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Abstract

Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers.
This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to
the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from
milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether
chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the
cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks
UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as
demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that
ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin
appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was
not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin
repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-
positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A
disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced
sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type
counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage
and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

Citation: Katiyar SK, Mantena SK, Meeran SM (2011) Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage
by Nucleotide Excision Repair Mechanism. PLoS ONE 6(6): e21410. doi:10.1371/journal.pone.0021410

Editor: Dhyan Chandra, Roswell Park Cancer Institute, United States of America

Received April 13, 2011; Accepted May 27, 2011; Published June 22, 2011

Copyright: � 2011 Katiyar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: RO1 CA140197 by National Cancer Institute (http//www.cancer.gov) and the Veterans Administration Merit Review Award *SKK). The human
keratinocytes were obtained from the UAB Skin Diseases Research Center (AR050948). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: skatiyar@uab.edu

Introduction

Ultraviolet (UV) radiation is a well established etiologic risk

factor for the incidence of melanoma and non-melanoma skin

cancers, and these skin cancers are a major burden on the health

care system. The incidence of skin cancers is equivalent to the

incidence of malignancies in all other organs combined [1]. One of

the hallmark events of exposure to UVB radiation (290–320 nm) is

the induction of apoptotic cell death of keratinocytes, the results of

which are evident within the epidermis as sunburn cells (SC) [2].

The formation of sunburn cells in UV-exposed skin indicates the

severity of DNA damage. The repair of DNA damage in UVB-

exposed skin cells can prevent the accumulation of damaged cells.

If cells are not repaired, they may continue to replicate and may

lead to cutaneous malignancies. This means that DNA repair

process is a protective mechanism. Alternatively, induction of

apoptosis of keratinocytes to UVB radiation is also a protective

mechanism relevant in limiting the survival of cells with

irreparable DNA damage. Changes in UV-induced apoptosis

may therefore have significant impact on photocarcinogenesis.

The molecular pathways leading to UVB radiation-induced

apoptosis include the formation of cyclobutane pyrimidine dimers

(CPDs) and (6–4) photoproducts [3,4], the activation of death

receptors including CD95 (Fas/APO-1) [3,5], and the formation

of reactive oxygen species [6]. These pathways are orchestrated by

positive and negative factors that act within the epidermis in an

autocrine and/or paracrine manner. Because of its protective

function, alterations in UVB-induced apoptosis may have a

profound impact in the induction of skin cancer, the most

common cutaneous malignancy in Caucasians.

We have shown that topical application of silymarin, a plant

flavanoid from milk thistle (Silybum marianum), results in protective

effects on UVB-induced skin carcinogenesis in mice [7]. Silymarin

is composed primarily of silibinin (<90%) together with small

amounts of other silibinin stereoisomers, such as isosilybin,

dihydrosilybin, silydianin and silychristin [7,8]. It has been shown

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21410



that silymarin inhibits photocarcinogenesis through inhibition of

UVB-induced oxidative stress, inflammation and suppression of

immune system, etc. [8–10]. However, precise mechanism of skin

cancer chemoprevention by silymarin is still not very well

understood. It is also unclear whether silymarin has the ability

to decrease UV radiation-induced apoptotic cell death of

epidermal cells through repair of damaged DNA and thus lead

to prevention of photocarcinogenesis. Therefore, we hypothesized

that prevention of photocarcinogenesis by silymarin is mediated

through repair of UV-induced DNA damage in epidermal cells.

To understand the precise mechanism, we have conducted series

of experiments in vitro and in vivo and determined whether

silymarin suppresses UV-induced apoptosis in skin cells and that

this occurs through repair of damaged DNA. Here we report that

treatment of normal human epidermal keratinocytes (NHEK) with

silymarin inhibits UVB-induced apoptosis of keratinocytes, and in

this process UVB-induced DNA damage was significantly reduced

or repaired after silymarin treatment. Our study also reveals that

the repair of UV-induced DNA damage or genomic instability by

silymarin is mediated through the nucleotide excision repair

(NER) mechanism, which was verified by using NER-proficient

and NER-deficient human fibroblasts, and NER-deficient mouse

model.

Materials and Methods

Chemicals and antibodies
Silymarin, agarose and other chemicals used in this study were

of analytical grade and were purchased from Sigma Chemical Co.

