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Abstract

Background: The development of plasma biomarkers could facilitate early detection, risk assessment and therapeutic
monitoring in Alzheimer’s disease (AD). Alterations in ceramides and sphingomyelins have been postulated to play a role in
amyloidogensis and inflammatory stress related neuronal apoptosis; however few studies have conducted a comprehensive
analysis of the sphingolipidome in AD plasma using analytical platforms with accuracy, sensitivity and reproducibility.

Methods and Findings: We prospectively analyzed plasma from 26 AD patients (mean MMSE 21) and 26 cognitively normal
controls in a non-targeted approach using multi-dimensional mass spectrometry-based shotgun lipidomics [1,2] to
determine the levels of over 800 molecular species of lipids. These data were then correlated with diagnosis, apolipoprotein
E4 genotype and cognitive performance. Plasma levels of species of sphingolipids were significantly altered in AD. Of the 33
sphingomyelin species tested, 8 molecular species, particularly those containing long aliphatic chains such as 22 and 24
carbon atoms, were significantly lower (p,0.05) in AD compared to controls. Levels of 2 ceramide species (N16:0 and N21:0)
were significantly higher in AD (p,0.05) with a similar, but weaker, trend for 5 other species. Ratios of ceramide to
sphingomyelin species containing identical fatty acyl chains differed significantly between AD patients and controls. MMSE
scores were correlated with altered mass levels of both N20:2 SM and OH-N25:0 ceramides (p,0.004) though lipid
abnormalities were observed in mild and moderate AD. Within AD subjects, there were also genotype specific differences.

Conclusions: In this prospective study, we used a sensitive multimodality platform to identify and characterize an essentially
uniform but opposite pattern of disruption in sphingomyelin and ceramide mass levels in AD plasma. Given the role of brain
sphingolipids in neuronal function, our findings provide new insights into the AD sphingolipidome and the potential use of
metabolomic signatures as peripheral biomarkers.
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Introduction

As the world population ages, the number of older adults

developing dementia is estimated to quadruple by mid-century to

over 106 million worldwide [3]. Alzheimer’s disease (AD) is the

most common dementia among all the clinically-recognized

dementias in the aging population [4,5]. Although the cause is

not known, there are profound biochemical alterations in multiple

pathways in the AD brain including changes in amyloid-beta

protein metabolism, tau phosphorylation, membrane lipid dysreg-

ulation and synaptic neurotransmission. Recent pathological,

biochemical, and genetic studies have led to major insights into

AD pathogenesis [6]. Among the encouraging observations are

links made between cardiovascular risk conditions, lipid metabo-

lism, and the development of AD [7]. Further, the apolipoprotein

E4 (ApoE4) genotype, a major determinant of risk for sporadic

AD, is a component of lipoproteins in plasma and brain and may

lie at the crossroads between the lipidome and dementia [8].

These insights suggest that treatments aimed at reducing risk

conditions may hold promise to delay the onset of AD dementia,

slow the progression, and possibly prevent AD altogether. Since

disease modifying drugs are likely to be most effective early in the

disease course, the discovery of highly sensitive biomarker(s) for

the early diagnosis of AD (at mild or even preclinical stages) is
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extremely important. Currently, the sensitivity and specificity of

the clinical diagnosis of AD is quite low (approximately 80%; [9])

and the currently available central AD biomarkers (MRI

volumetrics, FDG-PET, CSF assays) perform at similar accuracy

levels [10,11]. Moreover, effective biomarkers are also very useful

in assessing disease progression or response to treatment. The

cellular lipidome, consisting of hundreds of thousands of lipid

species, represents a rich source of biomarkers for the early

diagnosis of AD.

Metabolomics tools enable us to study the metabolome, the

repertoire of small molecules present in cells and tissue

[12,13,14]. The identities, concentrations, and fluxes of these

substances are the final product of interactions between gene

expression, protein expression, and the cellular environment.

Metabolomics tools have been used to characterize metabolic

signatures for several diseases including depression [15,16,17],

motor neuron disease [18], Parkinson’s disease [19], cocaine and

opiate addiction [20,21], schizophrenia [22,23,24], and Alzhei-

mer’s Disease [25]. As stated previously, there is now extensive

preclinical and in-vitro literature documenting a relationship

between altered lipid metabolism and amyloidogenesis, oxidative

stress and apoptosis [26]. Previous studies with post-mortem

brain tissue samples have demonstrated altered lipidomes at the

different stage of AD pathogenesis (reviewed in [27]. For

example, multiple classes of sphingolipids are altered not only

at the late stage of the disease [28], but also at the earliest

clinically recognizable stage of AD [29,30]. All major classes of

phospholipids are ubiquitously decreased at the late stage of AD

[31]. Among these, the levels of plasmalogen (a major component

in nerve tissue membranes counting for up to 85% of

ethanolamine glycerophospholipid, or ,30% of total phospho-

lipids of these membranes) are gradually reduced as progress of

AD severity [32]. It is conceivable that these changes could lead

to or be parallel with the changes of either the content or the

composition or both of the lipid species in plasma of AD patients.

There are many obvious advantages to a peripheral plasma

marker (over central markers) in terms of cost, risks and ability to

monitor individuals over time. A very recent study has shown a

promising relationship between altered plasma ceramide levels

and hippocampal volume loss in mild cognitive impairment

supporting the hypothesis that disruptions in ceramide metabo-

lism may be linked to early neurodegenerative and pathologic

changes [33]. However, the lack of sensitive and efficient ‘‘mega’’

lipid biochemistry platforms has limited the ability to simulta-

neously study the dozens of different pathways that may be

affected in AD in relation to clinical phenotype and genotype.

Shotgun lipidomics studies the pathways and networks of

cellular lipids in biological systems on a large scale. It involves the

identification and quantitation of hundreds of cellular lipid

molecular species as well as their interactions with other species.

