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Abstract

Background: Global warming and shifted precipitation regimes increasingly affect species abundances and distributions
worldwide. Despite a large literature on species’ physiological, phenological, growth, and reproductive responses to such
climate change, dispersal is rarely examined. Our study aims to test whether the dispersal ability of a non-native, wind-
dispersed plant species is affected by climate change, and to quantify the ramifications for future invasion spread rates.

Methodology/Principal Findings: We experimentally increased temperature and precipitation in a two-cohort, factorial
field study (n = 80). We found an overwhelming warming effect on plant life history: warming not only improved
emergence, survival, and reproduction of the thistle Carduus nutans, but also elevated plant height, which increased seed
dispersal distances. Using spatial population models, we demonstrate that these empirical warming effects on demographic
vital rates, and dispersal parameters, greatly exacerbate spatial spread. Predicted levels of elevated winter precipitation
decreased seed production per capitulum, but this only slightly offset the warming effect on spread. Using a spread rate
decomposition technique (c*-LTRE), we also found that plant height-mediated changes in dispersal contribute most to
increased spread rate under climate change.

Conclusions/Significance: We found that both dispersal and spread of this wind-dispersed plant species were strongly
impacted by climate change. Dispersal responses to climate change can improve, or diminish, a species’ ability to track
climate change spatially, and should not be overlooked. Methods that combine both demographic and dispersal responses
thus will be an invaluable complement to projections of suitable habitat under climate change.
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Introduction

In the face of climate change, dispersal imposes a major limit on

a species’ ability to keep pace with environmental shifts [1,2], and

thus determines the fate of individuals, population persistence, and

species distributions [3,4]. Species with low dispersal ability are

more likely to suffer from range contraction and eventual

extinction, particularly in fragmented habitats [5]. This is

especially true for species with limited environmental tolerances

and when evolutionary responses occur more slowly than climate

change [6]. Invasive species, on the other hand, are often

associated with high dispersal and may become more problematic

under changing climate [7].

Although the importance of including dispersal in climate

change studies has been raised repeatedly [8], dispersal is rarely

examined in this context [9]. The lack of dispersal data often

leads to unrealistic assumptions of unlimited dispersal, or no

dispersal at all, when predicting future species distributions [8].

The disparate predictions resulting from these two extreme cases

[10,11] underline the necessity of including explicit dispersal

information to reduce the significant uncertainties caused by

spread when projecting species distribution shifts. Furthermore,

even when dispersal under current climate is known, extrapola-

tion of present dispersal abilities to the future remains a

challenge. Factors affecting dispersal processes, such as the

architectural features of maternal plants, the morphology of

dispersal units [12], and dispersal vectors [7] may not stay

constant over environmental gradients; thus, dispersal may also

be altered by climate change. Therefore it is necessary to evaluate

possible changes in dispersal when examining species’ responses

to climate change. However, no study so far has examined

dispersal-related plant responses to future climate scenarios.

Neither does any study couple altered dispersal processes with

altered population dynamics under climate change to assess

future population performance, although theoretical approaches

exist to reach this goal [13,14,15].

Here we present an experimental and theoretical study which

addresses dispersal responses in addition to responses of

survival, growth, and reproduction of a wind-dispersed invasive

thistle, Carduus nutans, to climate change. Dispersal, although

recognized as a critical component in invasion processes

[16,17], is generally overlooked when examining responses of

invasive species under climate change. We divide the responses

of C. nutans into two categories: i). responses in demographic

vital rates, such as seedling emergence, rosette survival, bolting

rate, capitulum production, seed production per capitulum; ii).

responses that relate to dispersal characteristics, such as plant

height at flowering (which affects seed release height), and

propagule terminal velocity (which depends on seed weight and

pappus morphology).
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Results

We examined two independent cohorts in a former pasture in

central Pennsylvania. We manipulated both temperature and

precipitation. In half of our plots, fiberglass open top chambers

(OTCs) passively increased daily average temperature on the soil

surface by 0.58uC across seasons in the two years of experiment

(corresponding to an annual increase of 97 degree days). We also

achieved a 30% increase in winter precipitation with or without a

15% increase in summer precipitation by manually adding rain or

snow – these percentages are the extremes from regional climate

projections for this area [18,19]. Other vegetation was suppressed

in all plots to mimic the disturbed environments (e.g. overgrazed

pastures) in which this species attains maximum invasion success.

