter. We denote by pl the

probability of having a sequence from the l-th class. In [12], we

solve analytically the truncated fitness landscape for the case of

large n, and perform numerics for the finite n case. For the large n,

we find in [12] that the error threshold transition is fractured into

two separate transitions.

Now we will derive analytical expressions of the mean fitness,

and consider the case of truncated mutation with lethal mutants in

the case of small n. For the master type, we have p0(QA{R)~0,

where R~Ap0z
Pn

l~1 pl
Ll

l!
~p0(Az

Xn

l~1
zl

cl

l!
), where zl are

defined by Eq. (54) in Materials and Methods. Then we define

the p0 by the equation

p0~
QA

Az
Pn

l~1 zl

cl

l!

~
QA

wn(c,A)
, ð19Þ

where the function wn is defined in Eq. (55) in Materials and
Methods. For the truncated selection in the presence of lethal

mutants, Eq. (19) should be changed to:

p0~
QA

Az
Pn

l~1 zl
cl(1{l)l

l!

~
QA

wn(c(1{l),A)
: ð20Þ

We put the error threshold condition within the 1=L accuracy:

p0§1=L: ð21Þ

Were a population size N available from experiments, we could,

instead of Eq. (21), use another constraint for the p0:

p0N&1: ð22Þ

The justification for the conditions given in Eq. (22) is that

molecular population size N should be high enough to produce

deterministic features. The population size should be large enough

to avoid the loss of the master sequence due to the Muller’s ratchet

effect. In reality, it is not easy to obtain the value of N. Thus in the

following, we will use Eq. (21) to estimate the critical length.

Having p0 given by Eqs. (17) or (20) for several typical parameters

of the models, our estimates of the critical length with Eq. (21) are

gathered in Table 3. The results for the neutral network case and

neutral thick network case were obtained with the use of Eq. (6) with

g~nL, and Eq. (12), respectively. The degree of neutral mutations

is taken as n&0:27 [8]. We have verified that for the four-letter

alphabet the impact of neutrality is smaller by a factor of
ffiffiffi
3
p

, but

other entries in Table 3 remain unchanged.

If we assume n~0:1,l~0:40, and extensive neutrality accord-

ing to Eq. (15), then the results of Table 3 are changed slightly by

1:5{2%.

Discussion

In this work we have rigorously investigated the error-threshold

problem for evolution with neutral and lethal mutants, and with

truncated selection. We have calculated the change in mean fitness

(e.g. k in Eqs. (4) and (6)) due to neutrality for the neutral network

with a high degree g at some node. We also considered the

neutrality phenomenon for a more involved case, in which the

fraction of neutral mutants among all multiple mutants decreases

exponentially with the Hamming distance from the master

sequence. Then we found that the neutrality changes the mean

fitness and the error threshold by only a few percent 1=
ffiffiffiffi
L
p

and

certainly cannot solve Eigen’s error threshold paradox. The

formulas considered correspond to perfect neutrality, where

neutral mutants have exactly the same fitness as the master

sequence. We also considered the case of imperfect neutrality: the

neutrality case according to the data of [8], in which there is a

small decrease in fitness after mutations. Assuming extensive
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neutrality in such a case (multiplicative character of fitness for

those mutations), we find that such a neutrality alone can change

the error threshold by *0:1%. Thus neutral mutation alone

cannot solve the error threshold paradox. Our result is rather

general, as, according to experimental data [8], an assumed

extensive neutrality gives the same increase in mean fitness as the

model with only the nearest neighboring neutrals.

We solved exactly the model with lethal mutations. Both

phenomena, the occurrence of significant proportions of the

neutral and the lethal types, suppress the error threshold in a

similar way, while there is neither a small factor 1=
ffiffiffiffi
L
p

, nor a fine-

tuning problem in the case of lethal mutations. The effect of the

lethal mutants is, however, easier to realize than the effect of

neutrality, even after a billion-year evolution. The difference in the

impacts of these two mechanisms is thought to have been even

more pronounced at the origin of life. We have provided evidence

that in modern RNA, the presence of lethal mutants can cause an

increase in the error threshold by as much as 50%.