Multi-dimensional mass spectrometry-based shotgun lipidomics

(MDMS-SL) is one of the leading analytic platforms in current

lipidomics practices due to its high accuracy, efficiency, sensitivity,

and reproducibility [1,2]. In this study, we used a non-targeted

MDMS-SL approach to measure the levels of over 800 molecular

species of choline glycerophospholipid (PC), lysoPC (LPC),

ethanolamine glycerophospholipid (PE), phosphatidylinositol,

sphingomyelin (SM), ceramide, and triacylglycerol (TAG) in the

plasma of AD individuals and cognitively normal controls. The

main goals of the study were to examine the hypothesis that the

plasma lipidome is altered in early AD, and secondary goals were

to characterize lipid changes that might be differentially related to

cognitive status or genotype as well as to identify potential lipid

pathways that might be disrupted in AD.

Materials and Methods

Materials
Synthetic phospholipids including 1,2-dimyristoleoyl-sn-glycero-

3-phosphocholine (14:1-14:1 PC), 1,2-dipalmitoleoyl-sn-glycero-3-

phosphoethanolamine (16:1-16:1 PE), 1,2-dipentadecanoyl-sn-

glycero-3-phosphoglycerol (15:0-15:0 PG), 1-myristoyl-2-hydrox-

yl-sn-glycero-3-phosphocholine (14:0 LPC), N-lauroyl sphingomy-

elin (N12:0 SM), and N-heptadecanoyl ceramide (N17:0 ceramide)

were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL,

USA). Note that the prefix ‘‘N’’ denote the amide linkage of the

fatty acyl chain. Triheptadecenoylglycerol (T17:1 TAG) was

purchased from Nu-Chek Prep, Inc. (Elysian, MN, USA).

Deuterated cholesterol was purchased from Cambridge Isotope

Laboratories, Inc. (Cambridge, MA, USA). All the solvents were

obtained from Burdick and Jackson (Honeywell International Inc.,

Burdick and Jackson, Muskegon, MI, USA). All other chemicals

were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Subjects
AD (n = 26) and elderly control subjects (n = 26) were recruited

prospectively from the Joseph and Kathleen Bryan Alzheimer’s

Disease Research Center (Bryan ADRC) and the Department of

Psychiatry, both at Duke University. Patients included in the study

had diagnoses of Probable AD (NINDS) using current criteria

following history and informant interview, complete neurological

examination, cognitive screening and securing standard blood

chemistries, imaging, and laboratory studies. The Mini-Mental

State examination (MMSE), a brief screening tool of cognitive

status was used to categorize AD patients as mild or moderate,

consistent with routine clinical practice. Normal controls were

participants who were determined to be free of dementia as well as

other significant neuropsychiatric disorders after reviewing their

medical history, informant interviews, functional status and

neuropsychological performance as well as ratings of mood and

clinical examinations. Our entry criteria excluded subjects with

current major depression or substance abuse, subjects with other

neurologic disorders such as Parkinson’s disease or stroke, and

those who were unwilling or unable to perform cognitive testing.

Of the 26 AD subjects, 17 had mild AD (MMSE$20) and others

Table 1. Clinical and demographic characteristics of
Alzheimer’s subjects and controlsa.

Control AD P Test

n 26 26

Age Range 57–87 61–89

Age, Mean (SD) 73.0 (7.7) 77.2 (6.5) 0.074 WT

% Male 42 46 1 FET

Years Education, Mean (SD) 16.0 (2.6) 14.4 (2.8) 0.062 WT

MMSE, Median (MAD) 29.0 (1.5) 21.0 (3.7) 2.50E-09 WT

Logical Memory I, Median (MAD) 17.0 (4.4) 2.0 (1.5) 1.00E-09 WT

Logical Memory II, Median (MAD) 15.5 (3.7) 0.0 (0.0) 5.10E-10 WT

% Using Statins 27 42 0.38 FET

% with APOE4 Genotype 25% 67% - -

aWT, Wilcoxon rank-sum test, two-sided; FET, Fisher’s exact test, two-sided; SD,
standard deviation; MAD, median absolute deviation; MMSE, Mini-Mental State
Examination.

doi:10.1371/journal.pone.0021643.t001
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had moderate AD. The demographic and clinical characteristics of

subjects appear in Table 1.

Ethics statement
All normal control subjects and AD patients provided informed

consent prior to collection of any data. For AD patients, informed

consent was also obtained from their legally authorized represen-

tative/family member if deemed appropriate. This research was

approved by the Duke University Medical Center institutional

review board and was conducted according to the principles

expressed in the Declaration of Helsinki.

Lipid sample preparation from human plasma
Fasting samples were collected and cold stored using a

standardized procedure. After fasting overnight, a 10 mL

K3EDTA tube of blood was collected via venipuncture. The

blood was mixed by gentle inversion 8–10 times and placed on ice

until centrifuged for 30 minutes at 3500 rpm’s at 4uC. After

centrifuging, plasma was aliquoted and then frozen at 280uC. All

samples were run blinded. A protein assay on each plasma sample

was performed by using BCA method with bovine albumin as

standard. After 200 ml of plasma from each plasma sample was

transferred to a disposable culture borosilicate glass tube

(166100 mm), a premixed lipid solution used as internal standards

for quantification of lipid species was added to each plasma sample

based on its protein concentration. These internal standards

include 15:0-15:0 PG (150 pmol/mg protein), 16:1-16:1 PE

(15 pmol/mg protein), 14:1-14:1 PC (2000 pmol/mg protein),

T17:1 TAG (3000 pmol/mg protein), 14:0 LPC (1000 pmol/mg

protein), N12:0 SM (500 pmol/mg protein), N17:0 ceramide

(15 pmol/mg protein), and others. Addition of these internal

standards allows the final quantified lipid content to be normalized

to both the protein content and/or the plasma sample volume and

allows the elimination of a potential loss from the incomplete

recovery. These internal standards have been selected because

they only represent %0.1% of the endogenous cellular lipid mass

as demonstrated by ESI/MS lipid analysis.