(St. Louis, MO). The primary antibody used against CPD was

obtained from Kamiya Biomedical Company (Seattle, WA). The

secondary antibodies, HRP-linked goat anti-mouse IgG was

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz,

CA). The Annexin V-conjugated AlexaFluor488 Apoptosis

Detection Kit was purchased from Molecular Probes Inc. (Eugene,

OR). Cell Death Detection ELISAPLUS kit for cell apoptotic

analysis was obtained from Roche-Applied Science (Mannheim,

Germany). Keratinocyte growth medium supplemented with

human recombinant epidermal growth factor and bovine pituitary

extract was the product of Gibco/Invitrogen (Carlsbad, CA).

Animals
The xeroderma pigmentosum complementation group A (XPA)-

deficient mice, which are devoid of NER function, were generated

and maintained in our animal resource facility as described

previously [11,12]. Female C3H/HeN mice (wild-type of XPA-

deficient mice) of six to seven weeks old were purchased from

Charles River Laboratory (Wilmington, MA). All mice were

maintained under standard conditions of a 12-h dark/12-h light

cycle, a temperature of 2462uC, and relative humidity of

50610%. The animal protocol used in this study was approved

by the Institutional Animal Care and Use Committee of the

University of Alabama at Birmingham, and approved Animal

Protocol Number is: 100409095.

Normal human epidermal keratinocytes, cell culture and
treatment with silymarin

The NHEK were obtained from the Skin Diseases Research

Centre core facility at the University of Alabama at Birmingham,

AL. The primary skin cell cultures provided to researchers are

derived from discarded, unidentified, remnant human skin tissue;

therefore, use for research purposes is exempt from HIPAA

regulation. Under this provision, informed consent from the

human subjects is not required. These human skin tissues were

collected from the Kirklin Clinic, University Hospitals of the

University of Alabama at Birmingham, AL. The Institutional

Review Board approval number is 040325001 for the UAB Skin

Diseases Research Center, Core B: Skin Cell Culture Core. The

NHEK were cultured in keratinocyte growth medium supple-

mented with 5 ng/ml human recombinant epidermal growth

factor and 0.05 mg/ml bovine pituitary extract (Gibco/Invitro-

gen, Carlsbad, CA) and maintained in an incubator under

standard cell culture conditions viz. temperature 37uC and 5%

CO2 in humid environment, as detailed previously [13]. In all

treatments, silymarin was dissolved initially in ethanol (final

concentration 0.1% w/v) and made up to the required concen-

tration with complete cell culture medium. The sub-confluent cells

(60–70%) were treated with either varying concentrations of

silymarin or vehicle alone (ethanol, 0.1% (v/v) in media) that

served as a control. All the pre-treatments of cells with silymarin

were done 3 h prior to the UVB exposure, otherwise stated.

Xeroderma pigmentosum complementation Group A
(XPA)-proficient and XPA-deficient human fibroblasts
and fibroblast culture

XPA-deficient and XPA-proficient human fibroblasts were

obtained from the Coriell Institute for Medical Research

(Camden, NJ). The XPA-deficient fibroblasts were obtained from

patients suffering from xeroderma pigmentosum group-A disease,

while XPA-proficient fibroblasts were obtained from healthy

individuals. These fibroblasts were authenticated by the Coriell

Institute for Medical Research and supplied for only research

purpose. The fibroblasts were cultured in Modified Eagle Medium

with Earle’s salts supplemented with 2 mM L-glutamine, 10% fetal

bovine serum and maintained in an incubator at 37uC in a

humidified atmosphere of 5% CO2, as detailed previously [14].

Cells were treated with silymarin as detailed above.

UVB exposure of the cells
Cells were irradiated with UVB radiation (150 J/m2) through

phosphate buffer saline (PBS). For this purpose cells were kept

under UVB lamps (Daavlin, UVA/UVB Research Irradiation

Unit, Bryan, OH) equipped with an electronic controller at the

distance of 30 cm, and exposed them. Majority of the wavelengths

of UV radiation were in the UVB (290–320 nm) range.

Detection of cell death by ELISA
UV-induced cell death in NHEK or NER-deficient and NER-

proficient cells was detected using Cell Death Detection

ELISAPLUS Kit (Mannheim, Germany). This kit was used to

detect DNA fragmentation; mono- and oligonucleosomes released

into the cytoplasm by biotinylated anti-histone- and peroxidase-

coupled anti-DNA antibodies, following the manufacturer’s

protocol. Optical density was measured and is shown on the

y-axis as mean6SD of triplicates.