We have showed that the Eigen’s error threshold for the origin

of life can be relaxed, provided the presence of the lethal mutants

is aided by truncated selection (see Table 3). For example, in the

case of RNA molecules, the maximum length of chains is

considerably extended when lethal mutants with an 80% lethal

probability are included in the model, together with truncated

selection. In the absence of truncated selection the probability of

the master-type sequence would be negligible, which in turn would

require enormously large molecular populations for reactions to

happen. For maintaining a continuous replication, it is important

to have in the population both lethal mutants and viable mutants.

Moreover, the latter should be restricted to 2 to 4 base exchanges.

If we assume 80% lethal probability and 10% neutrality, then the

neutrality can change the error threshold by 1:5%{2%.

One of the questions of interest concerns the organization of

truncated selection in pre-biotic evolution. Only recently it has

been realized that proteins are not random heteropolymers but

their sequences are formed following a tentative design (for a

review see [39,40]). Developed during evolution, this design

entails, for example, the robustness of the genome against

mutations. In the context of applications to RNA, the concept of

design was recently studied by Zorn et al [41]. It is reasonable to

assume that the degree of design and the robustness were poor at

the beginning of evolution. For example, initial evolution might

have followed a scenario in which the truncated selection took

place in a population with a large number of lethal sequences. As

shown here, in this example under poor organization, the error

catastrophe could have been avoided.

The key point of our study is that no matter where the

beginning of life was (it is an obligatory property of the matter, as

has been assumed in [42]), if it was through autocatalytic

reactions, it had to be accompanied by lethal mutants with

truncated selection.

In summary, in populations that contain about *80% of lethal

mutants and provide for the simultaneous truncated selection with

the truncation parameter n~2 or 3, the primordial genome can

reach the critical length of 7000*8000 estimated by Kun, et al.

[6], and Eigen’s error catastrophe can thus be solved.

There are three essential stages in the origin of life [42]. The

First is the preliminary stage, with the preparation of the proper

bio-molecules for the starting point [42–44]. The Second is

connected with self-replication of macro-molecules [42]. The

Third gives the protocells [45]. The present paper studies the

second stage. The error threshold problem exists for both the

second and third stages. In the second stage there is a replication

of molecules using a template, while in the third stage the mother

protocell divides into two protocells. The mechanism we suggested

solves the error threshold for the second stage, but not for the third

stage: too much lethal mutation push the population to the

extinction threshold [15] and the self-replication of proto-cell will

stop. Thus a protocell should have auto-proof mechanism of self-

replication to suppress the mutation rates.

Let us briefly discuss our results in view of alternative ideas to

solve the error threshold paradox. All of our derivations and

conclusions correspond to the case of replication of a pre-biotic

molecule using a template. An alternative mechanism to avoid the

error threshold could be connected with the self-replication of the

network of molecules [46,47], in which several enzymes catalyze

the generation of each other. Such a mechanism increases the

value of the joint fitness of the "peak" configuration of a couple of

sequences, which is useful in avoiding the error catastrophe. For

the origin of life, we need some minimal pool of genes, which

could be provided by two molecules (replicating together) with a

shorter length for each chain. Unfortunately, the information

contents of the two sequences in [47] are almost identical,

therefore such a concrete mechanism could not provide a larger

number of genes than the single sequence. In the case of a

connected replication of several RNA-like molecules with different

information content and self-sustaining amplification of the whole

molecular group, such a mechanism, combined with the lethal

mutations, can easily solve the error paradox, and the mathemat-

Table 3. The maximal allowed genome length Lmax obtained
from different conditions (equations) for several values of the
parameter of truncated selection n and the degree of lethal
mutations l when ln A~1 and 1{q~0:001.