Lipid extracts were prepared by using a modified procedure of

Bligh and Dyer as previously described [34] and each was

resuspended in 500 ml of dichloromethane/methanol (1:1, v/v)

which corresponded to a concentration of 3 nmol/ml. A portion of

each individual lipid extract (approximately 100 ml) was treated

with LiOMe and followed by being washed with hexane as

previously described [35]. The treated lipid samples were used for

Figure 1. Representative tandem mass spectrometric analyses of lipid classes present in a human plasma lipid extract. Lipid samples
were prepared and mass spectrometric analysis of individual sample was performed as described in ‘‘Material and Methods’’ in details. Panel A shows
a mass spectrum of NLS183 (corresponding to the neutral loss of phosphocholine) displaying the presence of PC and SM species in the hexane-
washed lipid solution; the spectrum was acquired in the positive-ion mode after addition of a small amount of LiOH to the lipid solution. Panel B
shows a mass spectrum of NLS213 (corresponding to the neutral loss of phosphocholine plus methyl aldehyde) displaying the presence of SM species
in the LiOMe-treated lipid solution; the spectrum was acquired in the positive-ion mode after addition of a small amount of LiOH to the lipid solution.
Panel C shows a mass spectrum of NLS222 (corresponding to the neutral loss of Fmoc) displaying the presence of PE species in the hexane-washed
lipid solution; the spectrum was acquired in the negative-ion mode after in situ addition of Fmoc-Cl to the lipid solution. Panel D shows a mass
spectrum of NLS256 (corresponding to the neutral loss of 2-palmitoleyl aldehyde and a water molecule) displaying the presence of ceramide species
in the LiOMe-treated lipid solution; the spectrum was acquired in the negative-ion mode after addition of a small amount of LiOH to the lipid
solution. IS denotes internal standard; NLS stands for neutral loss scan.
doi:10.1371/journal.pone.0021643.g001
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the analysis of the sphingolipidome of each individual plasma

sample. Another portion of each individual original lipid extract

was washed with 2 ml of hexane for twice to remove most of the

non-polar lipids such as TAG, cholesterol, and cholesterol esters

which are very abundant in plasma lipid extracts and interfere

with the quantification of phospholipid classes. The residue lipid

Figure 2. Representative 2D MS analyses of TAG species in a human plasma lipid extract. Neutral loss scans (NLS) of all naturally-
occurring aliphatic chains (i.e. the building blocks of TAGs) of a human plasma lipid extract were used to determine the identities of each lithiated
molecular ion, deconvolute isomeric species, and quantify individual TAG species by comparisons with a selected internal standard (i.e., T17:1 TAG,
shown in NLS268). Collision activation was performed with collision energy of 32 eV and gas pressure of 1 mT on a triple quadrupole mass
spectrometer (TSQ Quantum Ultra Plus, Thermo Fisher Scientific, San Jose, CA, USA). All displayed mass spectral traces are normalized to the base
peak in each trace.
doi:10.1371/journal.pone.0021643.g002
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solution after washing was used for the analysis of phospholipids by

using intrasource separation followed by employing multi-

dimensional mass spectrometric analysis.

Lipidomic analysis of human plasma lipid extracts by
multi-dimensional mass spectrometry-based shotgun
lipidomics (MDMS-SL)

A triple-quadrupole mass spectrometer (Thermo Fisher TSQ

Vantage, San Jose, CA, USA) equipped with an automated

nanospray apparatus (i.e., Nanomate HD, Advion Bioscience Ltd.,

Ithaca, NY) and Xcalibur system software were utilized in the

study as previously described [36]. Each originally-prepared lipid

extract was diluted to ,50 pmol/ml with dichloromethane/

methanol/isopropanol (1:2:4, v/v/v) prior to infusion to the mass

spectrometer for the analyses of neutral lipids including TAG,

cholesterol, and cholesterol esters. Each lipid solution prepared

after treatment with LiOMe or after washing with hexane was also

properly diluted prior to infusion to the mass spectrometer for the

analyses of sphingolipids or phospholipids, respectively. Proper

dilution of the lipid solution is crucial for quantification to

guarantee no lipid aggregation is formed during analysis and

minimizing any effects of residual inorganic components carried

over during lipid extraction on ion suppression and/or chemical

noise. The diluted lipid extract was directly infused through the

nanomate device. Typically, a 1-min period of signal averaging in

the profile mode was employed for each survey scan. For tandem

mass spectrometry, a collision gas pressure was set at 1.0 mTorr

but the collision energy was varied with the classes of lipids as

described previously [2]. Typically, a 2 to 5-min period of signal

averaging in the profile mode was employed for acquisition of each

tandem MS spectrum. All the MS spectra and tandem MS spectra

were automatically acquired by a customized sequence subroutine

operated under Xcalibur software.

Mass spectra in survey scanning mode were acquired after

intrasource separation of each prepared and properly diluted lipid

solution as previously described [37,38]. TAG species were

Table 2. Lipid classes, species and their mass levels in
Alzheimer and control subjectsa.

Lipid Class # of Species
Control
Mean ± SD

AD
Mean ± SD P

PC 65 3069 2565.1 0.022

PE 86 1.6660.54 1.5360.52 0.41

PI 25 0.5160.15 0.4460.15 0.11

SM 33 9.3563.78 7.3362.38 0.026

LPC 14 2.5760.70 2.4160.59 0.39

Ceramide 29 0.2160.08 0.2360.07 0.26

Free.Chol. 1 1666.2 1666 0.85

Chol.Ester NA 32613 32613 0.96

TAG .500 11.665.5 13.566.0 0.24

aSD denotes standard deviation. P values were computed by Welch two-sample
t-test. All the results are obtained by shotgun lipidomics as described under
Materials and Methods and presented in unit of nmol/mg protein. See text for
abbreviations.

doi:10.1371/journal.pone.0021643.t002

Figure 3. Mass levels of N22:1 (panel A) and N24:1 (panel B)
sphingomyelin species in AD and healthy controls.
doi:10.1371/journal.pone.0021643.g003

Table 3. Sphingomyelin species significantly different
between AD and control groupsa.