Quantification of apoptotic cells by FACS analysis
UVB-induced apoptosis in NHEK was determined by flow

cytometry using the Annexin V-conjugated Alexafluor488

(Alexa488) Apoptosis Detection Kit following the manufacturer’s

instructions and as previously described by us [13]. Briefly, after

overnight serum starvation, cells were treated with silymarin (0, 10

and 20 mg/mL) for 3 h then exposed to UVB (150 J/m2) through

PBS. The cells were harvested 24 h later, washed in PBS and

incubated with Alexa488 and propidium iodide for cellular

staining in binding buffer at room temperature for 10 min in the

dark, as detailed previously [15]. The stained cells were analyzed
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by FACS using a FACSCalibur instrument (BD Biosciences, San

Jose, CA) equipped with CellQuest 3.3 software. The Alexa488-

positive cells which have green fluorescence are termed as early

apoptotic cells while propidium iodide-positive plus Alexa488-

positive cells were termed as late apoptotic cells and had red-green

fluorescence.

Analysis of DNA damage by the Comet assay
UVB-induced DNA damage on per cell basis was determined

using the comet assay, as described previously [15]. NHEK pre-

treated with silymarin (0 or 20 mg/ml) for 3 h or non-silymarin-

treated NHEK were exposed to UVB (200 J/m2), and were

harvested 36 h later for comet assay. Briefly, after treatment with

UVB the cells were harvested and re-suspended in ice cold PBS.

Approximately, 16104 cells in a volume of 75 mL of 0.5% (w/v)

low melting point agarose were pipetted onto a frosted glass slide

coated with a thin layer of 1.0% (w/v) agarose, covered with a

cover slip and allowed to set on ice for 10 min. Following removal

of the cover slip the slides were immersed in ice-cold lysis solution

containing 2.5 M NaCl, 10 mM Tris, 100 mM Na2-EDTA, 1%

(w/v) N-lauroyl-sarcosine, adjusted to pH 10.0, and 1.0% Triton

X-100 was added immediately before use. After 2 h at 4uC, the

slides were placed into a horizontal electrophoresis tank filled with

buffer (0.3 M NaOH, 1 mM EDTA (pH 13) and subjected to

electrophoresis for 30 min at 300 mA. Slides were transferred to

neutralization solution (0.4 M Tris-HCl) for 365 min washes and

stained with ethidium bromide for 5 min. Slides were viewed using

the 20x objective of a Zeiss Axioskop microscope equipped with

epifluorescence optics. For each sample the tail lengths (mm) of a

minimum of 30 comets were analyzed. The length of the comet

was quantified as the distance from the centrum of the cell nucleus

to the tip of the tail in pixel units and the tail length was expressed

as a mean6SD from 30 comets.

Immunohistochemical detection of CPD-positive cells
UV-induced DNA damage in the form of CPD+ cells were

detected using a protocol described previously with some

modifications [14]. Briefly, at indicated time point after UV

irradiation (150 J/m2), cells were trypsinized and centrifuged. Cell

pellets were resuspended in PBS buffer and processed for cytospin

preparation (<16105 cells/slide). Cells were washed in PBS and

fixed with 45% ethanol for 5 min followed by 70% ethanol at

220uC for 10 min. Cells were subsequently permeabilized with

0.3% Triton6100 for 30 min. DNA denaturation was performed

by treating the cells with 0.5 N HCl and 0.05% pepsin at 37uC for

30 min. Slides were then incubated with the CPD-specific

monoclonal antibody for 1 h at room temperature and after

washing the bound anti-CPD antibody was detected by incubation

with biotinylated goat anti-mouse IgG1 followed by peroxidase

labeled streptavidin. Cells were then incubated with diaminoben-

zidine plus peroxidase substrate for 5 min. After washing with

distilled water, the cells were counterstained with harris haema-

toxylin. CPD+ cells were counted under Olympus BX41

microscope at 5–6 different fields and the data were presented

as the mean of the percentage of CPD+ cells6SD from at least

three separate experiments.

Assay of CPDs by dot-blot analysis
Genomic DNA from the NHEK or XPA cells was isolated

following the standard procedure, as described previously [11].