Conditions Lmax n l

Eq. (2) 1000

Eqs. (3), (21) 998

Eq. (6) with 27%-neutrality 1016

Eq. (12) with 27%-neutrality 1017

Eq. (18) 1666 0.4

Eqs. (17),(21) 1664 0.4

Eqs. (17),(21) 2000 0.5

Eqs. (17),(21) 4915 0.8

Eq. (18) 5000 0.8

Eqs. (17),(21) 6300 0.85

Eq. (18) 6666 0.85

Eqs. (17),(21) 7800 0.9

Eq. (18) 10000 0.9

Eqs. (20),(21) 4650 4 0.4

5430 3 0.4

6500 2 0.4

5050 4 0.5

5800 3 0.5

6750 2 0.5

7050 4 0.8

7450 3 0.8

7900 2 0.8

8200 3 0.9

8310 2 0.9

doi:10.1371/journal.pone.0021904.t003
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ical tools developed in the current article could be applied in this

case as well.

Peck and Waxman [48] proposed the evolution model with

recombination and concluded that the truncated selection and

recombination could solve the error paradox. We agree with the

importance of the truncated selection, while have not see serious

argumentation for the importance of recombination to solve the

error threshold catastrophe. They used non-zero degradation in

their model, while have forgotten to analyze the extinction

threshold. A rigorous consideration of the single peak fitness

landscape with the simplest version of recombination in [49]

proves that the recombination does not change the (mean fitness)

error threshold for the long genome and hence could not solve the

error paradox. For the short genome the recombination even

slightly suppresses the selection (the mean fitness decreases) for the

single peak fitness case [50].

Rajamani, et al. [51] have considered the mechanism of self-

replication cycle in details, assuming slow reaction rates for the

mutants due to ‘‘mismatch stalling’’, which can somehow change

the error threshold, when the error probability per nucleotide

times the ‘‘stalling’’ coefficient [51] is larger than the fitness ratio

(wild sequence fitness to the other non-lethal sequence fitness).

Actually the considered phenomenon is equivalent to some

increasing of the fitness ratio A. The phenomenon depends on

the concrete details of the self-replication cycle. One should

consider this phenomenon together with lethal mutations,

truncated selection and finite period of generation [52].

Our work helps to solve a puzzle in the second stage of the

origin of life [42]. Such result and other recent advances in models

of cells [53–56] and minivirus [57] will provide clues for

understanding the evolution from the second stage to the third

stage of the origin of life.

Materials and Methods

Correction terms for mesa-type fitness landscapes
Consider the steady state solutions of the Eigen model [1,2] for

the fitness landscapes with two classes of sequences: with a high

fitness A and with a lower fitness 1 (one).

Single peak fitness model. Consider the fitness landscape

r0~A, rl~1,lw0: ð23Þ

This gives the following expression for the p0 and mean fitness [22]

p0~
QA{1

A{1
,

R~QA: ð24Þ

General case. Consider the fitness landscape where there is a

high fitness A for l1ƒlƒl2 and fitness 1 for other sequences.

There is an exact equation for the mean fitness

R~1z(A{1)
X

l1ƒlƒl2

plNl , ð25Þ

where Nl~
L!

l!(L{l)!
*

Ll

l!
for small l%L. The total probability of

neutral sequences is approximately the same as in the single peak

fitness model,

X
l1ƒlƒl2

plNl{
QA{1

A{1
~O(

1ffiffiffiffi
L
p ): ð26Þ

We assume the following ansatz for pl ,l1ƒlƒl2

pl*
1

Ll2{(l2{l)=2
: ð27Þ

The mean fitness R is almost the same as for SP case:

R{QA*O(
1ffiffiffiffi
L
p ): ð28Þ

The majority of population is in the highest Hamming class and

we have

pl2
~

(QA{1)

A{1

l2!