Sphingomyelin Species P-value Q-value

N22:1 0.006 0.146

N20:0 0.012 0.146

N22:0 0.014 0.146

N23:0 0.020 0.146

N23:1 0.025 0.146

N24:1 0.029 0.146

N21:0 0.034 0.146

N24:0 0.035 0.146

N17:1 0.073 0.192

N24:2 0.077 0.192

N18:0 0.084 0.192

aas determined by Wilcoxon rank sum tests at a p-level of ,0.1.
Q values are cumulative false discovery rates estimated by the R qvalue
package.
doi:10.1371/journal.pone.0021643.t003
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identified and quantified directly from the originally-prepared lipid

solution as described in detail [39]. Cholesterol and cholesterol

esters were quantified directly from the originally-prepared lipid

solution as previously described [40]. Ceramide and SM species

were identified and quantified directly from lipid solutions after

treatment with LiOMe or hexane washing [41,42]. PC and LPC

species were identified and quantified directly from lipid solution

after washing with hexane as described [42]. PE and PI species

were identified and quantified directly from lipid solution with

hexane washing as previously described in detail [2,43]). In

summary, each individual lipid species corresponding to each of

the ion peaks was identified using multi-dimensional mass

spectrometry through building block analyses [2]. The identified

species were quantified using a two-step approach as previously

described [2]. First, the abundant and non-overlapping molecular

species of a class shown in one of the survey scans was quantified

by comparison with a pre-selected internal standard of the class

after 13C de-isotoping. Next, some or all of the determined

molecular species of the class (plus the pre-selected internal

standard) were used as standards to determine the mass content of

other low-abundance or overlapping molecular species using one

or multiple tandem mass traces (each of which represents a specific

building block of the class of interest) by two-dimensional MS.

APOE Genotyping
APOE genotypes were determined using TaqMan-based allelic

discrimination assay (Applied Biosystems). Specifically, APOE

status was established using two separate genotypes: (1) rs429358

334 T/C (ABI assay ID: C_3084793_20), and (2) rs7412 472T/C

(ABI assay ID: C_904973_10). Assays were conducted per

manufacturer’s protocol, using 10 ng of DNA from each subject

per assay. Fluorescence outputs were quantified in real time using

a 7900HT Fast Real Time PCR System and the data will be

analyzed using SDS software v.2.2.2 (Applied Biosystems). APOE

Figure 4. Mass levels of N16:0 (panel A) and N21:0 (panel B)
ceramide species in AD and healthy controls.
doi:10.1371/journal.pone.0021643.g004

Table 4. Ceramide species significantly different between AD
and control groupsa.

Ceramide Species P-value Q-value

N21:0 0.027 0.146

N16:0 0.030 0.146

N26:0 0.058 0.192

OH-N24:2 0.063 0.192

OH-N24:1 0.077 0.192

N28:2 0.078 0.192

N23:0 0.081 0.192

aas determined by Wilcoxon rank sum tests at a p-level of ,0.1.
Q values are cumulative false discovery rates estimated by the R qvalue
package.
doi:10.1371/journal.pone.0021643.t004

Table 5. Ratios of ceramides to sphingomyelins with same
fatty acid chain show multiple significant differences between
Alzheimer’s patients and controlsa.

Fatty Acid Chain
Control
Mean ± SD

AD
Mean ± SD P

N22:0 0.02860.013 0.04760.027 0.00094*

N23:0 0.08560.046 0.13960.071 0.002*

N16:0 0.00160.001 0.00160.001 0.00214*

N21:0 0.00160.001 0.00460.005 0.00595

N24:1 0.02760.013 0.04260.026 0.00785

N24:0 0.35260.167 0.54460.359 0.01367

N24:2 0.00360.002 0.00560.005 0.0218

N18:1 0.0000560.00015 0.0004160.002 0.31139

N15:0 0.000160.001 060 0.33628

N22:1 0.0003660.00049 0.00160.001 0.45193

N23:1 0.00160.002 0.00160.002 0.62063

N19:0 0.00560.019 0.00160.002 0.63989

N22:2 0.00260.006 0.00160.002 0.77069

aP values were computed by Wilcoxon rank sum test, two sided.
*denotes significance at a Bonferroni corrected alpha of 0.0038.
doi:10.1371/journal.pone.0021643.t005

Lipidomics in Alzheimer’s Disease
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genotype assignments were grouped for analyses as E4+ or E42.

APOE genotype data was only available for 49 subjects (34

controls and 15 AD, See Table 1).

Statistical Analysis
We performed statistical analyses using the R statistical

programming system [44] (http://www.R-project.org). We treated

the variables MMSE, Logical Memory I, and Logical Memory II

as ordered categorical variables, and therefore, rather than

reporting means and standard deviations, we report medians

and median absolute deviations (R function ‘mad’, defined as

1.4826 times the median of the absolute value of the deviation

from the median). We used two-sided Wilcoxon rank sum tests for

differences in location for these variables as well as for age and

years of education. We used two-sided Fisher’s exact tests for

independence of affection status from each of (a) the number of

males, (b) the number of subjects using statins, and (c) the number

of subjects with at least one APOE e4 allele. For tests of differences

between two independent groups, we used Wilcoxon rank sum

tests to compute p-values, as the underlying variables are not in

general normally distributed. We calculated Q values (cumulative

false discovery rates) using the R ‘qvalue’ package [45]. We used

two-sided Wilcoxon signed rank tests of the null hypothesis that

the distribution of differences in standardized means is symmetric

around 0 (R function ‘wilcox.test’).

Results

Shotgun lipidomics analysis of plasma samples
We analyzed 9 lipid classes in the study including choline

glycerophospholipid (PC), lysoPC (LPC), ethanolamine glycero-

phospholipid (PE), phosphatidylinositol, sphingomyelin (SM),

ceramide, triacylglycerol (TAG), cholesterol and cholesterol esters

by multi-dimensional mass spectrometry-based shotgun lipidomics

[1,2]. This platform has previously employed for quantitative

analysis of lipidomes (e.g., brain tissues and cerebrospinal fluid)