Genomic DNA (500 ng) was transferred to a positively-charged

nitrocellulose membrane by vacuum dot-blotting (Bio-Dot Appa-

ratus, Bio-Rad, Hercules, CA) and fixed by baking the membrane

for 30 min at 80uC. After blocking the non-specific binding sites in

blocking buffer (5% non-fat dry milk, 1% Tween 20 in 20 mM

TBS, pH 7.6), the membrane was incubated with the antibody

specific to CPDs for 1 h at room temperature. After washing, the

membrane was incubated with HRP-conjugated secondary

antibody. The circular bands of CPDs were detected by

chemiluminescence using ECL detection system and autoradiog-

raphy with HXR-photofilm (Hawkins Film, Oneonta, AL). The

genomic DNA was used and tested from at least 3 independent set

of experiments.

RNA extraction and analyses of nucleotide excision repair
(NER) genes using real-time polymerase chain reactions
(RT-PCR)

The NHEK were subjected to UVB exposure with or without

the treatment with silymarin. At desired time points, cells were

harvested and cellular RNA was extracted using TRIzol reagents

(Invitrogen, CA), as described [11,14]. The mRNA expression of

NER genes, such as XPA, XPC, RPA1 and DDB2, was determined

using real-time PCR. For the mRNA quantification, complemen-

tary DNA (cDNA) was synthesized using 3 mg RNA through a

reverse transcription reaction (iScriptTM cDNA Synthesis Kit,

BIO-RAD, CA). Using SYBR Green/ Fluorescein PCR Master

Mix (SuperArray Bioscience Corporation, MD), cDNA was

amplified using real-time PCR with a BioRad MyiQ thermocycler

and SYBR green detection system (BioRad, CA). Manufacturer-

supplied (SuperArray, Bioscience Corporation, MD) primer pairs

were used to measure the expression levels of NER genes. The

standard PCR conditions were: 95uC for 15 min, then 40 cycles at

95uC, 30 sec; 55uC, 30 sec; and 72uC, 30 sec, as recommended by

the manufacturer. Samples were run in triplicate to ensure

amplification integrity. The expression levels of genes were

normalized to the expression level of the b-actin mRNA in each

sample, as performed earlier [11,14]. For mRNA analysis the

calculations for determining the relative level of gene expression

were made using the cycle threshold (Ct) method. The threshold

for positivity of real-time PCR was determined based on negative

controls.

UVB irradiation of mice
Mice were UVB-irradiated as described previously [9,10].

Briefly, the clipper-shaved dorsal skin was exposed to UV

radiation from a band of four FS20 UVB lamps (Daavlin,

UVA/UVB Research Irradiation Unit, Bryan, OH) equipped with

an electronic controller to regulate UV dosage. The UV lamps

emit UVB (280–320 nm; <80% of total energy) and UVA (320–

375 nm; <20% of total energy), with UVC emission being

significantly less (,1%). The majority of the resulting wavelengths

of UV radiation were in the UVB (290–320 nm) range with peak

emission at 314 nm.

Evaluation and detection of apoptotic or sunburn cells
(SC) in mouse skin

NER-deficient mice and their wild-type counterparts (C3H/

HeN) were exposed to UVB (240 mJ/cm2) radiation with or

without pretreatment of the skin with silymarin (1 mg/cm2). The

mice were sacrificed 24 h after UVB irradiation and skin samples

were obtained, fixed in 10% formaldehyde and embedded in

paraffin. Skin sections (5 mm thick) were stained with H&E

following routinely used procedure. SCs were identified and

counted throughout the epidermis in each section using light

microscopy. The identification of apoptotic or SCs was based on

morphologic characteristics, including cell membrane shrinkage

and nuclear condensation attributable to fragmentation of the cells
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[16]. The SCs were counted throughout the epidermis of section

per sample using 1 cm61 cm grid inserted in a conventional

microscope. SCs were counted on whole 1.0 cm long epidermal

section. Data are presented in terms of number of sunburn cells/

cm epidermal length section, n = 5/group. Student’s t-test was

used to test the significance of the differences.

Statistical analysis
The statistical significance of difference between treatment and

control groups was evaluated with one-way ANOVA followed by

post hoc Dunn’s test using GraphPad Prism version 4.00 for

Windows, GraphPad Software, San Diego, California, USA,

www.graphpad.com. A P value ,0.05 was considered statistically

significant.