Ll2
: ð29Þ

Then from Eq. (1), we have the following system of equations

kpl~l
cQApl{1

L
zcQAplz1 ð30Þ

where k~R{QA. For l~l1 we miss the first term *pl1{1 and

for the l~l2 we missed the second term *pl2z1 in Eq. (30). The

higher terms *plz2 as well as the lower one *pl{2 are missed,

because their contribution are suppressed due to a small factor

1=
ffiffiffiffi
L
p

.

Case 1. The simple mesa. Consider now the case, when

besides the 0-th configuration there is a high fitness at the

Hamming distance 1

r0~A,r1~A,

rl~1,lw1: ð31Þ

From Eq. (29), we have p1L~
QA{1

A{1
. Equation (30) implies that

kp0~cQAp1,kp1~
cQAp0

L
, ð32Þ

where k~R{QA. We have a solution:

k~
cQAffiffiffiffi

L
p ,p0~

QA{1

A{1

1ffiffiffiffi
L
p : ð33Þ

Case 2. Mesa with the hole. Consider now the case, when

there is high fitness at the first Hamming class

r0~1,r1~A,Jl~1,lw1, ð34Þ

We have in the bulk approximation

p1~
c(QA{1)

L(A{1)
,p0~

cA

(A{1)
p1,p2~

2cA

(A{1)L
p1: ð35Þ
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As Lp1*1, then p0*1=L, therefore there are no
1ffiffiffiffi
L
p corrections

now, just O(1=L) ones. To get k we consider the equation for p1

with the small corrections:

(R{QA)p1~
cQ

L
p0zcQp2, ð36Þ

which gives

k~R{QA~
3c2

L(A{1)
: ð37Þ

Case 3. Band with zero at the center. Consider now the

fitness landscape

r0~1,r1~A,r2~A,rl~1,lw2: ð38Þ

Now we have

p1k~cQAp2,p2k~
2cQA

L
p1: ð39Þ

We derive immediately

k~

ffiffiffi
2
p

cQAffiffiffiffi
L
p : ð40Þ

Case 4. Thick band. Consider now the case, when

r0~A,r1~A,r2~A,rl~0,lw2: ð41Þ

We have equations

p0k~cQAp1,

p1k~
cQAp0

L
zcQAp2,

p2k~
2cQAp1

L
, ð42Þ

which imply

k~

ffiffiffi
3
p

cQAffiffiffiffi
L
p : ð43Þ

The results of Cases 1–4 are listed in Table I.

Case 5. Model with fitness by Fig. 3. Denote the number

of all one point neutral mutants by g, x~p0, and by y the

probabilities of g{1 similar neutral neighbors (without neutral

tails), by z the probability for non-symmetrically located one point

mutation neighbor of the master sequence, and by h the

probability of two point mutation neutral mutant. We have a

system of equations for variables x, y, z, h and the average number

of degree for the whole neutral network �gg.

�ggx~(g{1)yzz,�ggy~x,�ggz~xzh,�ggh~z: ð44Þ

Putting h~z=�gg,y~x=�gg, we derive an equation for �gg:

�gg2(�gg2{1){(g{1)(�gg2{1){�gg2~0: ð45Þ

For the large g we have

�gg&
ffiffiffi
g
p

zO(
1

g
) ð46Þ

If we take the longer tail, lw2 in the Fig 3, only O(1=g) terms are

affected in Eq.(46).

Case 6. Model with fitness by Fig. 4. Denote again by g

the total number of neutral neighbors of two nodes with the largest

degree, x~p0, and by y the probabilities of g{1 similar neutral

neighbors, by z the probability for non-symmetrically located one

point mutation neighbor of the master sequence. We have a

system of equations for x, y, z, and �gg

�ggx~(g{1)yzz,�ggy~x,�ggz~2x ð47Þ

Putting z~2x=�gg,y~x=�gg, we derive an equation for �gg:

�gg2~gz1 ð48Þ

For the large d we have

�gg&
ffiffiffi
g
p

z
1

2
ffiffiffi
g
p ð49Þ

We took the Hamming distance 2 between two centers of thick

sub-manifolds. If we take more Hamming distance, then the

second term in the last equation should be O(1=g).