Although our increase in temperature was mild compared to

regional projections (increases of 2.9uC–5.3uC in annual surface

air temperature by the end of this century [19]), we found

significant responses of C. nutans to warming. Seedling emergence

in the fall was enhanced in warmed plots (2563% versus 1963%,

mean6s.e., n = 80, generalized linear mixed-effects model

(GLMM) with quasibinomial error structure to account for

overdispersion, n = 80, P,0.001). Warming also increased rosette

overwinter survival (9562% versus 8763%, binomial GLMM,

n = 80, P = 0.0085). Bolting probability was not different between

warmed and ambient plots for plants that survived the winter

(8664% versus 9063%, binomial GLMM, n = 79, P = 0.70).

Plant reproduction was significantly increased by warming. Both

mature flower head production (49.8465.60 versus 36.6564.08,

GLMM based on log linear transformed data, n = 77, P = 0.0028)

and total (including buds) capitulum production (76.0469.62

versus 57.4166.75, GLMM based on log linear transformed data,

n = 77, P = 0.028) were higher in warmed plots. Seed number per

capitulum was not affected by warming (522629 versus 476631,

GLMM, n = 77, P = 0.19). Precipitation addition in both winter

and summer had no significant effect on any of the above vital

rates. Increased precipitation in winter alone only reduced seed

number per capitulum (427650 versus 539628, GLMM, n = 77,

P = 0.0080).

We combined the percentage increases in seedling emergence

(+29.53%), survival (+9.35%), and total capitulum production

(+32.44%) due to warming, and decreases in seed number per

capitulum due to increased winter precipitation (220.79%) with a

baseline 464 demographic matrix model (based on vital rates for

an invasion experiment population at the same site from a

previous study [14], see also Text S1, Table S1, Table S2) to

calculate the long-term population growth rate l under three

climate change scenarios: warming, winter precipitation addition,

and warming with winter precipitation addition. We assumed that

the proportional responses to warming are size-independent, the

establishment rate of emerging seedlings is not changed under

warming, and all buds counted at harvest would have continued to

set seed. We projected an 87% increase in per capita population

growth rate under warming (680 versus 363), a 20% decrease

under winter precipitation addition alone (288 versus 362), and a

49% increase under both warming and increased winter

precipitation (539 versus 362).

In our study, plant height, a dispersal-related trait, was enhanced

in warmed plots by 11.88 cm, or 9% (151.7564.94 cm versus

139.8764.23 cm, GLMM, n = 77, P = 0.0033). Warming did not

have any significant effect on seed terminal velocity (0.7560.04 m/s

(ambient) versus 0.74 6 0.04 m/s (warmed), GLMM, n = 66,

P = 0.80), seed weight (3.4260.09 mg versus 3.3660.12 mg,

GLMM, n = 66, P = 0.80), or pappus diameter (21.6761.0 mm

versus 21.5861.0 mm, GLMM, n = 66, P = 0.81). Increased

precipitation did not have any significant effect on seed weight

(n = 66, GLMM, P = 0.90): 3.3860.09 mg (ambient), 3.386

0.16 mg (winter precipitation addition), 3.4660.18 mg (winter

and summer precipitation addition). The effects of precipitation

addition on pappus diameter and terminal velocity were not

consistent for the two cohorts (Table S1). Therefore the only

consistent and significant effects of climate change on dispersal are

mediated via the enhanced plant height at flowering. We calculated

dispersal kernels for both ambient and warmed conditions using the

Wald analytical long-distance dispersal (WALD) model [20,21]. We

parameterized the model with terminal velocities and plant

flowering height (assumed to be the same as seed release height)

from our experiment, while horizontal wind velocity data from a

nearby weather station collected during the main dispersal months

were used to estimate mean wind speed and a turbulence parameter

[14]. Increased plant flowering height under warming led to a

distinct dispersal kernel compared to the control (Figure 1); each

seed has a higher probability of travelling farther under warmed

than under ambient conditions.

Spatial population spread results from a combination of 1) local

demographic processes (which determine how many propagules

are produced) and 2) the dispersal process itself (which determines

how far each propagule moves). We coupled demographic models

with dispersal models to project the population spread rate, c*,

using integrodifference equations [13–15]. We used baseline data

from an earlier invasion study [14] and modified the models based

on our experimental results (Table S1, Table S2). The population

spread rate increased by 27% under warming (66 m/year versus

52 m/year, the medians of 100,000 simulations under increased or

ambient temperatures, see simulations in Figure 2). In other

Figure 1. Seed dispersal kernels for C. nutans grown in ambient
and warmed conditions. The bands (grey for ambient; pink for
warmed) illustrate the standard deviations based on bootstrapped
plant height from the experiment, while the lines represent the mean of
the bootstrapped curves (see Text S1).
doi:10.1371/journal.pone.0021725.g001
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words, it takes about 19 years for the invasion front to move 1 km

under ambient conditions, while only 15 years under warming.