from AD patients [29,46]. A few representative tandem MS

spectra for identification and second step quantification of PC, PE,

SM, and ceramide species were shown in Figure 1. A two

dimensional mass spectrum for identification and quantitation of

TAG species was also illustrated (Figure 2). For example, the

primary ion at m/z 837.7 was crossed with the 14:0, 16:0, 16:1,

18:0, 18:1, and 18:2 fatty acyl building blocks (see the broken line

in Figure 2). A lithiated triacylglycerol species at m/z 837.7 must

contain 53 total carbon atoms with 2 double bonds or 54 total

carbon atoms with 9 double bonds, and the ion intensities resulting

from the neutral loss of the three acyl chains from a given TAG

molecule are nearly equal [39]. Thus, isomeric TAG species of

14:0-18:1-18:1, 14:0-18:0-18:2, 16:0-16:0-18:2, and 16:0-16:1-

18:1 were identified. Other TAG species corresponding to other

primary ions were identified similarly. The numbers of molecular

species and the total masses of each individual lipid class were

Figure 5. Ratios of specific ceramides to the sphingomyelins with the same fatty acid chains. See Table 5 for P values.
doi:10.1371/journal.pone.0021643.g005
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tabulated (Table 2). For example, we identified 65 PC molecular

species present in human plasma lipid extracts with mass levels of

3069 and 2565 nmol/mg protein (i.e., 18906567 and

15756315 nmol/ml) in control and AD individuals, respectively

(p = 0.022). These results are well comparable with those

determined by LC-MS, which determined a total mass of

1974 nmol/ml from 31 PC species [47]. In exploratory analyses,

the mass levels of total PC and SM were lower in AD patients in

comparison to the control group (Table 2). Since we determined

over 800 molecular species and covered the categories of

(phospho)glycerolipids, sphingolipids, and sterols in the study, it

is very difficult to process the dataset and make a simple

comparison. Accordingly, in the current report, we mainly focused

on the detailed analyses of sphingolipids at the level of individual

molecular species.

Mass levels of sphingomyelin species in AD patients
Wilcoxon rank sum tests revealed significant differences in the

quantified sphingomyelin species between the AD and control

groups. Of the 33 SM species tested, we found that 8 SM

molecular species, particularly those containing long aliphatic

chains such as 22 and 24 carbon atoms, were significantly lower

(p,0.05) in AD patients as compared to the age-matched

cognitively normal controls (Table 3). For example, Figure 3A

displays the distribution of the mass levels of SM species N22:1 in

the AD and control groups and Figure 3B shows the mass

Figure 6. Rank of the changed mean mass levels of individual sphingomyelin and ceramide molecular species in all AD patients
relative to the normal controls (panel A) and the differences in sphingomyelins and ceramides between patients with moderate
Alzheimer’s disease (MMSE,20) and patients with mild Alzheimer’s disease (MMSE. = 20) (panel B). The Y axes show the standardized
differences in lipid level: lipid levels were standardized to a mean of 0 and standard deviation of 1 across all samples before ranking and plotting. For
Alzheimer’s disease versus controls, P = 1.661029 for sphingomyelins and P = 0.00034 for ceramides (Wilcoxon signed rank test two sided on means
over the standardized data). For moderate versus mild Alzheimer’s disease, P = 7.161028 for sphingomyelins and P = 0.10 for ceramides.
doi:10.1371/journal.pone.0021643.g006
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distribution of N24:1 SM species between the groups. The mass

levels of additional 6 sphingomyelin species are different between

AD and control groups at the p,0.1 level.

Mass levels of ceramide species in AD patients
In contrast to the reduction of sphingomyelin mass levels in

plasma of AD patients, we identified significantly increased mass

levels of 2 ceramide species (N16:0 and N21:0) (p,0.05) (see

Figure 4 below for distribution in individual patients between the

groups) and of other 5 species at the p,0.1 level in plasma of AD

patients in comparison to those of controls (Table 4). The rest of

the ceramide species were not significantly different between the

AD and control groups.

Ratios of ceramide to sphingomyelin species containing
identical fatty acyl chain

We computed ratios of ceramides to sphingomyelins, and then

used Wilcoxon rank sum tests to compare ratios between groups.

Numerous ratios differed significantly between the groups. The

ratios appeared to discriminate AD versus controls more robustly

than the differences seen with individual ceramide or sphingomy-

elin species (Table 5 and Figure 5 compared to Tables 2 and 3 and

Figures 3 and 4, respectively).

Sphingolipidome Alterations in Mild versus Moderate AD
The rank of the mean mass levels of all determined individual

SM and ceramide species indicates that the reduction of SM mass

levels and the increases in ceramide mass levels in AD plasma

samples are essentially in uniformity, with only a few exceptions

(two SM species and four ceramide species which are located at

the end of small changes) (Figure 6A).

Identical data analysis was performed to compare the mass

levels of these classes in mild AD patients (MMSE. = 20) and in

moderate AD patients (MMSE,20) relative to the normal

controls, respectively. We found that the changes of both lipid

classes in either mild AD patients (p = 2.3e-10 for SM and

p = 0.021 for ceramides) or moderate AD patients (p = 0.0066 for

SM and p = 0.00013 for ceramides) relative to the controls are

significant (Figure 6B).

Mass levels of many sphingomyelin and ceramide species were

correlated with AD severity (Figure 7). For example, the rank of

AD severity (i.e., MMSE) was significantly correlated with the rank

of the altered mass levels of both N20:2 SM and OH-N25:0

ceramide (p values of 0.00328 and 0.00379, respectively).

Exploratory analyses of the effects of statins on mass
levels of SM and ceramides

Concomitant statin use is common in the elderly and may

confound the identification of the altered plasma SM and

ceramide profiles in AD. Our data suggests that statins

significantly lowered levels of both SM and ceramides in both

AD and controls (Figure 8). However, this effect does not

significantly affect our main finding of lower SM mass levels and

higher ceramide contents in AD patients relative to the controls

(Figure 8).

Effect of APOE4 genotype on the mass levels of plasma
lipidome

In exploratory analyses, there was no significant relationship

between APOE genotypes and the altered SM and ceramide

profiles. However, mass levels of a few plasma lipid classes

including SM, phosphatidylcholine, and cholesterol were signifi-

cantly lower in AD patients carrying APOE4 allele(s) than those

carrying other APOE isoforms, but such mass differences were not

present in normal controls (Figure 9).