Results

Silymarin protects NHEK from UV radiation-induced
apoptosis

To determine the protective effect of silymarin on UVB-induced

apoptosis of NHEK, we treated NHEK cells with silymarin (0, 10

and 20 mg/mL) 3 h prior to UVB irradiation (150 J/m2). After

UVB irradiation, cells were incubated with or without silymarin

for additional 24 h followed by determination of DNA fragmen-

tation using Cell Death ELISA kit. We found that exposure of cells

with UVB resulted in significant induction of cell death compared

with non-UVB-irradiated cells. Treatment of cells with silymarin

in absence of UVB exposure did not elicit any effect on DNA

fragmentation (Fig. 1A). However, treatment of cells with 10 mg/

mL and 20 mg/mL of silymarin prior to and after UVB irradiation

significantly protected the cells respectively by 40% (P,0.01) and

73% (P,0.001) from UVB radiation-induced apoptosis. To

confirm the protective effect of silymarin on UVB radiation-

induced apoptosis in NHEK, apoptosis was further assessed using

the Annexin V-conjugated AlexaFluor 488 (Alexa488) Apoptotic

Detection Kit, as previously described [15]. Apoptotic cells were

counted as late or early apoptotic cells, which are shown

respectively in the upper right and lower right quadrants of the

histograms presented in Fig. 1B [17]. After 24 h of treatment, the

silymarin-induced apoptosis of NHEK, in absence of UVB

irradiation, was not significantly greater than that of vehicle-

treated controls (data not shown). As shown in Fig. 1B, exposure of

cells with UVB resulted in significant induction of apoptosis

(37.9%, P,0.005) compared to non-UVB-exposed cells (8.0%).

Treatment of NHEK with silymarin resulted in a significant

reduction in the number of apoptotic cells at both the early and

late stages of apoptosis. The total percentage of apoptotic cells in

NHEK cells is summarized in Figure 1C. Our data indicated that

treatment of cells with silymarin at the concentration of 10 mg/mL

and 20 mg/mL significantly blocked UVB radiation-induced

apoptosis and that is by 58% (P,0.01) and 84% (P,0.005)

respectively.

Silymarin reduces or repair DNA damage in UVB-exposed
NHEK

To determine whether silymarin reduces or repair UVB-

induced DNA damage in NHEK, we have checked the effect of

silymarin on UVB-induced DNA damage in the form of CPDs

formation and their repair. For this purpose, cells were exposed to

UVB (150 J/m2) with or without the treatment with silymarin.

Cells were harvested either immediately or 36 h after UVB

irradiation and subjected to the analysis of CPD-positive cells

following cytostaining using CPD-specific antibody. CPD-positive

cells were not detectable in non-UVB-irradiated cells whether or

not they were treated with silymarin (Fig. 2A). When the cells were

analyzed for CPDs immediately after UVB-exposure, no differ-

ences were observed in the cells treated with or without silymarin

in terms of the number of CPD-positive cells (data not shown).

This finding suggests that silymarin does not prevent immediate

formation of CPDs after UVB exposure and excludes a UVB

radiation filtering effect. When the cells were analyzed 36 h after

UVB irradiation, the number of CPD-positive cells and intensity

of staining of CPD-positive cells was markedly decreased in

silymarin-treated cells compared to the cells which were not

treated with silymarin but exposed to UVB (Fig. 2A), suggesting

that silymarin might accelerate the repair of UVB-induced CPDs

in NHEK.

The protective effect of silymarin on UVB-induced DNA

damage was further verified using dot-blot analysis of genomic

DNA isolated from the NHEK exposed to UVB with and without

the treatment of silymarin (0, 5, 10 and 20 mg/mL). There was no

significant difference in the dot-blot pattern of CPDs between cell

samples obtained immediately after UVB exposure from UVB-

exposed NHEK whether or not they were treated with silymarin

(data not shown). In samples obtained 36 h after UVB exposure,

the intensity of the dot-blot was markedly lower in the silymarin-

treated NHEK in a dose-dependent manner than non-silymarin-

treated UVB-exposed control cells. The genomic DNA sample

obtained from the cells that were not exposed to UV was negative

in the dot-blot assay, as shown in Figure 2B.