Increased winter precipitation alone, which affected seed produc-

tion per capitulum, did not have a large impact on the spread rate

(50 m/year versus 52 m/year). Increased winter precipitation and

warming together led to a 23% increase in the spread rate (64 m/

year versus 52 m/year). This implies that warming (with or

without precipitation increases) is likely to cause more rapid spread

of this invasive species once it establishes, even in the absence of

other (e.g. human-mediated) dispersal pathways. We used a c*-

LTRE [14] approach to decompose the increase in c* under

warming with increased winter precipitation into contributions by

the parameter differences. Increased height made a much larger

contribution to increased spread rate than did the demographic

vital rates (Figure 3); warming-induced changes in plant height

may have the strongest influence on population spread of C. nutans

under climate change.

Discussion

As shown by our results, climate change affects many aspects of

species life histories. While enhanced emergence, survival and

reproduction directly contribute to local population dynamics

[22], altered dispersal characteristics can affect the ability of

offspring to arrive in suitable habitats and to buffer against harsh

environments spatially. Here warming enhances the spread rate of

an invasive wind-dispersed species through both demographic and

dispersal processes, with enhanced dispersal contributing dispro-

portionately to increased spread. This is because the invasion wave

speed is very sensitive to plant height [14]. While we parameter-

ized our model with data from an experimental population where

growing conditions were optimal for invasion (i.e. little competi-

tion and abundant resources), we also assessed the spread rate

using data from a naturally established population in Kansas.

Though its contribution diminishes compared to the increased

contribution of emergence (probably due to strong competition in

natural populations), increased dispersal still plays an important

role in increased spread under warming (Figure S1).

Our results suggest that the invasion of this species can be

exacerbated by climate change, resulting largely from enhanced

dispersal because of elevated plant height. Previous studies have

documented that many invasive species are able to track local

climate change, via adjusted phenology [23], improved establish-

ment [24], and enhanced biomass and reproduction [25–28]. Our

study demonstrates that some invasive species can also benefit

from enhanced dispersal-related traits, which may increase their

chance of reaching in newly suitable habitats. Furthermore,

although possible changes in dispersal processes accompanied with

climate change have been raised in recent reviews [7,16], these

studies consider extrinsic factors, such as altered transportation

and deliberate introduction, rather than the traits of the plant

itself. Our results, however, illustrate the possibility of altered plant

dispersal traits due to climate change, which can interact with

extrinsic factors involved in dispersal processes to produce

synergistic or antagonistic outcomes.

Our experiment was conducted to maximize the invasion

response of this species. In particular, plants were grown with

very little competition from surrounding vegetation, thus

mimicking scenarios in frequently disturbed areas, such as

overgrazed pastures. Spread rates in such habitats are projected

to increase under climate change, and our results suggest that

management efforts should be focused more on the control of

dispersal relative to demographic processes. While our study

focuses on the maximal responses of the species, future studies

should also address other biotic factors, such as the responses of

surrounding vegetation to climate change and thereby possibly

modified competition, and interference with dispersal. As well as

biotic responses, future research based on this approach may also

include environmental factors that affect dispersal processes, such

as changes in wind speed [29] and turbulence [30] under future

climate scenarios. For example, a recently published study by

Nathan et al. [31] combined demographic and dispersal processes

with projected wind speed changes to project wind-driven spread

of tree species under climate change. Such approaches will

complement biotic envelope models, most of which do not

address biotic processes such as population dynamics and

Figure 2. Visualizations of invasion waves in 20 years based on two random simulations. A) Ambient condition. B) Warmed condition.
Note that the front of the wave converged to a constant speed and shape after a few years.
doi:10.1371/journal.pone.0021725.g002
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dispersal [32]. Evaluations of species dispersal and spread

abilities, and changes in these abilities, under climate change

will provide important insights for both conservation of

endangered species, which often lack efficient dispersal, and

management of invasive species.

Materials and Methods

Study species
Carduus nutans L. (Asteraceae) is an introduced Eurasian weed,

which causes major economic problems in many regions in the

world [15]. C. nutans is a monocarpic, short-lived (winter annual in

our experiment) thistle and produces a large number of wind-

dispersed seeds [21].

Field site descriptions
We conducted our experiments at The Russell E. Larson

Agricultural Research Farm at Rock Springs, Pennsylvania, USA

(latitude 40.71u, longitude 277.94u). The field site was a former

pasture, which was dominated by Arrhenatherum elatius, Dactylis

glomerata, Elytrigia repens, Phleum pratense, Taraxacum spp., Plantago

lanceolata, Linaria vulgaris, Trifolium spp., and Galium spp. The field

site was disked and all aboveground vegetation was removed prior

to planting each cohort, to mimic the high invasion success of this

opportunistic species in disturbed habitats.