Corrections for neutral landscape with thick hierarchic
tree

Here we follow the terminology of Sec. I to call a nucleotide as a

spin. In the model of neutral landscape with thick hierarchic tree,

the L spins are partitioned into Kz1 different groups, with Lln
spins in the n-th group, where ln~(1{h)hn{1n,1ƒnvK , and

lK~nhK{1. Thus the maximal distance on the tree from the

reference sequence equals K . There are at most n neutral point-

mutations in the n-th group. We take h~n. Compared with the

neutral network of the previous subsection, now the hierarchic tree

has a thick tube instead of thin lines. What we are doing is

equivalent to solving Eq. (9) using the symmetry: collecting the

same type of sequences together. We should distinguish among

different probabilities for the sequences that are obtained from the

central sequence after mutations of the spins from different groups.

We denote as Xln the probability of having a sequence from the

l-th Hamming class but with the spins from the n-th group. Such

sequence has l 00{00 spins and lnL{l 00z00 spins from the same

group of spins. From the Eigen model equations we get:

Xl,nk~
QAc

L
l Xl{1,nz(Lln{l)Xlz1,nð Þ,

0ƒlƒn,1ƒnƒK : ð50Þ
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and we identify X0,n~X0 and k:R{QA, also put

X{1,n~0,Xnz1,n~0.

We have a complete system of equations to define k and

Xln=X0. In the case when LlKww1, we can further simplify the

system of equations,

Xl,nk~
QAc

L
l Xl{1,nzLlnXlz1,nð Þ: ð51Þ

Consider first the case of K~3. We have X0 for the 0-th class

probability. For the lowest group we have X11 for a sequence in

the first Hamming class, i.e., when the distance from the master

type is d~1. For the second group of sequences, i.e., for those

obtained via mutations of the second spin group, we have X12 in

the first Hamming class, and X22 in the second Hamming class.

For the third group of sequences, we have X13 in the first

Hamming class, and X23 in the second Hamming class, and X33 in

the third class. We derive the following system of equations:

k0X11~X0=L,k0X0~l1X11zl2X12zl3X13,

k0X12~X0=Lzl2X22,k0X22~2X12=L,

k0X13~X0=Lzl3X23,k0X23~2X13=Lzl3X33,

k0X33~3X23=L: ð52Þ

Here k0~k=(cQA) is an eigenvalue of a matrix. The second

equation in the first line of Eq. (52) was derived directly from Eq.

(1).

After re-scaling k0~l=
ffiffiffiffi
L
p

, Xln=X0~yln=Ll=2 we have a system

of equations without large parameter L:

ly11~1,l~l1y11zl2y12zl3y13,

ly12~1zl2y22,ly22~2y12,

ly13~1zl3y23,ly23~2y13zl3y33,

ly33~3y23: ð53Þ

In the last equation ln are functions of n. For n~0:27 we have a

correction to the mean fitness 0:549cQA=
ffiffiffiffi
L
p

. The K~3 gives the

results of large K with the accuracy 0:1%.

Lethal mutants
We will calculate mean fitness with 1=L accuracy. Let us first

consider the case without lethal mutants. We denote by pl the

probability of having a sequence from the l-th class, and by Pl the

probability of having the l-th class. In the l-th Hamming class

there are Nl~
L!

l!(L{l)!
&Ll=l! sequences and Pl:Nlpl . Let us

denote Llpl=(p0cl):zl(c,A), and therefore z0~1. The recurrence

relations for zl are [22]:

zl~
1

A{1
½Az

X
1ƒkvl

zkl!

k!(l{k)!
�: ð54Þ

Having the values of zl we can calculate pl~p0zlc
l=Ll .