Discussion

This is the first prospective study, to our knowledge, to utilize a

highly efficient multidimensional shotgun lipidomic platform to

examine over 800 lipid species in plasma of a well characterized

sample of AD and control subjects. The median MMSE of our AD

was 21 which is in the mild range, but we also included patients

Figure 7. Correlation of the rank of the changed mean mass
levels of sphingomyelin and ceramide species with the rank of
AD severity. P values are based on Pearson’s product moment
correlation coefficient between the ranks as plotted. The lines represent
linear regressions of the ranks of the MMSE scores against the ranks of
the lipids.
doi:10.1371/journal.pone.0021643.g007
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with moderate AD in order to represent the range of severity seen

usually in outpatient clinics. There were several key findings that

emerged: First, we demonstrated significant reductions of

sphingomyelin mass and significant increases in ceramide content

in plasma of AD patients. Second we demonstrated that the rank

order of these opposing changes are essentially species specific and

uniform. Third, we showed that ratios of SM and ceramide species

with identical fatty acyl chains results in more robust discrimina-

tion than either metabolite alone. Fourth, we showed that our

findings are seen both in mild and moderate stages of AD with

some metabolites also showing correlations with cognitive

performance. In addition, although the numbers of samples

genotyped are small our data suggest ApoE4 genotype specific

metabolite differences in AD. The small sample size also made it

Figure 8. Lower sphingomyelins and higher ceramides in Alzheimer’s patients are independent of statin use. Panel A shows the
differences in sphingomyelin and ceramide mass levels between AD patients and controls who were taking statins. For this comparison, P = 761024

for sphingomyelins and P = 0.00054 for ceramides (Wilcoxon signed rank test). Panel B shows the differences of sphingomyelin and ceramide mass
levels between AD patients and controls who were not taking statins. For this comparison, P = 3.261028 for sphingomyelins and P = 0.0056 for
ceramides (Wilcoxon signed rank test).
doi:10.1371/journal.pone.0021643.g008
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difficult to account for interference from systemic metabolism and

the stage of disease development. However, the analyses reported

in this paper were meant to be hypotheses generating and we hope

that these preliminary findings will stimulate further studies.

Concomitant use of statins did not confound our main findings

notably.

Previous studies have found that AD patients had higher levels

of ceramides in the middle frontal cortex [30] and white matter

[29]; levels peaked in early mild dementia (CDR = 0.5) [29]. One

CSF study reported higher ceramide levels in moderate versus

mild or severe AD [48], while another examining brain tissue

reported that the gene expression patterns of enzymes participat-

ing in the sphingolipid metabolism pathway varied by AD severity

[49]. Elevated SM levels were found in the inferior parietal lobe of

AD patients, and had a strong positive correlation with the

number of amyloid-beta plaques [50]. In contrast, one study

reported lower SM levels in the middle frontal gyrus of AD

patients [30]. The conflicting results could be due to the stage of

the disease process studied. A recent study with human plasma has

found that serum SM and ceramides varied by time to onset of

memory impairment, i.e., the levels were higher pre-symptomat-

ically but lower at the time of impairment but also that higher

ceramide levels in prodromal AD was associated with greater

hippocampal atrophy [33]. Our findings are consistent with those

reported previously in the literature, but also extend them by

providing a deeper and broader characterization at the molecular

species levels and providing correlations with dementia severity

and genotype.

While the present results are intriguing, the exact biochemical

mechanism(s) leading to the reduction of these peripheral blood

lipids in people with memory loss still remains unknown. However,

investigators have speculated that changes in blood components

may be representative of structural and metabolic changes in the

brain [33,51]. SM species are important cellular membrane

constituents which are tightly associated with cholesterol in

construction, metabolism and transport, and which are enriched

in lipid rafts. SM species are metabolized into ceramides, an

important second messenger involving in regulation of cellular

differentiation, proliferation, and apoptosis [52]. Ceramides are

also intermediates linking inflammatory cytokines to insulin

resistance [53] and subclinical atherosclerosis [54,55]; all of which

are associated with AD pathogenesis.

To this end, we propose a neurochemical working model based

on our results (Figure 10). In the model, the increased ceramide

Figure 9. ApoE4 carriers with AD have significantly lower mass levels of sphingomyelin (panel A), phosphatidylcholine (panel B),
and cholesterol (panel C) (p = 0.0238 for both lipid classes by Wilcoxon rank sum tests, two-sided).
doi:10.1371/journal.pone.0021643.g009
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mass levels might result either from the accelerated SM hydrolysis,

which would involve either the increased levels or activities of

sphingomyelinase (SMase) or increased biosynthesis, which would

be largely associated with serine palmitoyltransferase. The former

is consistent with the lower mass levels of SM species as

determined in the current study. The latter is supported by our

metabolomic studies that saturated fatty acids and their derivatives

(e.g., monoacylglycerol) accumulate in CSF (unpublished data).

SM deficiency could lead to alterations in lipid raft formation,

thereby changing Glut 4 translocation and leading to glucose

accumulation in plasma as previously obtained [56,57]. This

model clearly is speculative and has many unanswered questions

that need further testing in subsequent studies.

There are some limitations to the study that need to be

considered. First is the issue of type 1 error. Although the sample

size of 52 participants is reasonable for a metabolomic analysis, the

number of comparisons raises the potential for spurious findings.

To control for this issue we restricted our comparisons to focused a

priori hypotheses of disturbances in lipid metabolism and we

employed relatively conservative p values for statistical signifi-

cance. Other sampling issues such as participation biases in our

groups, differences in age, diet, medical status and concomitant

medications, as well as genetic differences are also possible but

difficult to control within the logistics of recruiting a clinically

relevant sample. Regardless, replication of the results from this

study is important and should be conducted in more diverse and

larger clinical samples followed longitudinally over time. Addi-

tionally, this study included patients with diagnosed AD dementia

that were in the mild to moderate stages. Future studies would

benefit from the inclusion of patients with well-characterized mild

cognitive impairment, other dementing disorders as well as

asymptomatic patients with preclinical disease – i.e. other positive

biomarkers. Further, given the possible links between lipid

alterations and amyloidogeneis, it would be of great interest to

examine the relationship between lipidomics and amyloid

biomarkers, such as CSF or PET scans. It would also be of great

interest to analyze CSF and plasma lipidomics in the same subjects

to examine their relationships and relative efficacy as biomarkers.