Treatments
Our climate manipulation incorporated both elevated temper-

ature and increased precipitation according to the regional climate

Figure 3. Changes in demographic and dispersal-related traits and their contributions to increased spread rate. A) Mean percentage
changes in demographic and dispersal- related traits. B) Their corresponding contributions to increased spread rate. Warming induced changes in fall
seedling emergence, survival, capitulum production, and flowering plant height: W and in red. Mean percentage change in seed number per
capitulum due to increased winter precipitation: P and in blue. Solid: demographic vital rates. Hatched: dispersal-related traits.
doi:10.1371/journal.pone.0021725.g003
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projections in the Northeastern U.S. Open top chambers (OTCs)

were used to elevate temperature in the experiment. These OTCs

were 0.4 m in height and 1.5 m in basal diameter, and were

constructed according to the International Tundra Experiment

Manual [33]. Cumulative degree-days for C. nutans, calculated

based on McCarty [34], were significantly higher in plots with

OTCs, with the largest increase in each spring (81.40611.65

degree-days). OTCs did not have a significant effect on soil

moisture or snow depth based on field measurements. Therefore

we assume that elevated temperature was the predominant abiotic

factor altered by the OTCs. We manipulated both winter

(December - February) and summer (June–July) precipitation.

Passive precipitation collectors were used to collect natural

precipitation in the field. Rain and snow were manually added

after each precipitation event.

Experimental design
In each cohort, we set up ten blocks, each containing four plots

(one control, one with warming, one with added precipitation, and

one with both treatments). As most climate projections agree with

increasing future winter precipitation in U.S. Northeast, whereas

summer projections are highly variable [35], precipitation plots in

half of the blocks received winter precipitation addition only

(+30%), while precipitation plots in the other blocks also received

summer addition (+15%). In each fall, we transplanted four three-

week-old rosettes into 2 m62 m plots, either with or without

OTCs. Field censuses were conducted weekly in the following

growing season. Other plot vegetation was kept short by hand

clipping. We terminated our experiments in the following late July

by harvesting all aboveground biomass. Capitula were separated

and counted based on developmental stage. One mature flower

head per plot was used to examine seed production per capitulum,

seed traits, and terminal velocities (i.e. the speed at which a

propagule eventually falls in still air when drag equals the force of

gravity; faster drops lead to shorter travel distances), following the

methods of Marchetto et al. [36]. Fall seedling emergence was

examined by sowing twenty-five seeds into the center of each plot

in the October of 2008 and 2009. Emerged seedlings were

recorded and killed every two days until December.

Statistics
Analyses based on plot averages were performed in R [37] using

mixed linear models (lmer) with appropriate error structure

specifications or transformations of the responses. Shapiro-Wilks

tests were used to verify normality. Full models started with fixed

effects of warming, precipitation and their interaction (except for

seedling emergence where precipitation was not relevant), and the

random effects of cohort and block. Initial rosette size at

transplanting was a covariate (except for seedling emergence).

Stepwise model simplifications were based on lower AIC values.

Bolting probability was analyzed as the conditional probability

given rosettes survived the winter. Responses of reproduction and

height were averaged for flowering plants in each plot before the

analyses. The arithmetic means of seed weight and pappus

diameter, as well as the geometric mean of terminal velocity of

seeds within each flower head were used when analyzing effects of

climate change on seed dispersal.

Models
We used intergrodifference equations to couple matrix models

of population dynamics with a WALD model of dispersal to

calculate spread rates (Text S1). We used the c*- LTRE technique

to decompose the increase in spread rate into contributions of

model parameter changes as in [14].

Supporting Information

Figure S1 Modelling results based on a natural popu-
lation. A) Mean percentage changes in fall seedling emergence,

survival, capitulum production, and flowering plant height due to

warming (W, in red) and mean percentage change in seed number

per capitulum due to both warming and increased winter

precipitation (WP, in purple). B) Their corresponding contribu-

tions to increased spread rate. Solid: demographic vital rates.

Hatched: dispersal-related traits. The spread rate was 21 m/year

for ambient treatments and 32 m/year for warmed treatments

with increased winter precipitation. Spread rates were calculated

based on a natural population in Kansas [3] using the c*-LTRE

technique. The calculated percentage change in reproduction

(+4.9%) combines both increased capitulum production and

decreased seed production per capitulum, as the original data

only contained the product of these two terms: seed production per

flowering plants [9].

(EPS)

Table S1 Summary of the main results of the study.

(DOC)

Table S2 Vital rates and dispersal-related parameters
used in the demographic models and spread models.

(DOC)

Text S1 Supporting Information.

(DOC)
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