We have for the mean fitness R~QA. On the other hand, mean

fitness is defined as R~Ap0z
P

l~1 pl
Ll

l!
zO(1=L). Thus with

the O(1=L) accuracy,

p0~
QA

½Az
PL

l~1

zlc
l

l!
�
:

QA

wL(c,A)
:

Using the master degree probability p0~
QA{1

A{1
, we get,

wL(c,A):Az
XL

1~l

zlc
l

l!
~e{cA

A{1

e{cA{1
: ð55Þ

Consider now the case with lethal mutants. In the l-th
Hamming class we have Nl(1{l)l non-lethal sequences: each of

which has the probability xl , and Nl ½1{(1{l)l � lethal sequences.

For the xl=x0,x0~p0 we have the same system of recurrent

equations as those for pl=p0 in case without lethals, therefore we

can calculate xl as pl . A single modification, we should replace

Nl?Nl(1{l)l while calculating the mean fitness expression:

p0Az
XL

l~1

Nl(1{l)lxl&p0w(c(1{l),A)

~p0e{c(1{l)A
A{1

e{c(1{l)A{1
: ð56Þ

For the distribution of lethal sequences with the faction ll in the

l-th class [33], the last equation is modified: (1{l)l?ll .

Equation (56) defines the mean fitness. For the master type we

have p0(QA{R)~O(1=L). Thus we have again for the mean

fitness R~QA~e{cA. Therefore, we have an equation for the p0

e{cA~p0e{c(1{l)A
A{1

e{c(1{l)A{1
,

which implies Eq. (17).

Lethal and neutral mutants
Consider a single peak sequence with a fitness A, a part of

genome nL with a fitness by Eq. (15), and lL positions in genome

for lethal mutations. In the selective phase we get, following to

Eq.(14), a mean fitness

(1z
c2QAn

E L
)QA: ð57Þ

Using Eq. (18) and the expression QA for the mean fitness of

selective phase, we get the following expression for the mean

fitness of non-selective phase:
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Ql: ð58Þ

Comparing the latter two expressions, we get for the error

threshold:

(1z
c2QAn

E L
)AQ(1{l)~1: ð59Þ

Extinction threshold
The growth of bacterial population is through the cell division.

At time t, we have nj(t) bacteria of the given type. Let us consider

the division of the bacteria of type i into two daughter bacteria

with types k and l [37]. After the bacteria division the number of

bacteria of the type i decreases for 1, and with probabilities Qik,Qil

increases the numbers of bacteria with the types k,l.

ni(tz1)~ni(t){1,

nk(tz1)~nk(t)z1,

nl(tz1)~nl(t)z1: ð60Þ

We can model such a situation with the continuous time model

dpi

dt
~
X

k

Qikrkpk(t){dipi(t), ð61Þ

where di is the degradation term introduced in [2], and following

to [36] and [37]. All the terms Qij*e{c. The origin of the di is just

the disappearance of the mother bacteria after the division

("internal" degradation).

Carefully analyzing Eq. (61), the authors of [36,37] deduced the

extinction threshold, a phenomenon when the total population size

decreases. There is a strict constraint

2e{c
w1, ð62Þ

otherwise the population disappears.

The origin of their conclusion is the existence of nonzero

degradation rate di, initiated by the first equation in Eq.(60).

The point is that in the case of RNA replication considered in

this paper, we have another situation:

ni(tz1)~ni(t),

nk(tz1)~nk(t)z1: ð63Þ

Thus while considering the corresponding continuous time

model, we don’t need to add the negative term, and get just the

Eigen model for growing population

dpi

dt
~Qiiripi(t)z

X
k=i

Qikrkpk(t) ð64Þ

Of course, it is possible some degradation due to interaction with

external environment, but there is no strict constraint like the one

described in Eq. (62).
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