Finally, we also determined and verified photoprotective effect

of silymarin on UVB-induced cellular DNA damage using comet

assay, which was also used as a biomarker of apoptosis. As shown

in Figure 3 (Panel A and B), exposure of NHEK with UVB

radiation (200 J/m2) resulted in extensive DNA damage as

reflected from the tail length of the comet compared to cells that

were not exposed to UVB radiation. However, treatment of cells

with silymarin (20 mg/mL) resulted in reduced amount of DNA

damage or fragmentation compared to the cells which were not

treated with silymarin but exposed to UVB, as is evident by the

comet structure (Fig. 3A). DNA damaging effect and its prevention

by silymarin in terms of DNA fragmentation was determined by

measuring the tail length of the comet under microscope. The data

of tail lengths in mm were represented as mean6SD from at least

30 cells or comets in each treatment group (Fig. 3B), which suggest

that silymarin reduced UVB-induced DNA damage by 65%

compared to UVB alone-exposed control cells.

Silymarin enhances the levels of NER genes in UVB-
exposed NHEK

As we have observed that silymarin enhances the repair of

UVB-induced DNA damage in UVB-exposed NHEK, the next

question was whether silymarin repairs DNA damage through the

stimulation of NER genes? For this purpose, NHEK were exposed

to UVB with and without the treatment of silymarin (20 mg/mL)

in culture media 3 h before UVB exposure. Cells were harvested

1 h after UVB exposure, RNA isolated and subjected to the

analysis of mRNA expression of some selected NER genes (i.e.,

XPA, XPC, RPA1, and DDB2) using real-time PCR. The acute

exposure of the NHEK with UVB slightly enhances the levels of

NER genes (not significant) compared to non-UVB-exposed

NHEK. As shown in Figure 4, the mRNA levels of NER genes

were significantly enhanced (P,0.05 and P,0.001) in the UVB-

exposed NHEK treated with silymarin compared to non-

silymarin-treated UVB-exposed NHEK. Intriguingly, the en-

hancement of XPA and XPC gene levels after the treatment of

cells with silymarin was significantly higher compared to the levels

of other NER genes (RPA1 and DDB2). Treatment of NHEK with
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silymarin alone for identical time period did not significantly

induce the levels of NER genes (data not shown). These data

suggest that silymarin might repair UVB-induced DNA damage in

NHEK through the enhancement of the levels of XPA and XPC

genes which have NER properties.

Silymarin stimulates repair of UVB-induced DNA damage
following NER mechanism

As, it has been shown that XPA gene plays an indispensable role

in the NER pathway [18], we further examined whether NER

mechanism is required in silymarin-mediated DNA repair. For this

purpose, NER-deficient fibroblasts from xeroderma pigmentosum

complementation group A-patient and NER-proficient fibroblasts

from healthy person were exposed to UVB with or without prior

treatment with silymarin (20 mg/mL). Cells were harvested either

immediately or 36 h after UVB irradiation and subjected to

cytostaing using CPD-specific antibody. CPD-positive cells were not

detectable in non-UVB irradiated cells whether or not they were

treated with silymarin (Fig. 5A). When the cells were analyzed for

CPDs immediately after UVB-exposure, no differences were

observed in the NER-proficient or NER-deficient cells whether

treated with or without silymarin in terms of the number of CPD-

positive cells per microscopic field (data not shown). This

observation suggests that silymarin does not prevent immediate

formation of CPDs after UVB exposure and further excludes a

possibility of UVB radiation filtering effect. When the cells were

analyzed 36 h after UVB irradiation, the numbers of CPD-positive

cells were significantly lowered (69%, p,0.001) in the NER-

proficient cells (Fig. 5A) compared to non-silymarin-treated UVB-

irradiated NER-proficient cells. In contrast, silymarin was not able

to repair UVB-induced DNA damage in the form of CPDs in NER-

deficient fibroblasts, suggesting that silymarin might accelerate the

repair of UVB-induced CPDs through an NER mechanism.