Such studies will be essential to fully harness the potential of

lipidomics findings into biomarkers.

In summary, using shotgun lipidomics, we demonstrate

significant disruptions in the sphingolipidome in plasma obtained

from AD patients compared to normal controls. Our results

provide new insights into the relationship between lipid biochem-

istry and neuronal dysfunction in early AD and highlight the

promise of peripheral lipidomics for the identification of potential

new biomarkers. Deeper analysis of possible perturbations in other

lipid classes is underway.

Acknowledgments

We gratefully acknowledge Dr. David Goldstein and his laboratory (Center

for Human Genome Variation, Duke University) for the APOE genotyping

and Dr. Chiba-Falek for her input in describing the genotyping methods.

Author Contributions

Conceived and designed the experiments: XH JB KWB PMD RKD.

Performed the experiments: CH. Analyzed the data: SR. Contributed

reagents/materials/analysis tools: XH. Wrote the paper: XH SR SB JB

KWB PMD RKD. Participated in lipidomics profiling: HC.

References

1. Han X, Gross RW (2005) Shotgun lipidomics: Electrospray ionization mass

spectrometric analysis and quantitation of the cellular lipidomes directly from

crude extracts of biological samples. Mass Spectrometry Reviews 24: 367–412.

2. Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and

quantification by multi-dimensional mass spectrometry-based shotgun lipido-

mics. Anal Chem 81: 4356–4368.

Figure 10. A proposed working model of the altered sphingolipid metabolism in Alzheimer’s disease. See text for details.
doi:10.1371/journal.pone.0021643.g010

Lipidomics in Alzheimer’s Disease

PLoS ONE | www.plosone.org 12 July 2011 | Volume 6 | Issue 7 | e21643



3. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting

the global burden of Alzheimer’s disease. Alzheimers Dement 3: 186–191.

4. Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain
pathologies account for most dementia cases in community-dwelling older

persons. Neurology 69: 2197–2204.

5. Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA (2009) The
neuropathology of older persons with and without dementia from community

versus clinic cohorts. J Alzheimers Dis 18: 691–701.

6. Jones L, Harold D, Williams J (2010) Genetic evidence for the involvement of
lipid metabolism in Alzheimer’s disease. Biochim Biophys Acta 1801: 754–761.

7. Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and
dementia: how to move forward? Neurology 72: 368–374.

8. Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer’s disease.

Annu Rev Neurosci 19: 53–77.

9. Mayeux R, Reitz C, Brickman AM, Haan MN, Manly JJ, et al. (2011)
Operationalizing diagnostic criteria for Alzheimer’s disease and other age-

related cognitive impairment-Part 1. Alzheimers Dement 7: 15–34.

10. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, et al. (2009)
MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic

discrimination and cognitive correlations. Neurology 73: 287–293.

11. De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S,
et al. (2010) Diagnosis-independent Alzheimer disease biomarker signature in

cognitively normal elderly people. Arch Neurol 67: 949–956.

12. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: A
Global Biochemical Approach to Drug Response and Disease. Annu Rev

Pharmacol Toxicol 48: 653–683.

13. Kristal BS, Kaddurah-Daouk R, Beal MF, Matson WR (2007) Metabolomics:

concept and potential neuroscience application. Handbook of Neurochemistry

and Molecular Neurobiology: Brain Energetics Integration of Molecular and
Cellular Processes. New York: Springer. pp 889–912.

14. Lindon JC, Holmes E, Nicholson JK (2007) Metabonomics in pharmaceutical

R&D. FEBS J 274: 1149–1151.

15. Ji Y, Hebbring S, Zhu H, Jenkins GD, Biernacka J, et al. (2011) Glycine and a

glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response

biomarkers in depression: pharmacometabolomics-informed pharmacoge-
nomics. Clin Pharmacol Ther 89: 97–104.

16. Paige LA, Mitchell MW, Krishnan KR, Kaddurah-Daouk R, Steffens DC
(2007) A preliminary metabolomic analysis of older adults with and without

depression. Int J Geriatr Psychiatry 22: 418–423.

17. Steffens DC, Wei J, Krishnan KR, Karoly ED, Mitchell MW, et al. (2010)
Metabolomic differences in heart failure patients with and without major

depression. J Geriatr Psychiatry Neurol 23: 138–146.

18. Rozen S, Cudkowicz ME, Bogdanov M, Matson WR, Kristal BS, et al. (2005)
Metabolomic analysis and signatures in motor neuron disease. Metabolomics 1:

101–108.

19. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, et al.
(2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s

disease. Brain 131: 389–396.

20. Patkar AA, Rozen S, Mannelli P, Matson W, Pae CU, et al. (2009) Alterations in
tryptophan and purine metabolism in cocaine addiction: a metabolomic study.

Psychopharmacology (Berl) 206: 479–489.

21. Mannelli P, Patkar A, Rozen S, Matson W, Krishnan R, et al. (2009) Opioid use
affects antioxidant activity and purine metabolism: preliminary results. Hum

Psychopharmacol 24: 666–675.

22. Kaddurah-Daouk R, McEvoy J, Baillie RA, Lee D, Yao JK, et al. (2007)
Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol

Psychiatry 12: 934–945.

23. Yao JK, Dougherty GG, Jr., Reddy RD, Keshavan MS, Montrose DM, et al.
(2010) Altered interactions of tryptophan metabolites in first-episode neuroleptic-

naive patients with schizophrenia. Mol Psychiatry 15: 938–953.

24. Yao JK, Dougherty GG, Jr., Reddy RD, Keshavan MS, Montrose DM, et al.
(2010) Homeostatic imbalance of purine catabolism in first-episode neuroleptic-

naive patients with schizophrenia. PLoS One 5: e9508.

25. Kaddurah-Daouk R, Rozen S, Matson W, Han X, Hulette CM, et al. (2010)
Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers

Dement.

26. Han X (2010) Multi-dimensional mass spectrometry-based shotgun lipidomics

and the altered lipids at the mild cognitive impairment stage of Alzheimer’s

disease. Biochim Biophys Acta 1801: 774–783.

27. Han X (2005) Lipid alterations in the earliest clinically recognizable stage of

Alzheimer’s disease: implication of the role of lipids in the pathogenesis of

Alzheimer’s disease. Curr Alzheimer Res 2: 65–77.

28. Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in

Alzheimer brains, suggest synapse loss as a primary event in early-onset form

(type I) and demyelination in late-onset form (type II). Journal of Neurochem-
istry 62: 1039–1047.

29. Han X, Holtzman DM, McKeel DW, Jr., Kelley J, Morris JC (2002) Substantial
sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease:

potential role in disease pathogenesis. Journal of Neurochemistry 82: 809–818.

30. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, et al. (2004)
Involvement of oxidative stress-induced abnormalities in ceramide and

cholesterol metabolism in brain aging and Alzheimer’s disease. Proceedings of

the National Academy of Sciences of the United States of America 101:

2070–2075.
31. Klein J (2000) Membrane breakdown in acute and chronic neurodegeneration:

Focus on choline-containing phospholipids. J Neural Transm 107: 1027–1063.

32. Han X, Holtzman DM, McKeel DW, Jr. (2001) Plasmalogen deficiency in early
Alzheimer’s disease subjects and in animal models: molecular characterization

using electrospray ionization mass spectrometry. J Neurochem 77: 1168–1180.
33. Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyketsos CG, et al. (2010)

Serum sphingomyelins and ceramides are early predictors of memory

impairment. Neurobiology of Aging 31: 17–24.
34. Christie WW, Han X (2010) Lipid Analysis: Isolation, Separation, Identification

and Lipidomic Analysis. Bridgwater, England: The Oily Press. 428 p.
35. Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of

lipid extracts extends shotgun lipidomics analyses to the low abundance regime
of cellular sphingolipids. Analytical Biochemistry 371: 135–145.

36. Han X, Yang K, Gross RW (2008) Microfluidics-based electrospray ionization

enhances intrasource separation of lipid classes and extends identification of
individual molecular species through multi-dimensional mass spectrometry:

Development of an automated high throughput platform for shotgun lipidomics.
Rapid Communications in Mass Spectrometry 22: 2115–2124.

37. Han X, Yang J, Cheng H, Ye H, Gross RW (2004) Towards fingerprinting

cellular lipidomes directly from biological samples by two-dimensional electro-
spray ionization mass spectrometry. Analytical Biochemistry 330: 317–331.

38. Han X, Yang K, Yang J, Fikes KN, Cheng H, et al. (2006) Factors influencing
the electrospray intrasource separation and selective ionization of glyceropho-

spholipids. J Am Soc Mass Spectrom 17: 264–274.
39. Han X, Gross RW (2001) Quantitative analysis and molecular species

fingerprinting of triacylglyceride molecular species directly from lipid extracts

of biological samples by electrospray ionization tandem mass spectrometry. Anal
Biochem 295: 88–100.

40. Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse
dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics

study. J Neurochem 101: 57–76.

41. Han X (2002) Characterization and direct quantitation of ceramide molecular
species from lipid extracts of biological samples by electrospray ionization

tandem mass spectrometry. Anal Biochem 302: 199–212.
42. Yang K, Zhao Z, Gross RW, Han X (2009) Systematic analysis of choline-

containing phospholipids using multi-dimensional mass spectrometry-based
shotgun lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 877:

2924–2936.

43. Han X, Yang K, Cheng H, Fikes KN, Gross RW (2005) Shotgun lipidomics of
phosphoethanolamine-containing lipids in biological samples after one-step in

situ derivatization. J Lipid Res 46: 1548–1560.
44. R Development Core Team (2010) R: A Language and Environment for

Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

45. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.
Proceedings of the National Academy of Sciences, USA 100: 9440–9445.

46. Han X, Fagan AM, Cheng H, Morris JC, Xiong C, et al. (2003) Cerebrospinal
fluid sulfatide is decreased in subjects with incipient dementia. Ann Neurol 54:

115–119.
47. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, et al. (2010)

Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of

Lipid Research 51: 3299–3305.
48. Satoi H, Tomimoto H, Ohtani R, Kitano T, Kondo T, et al. (2005) Astroglial

expression of ceramide in Alzheimer’s disease brains: a role during neuronal
apoptosis. Neuroscience 130: 657–666.

49. Katsel P, Li C, Haroutunian V (2007) Gene expression alterations in the

sphingolipid metabolism pathways during progression of dementia and
Alzheimer’s disease: a shift toward ceramide accumulation at the earliest

recognizable stages of Alzheimer’s disease? Neurochem Res 32: 845–856.
50. Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ (2001) Brain

membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 26:

771–782.
51. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, et al. (2007)

Classification and prediction of clinical Alzheimer’s diagnosis based on plasma
signaling proteins. Nature Medicine 13: 1359–1362.

52. Merrill AH, Jr., Schmelz EM, Dillehay DL, Spiegel S, Shayman JA, et al. (1997)
Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and patho-

physiology. Toxicol Appl Pharmacol 142: 208–225.

53. Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid
Res 45: 42–72.

54. Ichi I, Nakahara K, Miyashita Y, Hidaka A, Kutsukake S, et al. (2006)
Association of ceramides in human plasma with risk factors of atherosclerosis.

Lipids 41: 859–863.

55. Nelson JC, Jiang XC, Tabas I, Tall A, Shea S (2006) Plasma sphingomyelin and
subclinical atherosclerosis: findings from the multi-ethnic study of atherosclero-

sis. Am J Epidemiol 163: 903–912.
56. Nagata Y, Kobayashi H, Umeda M, Ohta N, Kawashima S, et al. (2006)

Sphingomyelin levels in the plasma membrane correlate with the activation state
of muscle satellite cells. J Histochem Cytochem 54: 375–384.

57. Silva LC, Futerman AH, Prieto M (2009) Lipid raft composition modulates

sphingomyelinase activity and ceramide-induced membrane physical alterations.
Biophys J 96: 3210–3222.

Lipidomics in Alzheimer’s Disease

PLoS ONE | www.plosone.org 13 July 2011 | Volume 6 | Issue 7 | e21643