To further verify our observations of silymarin in NER-deficient

and NER-proficient system, we examined the effect of silymarin

on UV-induced CPDs in NER-proficient and NER-deficient cells

using southwestern dot blot analysis. For this purpose NER-

deficient and NER-proficient human fibroblasts were exposed to

UV radiation in the presence or absence of silymarin, as described

above. Cells were harvested 36 h later, genomic DNA was isolated

and subjected to dot-blot analysis. As clearly indicated in

Figure 5B, silymarin treatment of NER-proficient cells for 36 h

resulted in remarkable repair or reduction in the levels of UV-

induced CPDs compared with non-silymarin-treated UVB-ex-

posed NER-proficient (NER+/+) cells, which was evident by the

less intense dot-blot. However, this DNA-repairing effect of

silymarin was not evident in the NER-deficient cells 36 h after

Figure 2. Silymarin stimulates DNA repair in UV-exposed
NHEK. (A), NHEK were treated with silymarin for 3 h before UVB
(150 J/m2) irradiation. Cells were harvested 36 h later, cytospun, and
subjected to cytostaining to detect CPD+ cells, as detailed in Materials
and methods. CPD-positive cells are dark brown. Magnification, x400.
Photomicrographs are representative of three independent experi-
ments. CPD+ cells were not detectable in non-UVB-exposed keratino-
cytes. (B) The analysis of damaged DNA in the form of CPDs was
performed by dot-blot analysis using antibody specific to CPDs or
thymine dimers. Genomic DNA from various treatment groups was
subjected to dot-blot analysis using an antibody specific to CPDs.
Results are shown from a single experiment and is representative of 3
independent experiments.
doi:10.1371/journal.pone.0021410.g002

Figure 3. Silymarin prevents UVB-induced DNA damage as
determined by comet assay. (A), NHEK were exposed to UVB
(150 J/m2) radiation with and without the treatment with silymarin
(20 mg/mL), as described under Fig. 2. Keratinocytes were harvested
36 h after UVB irradiation, and UVB-induced DNA damage was
determined using comet assay, as detailed in Materials and methods.
The comet assay was used to determine UVB-induced DNA damage in
the form of DNA fragmentation. (B), The tail of the comet was
measured in each cell under microscope and expressed in mm as a
mean6SD from at least 30 cells in each treatment group. "Significant
increase in tail length versus non-UVB-exposed control, p,0.001;
*Significant decrease in tail length versus UVB alone, p,0.001.
doi:10.1371/journal.pone.0021410.g003

Figure 1. Treatment of NHEK with silymarin suppresses UVB-induced apoptotic cell death. (A), Treatment of NHEK with silymarin inhibits
UVB-induced cell death as determined by Cell Death Detection ELISA Kit following the manufacturer’s protocol. Cells were treated with silymarin for
3 h before UVB irradiation. Cells were harvested 24 h after UVB exposure and subjected to the analysis of cell death. (B), Silymarin inhibits UVB-
induced apoptosis in NHEK. NHEK were exposed to UVB with and without the treatment with silymarin. Cells were harvested 24 hours later for the
analysis of apoptotic cells by FACS using the Annexin V-Alexa Fluor488 Apoptosis Vybrant Assay Kit following the manufacturer’s protocol. (C) Total
percent of apoptotic cells (early+ late) in each treatment group was summarized and data are presented as mean6SD of three independent
experiments. Sily. = silymarin. Statistically significant difference vs non-silymarin treated UVB exposed control, *P,0.01, "P,0.005, {P,0.001.
doi:10.1371/journal.pone.0021410.g001
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UV irradiation. This may be due to absence of NER genes in these

cells. The cells whether NER-deficient or NER-proficient and

either treated with silymarin or not treated with silymarin did not

show the presence of CPDs as reflected from the absence of dot

blot (Fig. 5B).

Silymarin protects cells from UVB-induced apoptotic cells
death following NER mechanism

Further, we examined whether silymarin protects cells from

UVB-induced apoptotic cell death following NER mechanism. For

this purpose NER-proficient and NER-deficient human fibroblasts

were exposed to UVB (150 J/m2) radiation with and without the

treatment of silymarin following the same protocol as described

above. After UVB irradiation, cells were further incubated with or

without silymarin for additional 36 h followed by determination of

DNA fragmentation using Cell Death ELISA kit. We found that

exposure of NER-proficient cells with UVB resulted in significant

induction of cell death compared with non-UVB-irradiated

control cells. However, treatment of NER-proficient cells with

silymarin prior to and after UVB irradiation significantly

(P,0.001) protected the cells from UVB radiation-induced

apoptosis (Fig. 5C). In contrast, treatment of NER-deficient cells

with silymarin prior to and 36 h after UVB irradiation could not

significantly protect the cells from UVB radiation induced cell

death or apoptosis (Fig. 5D). Treatment of NER-proficient or

NER-deficient cells with and without silymarin in absence of UVB

exposure did not elicit significant effect on DNA fragmentation or

cell death, and largely it was undetectable (Fig. 5C and 5D).

Silymarin reduces the number of sunburn cells in UVB-
exposed NER-proficient mice but not in NER-deficient
mice

Next, we examined the effect of silymarin on UVB-induced

sunburn cell formation using NER-proficient and NER-deficient

mouse model. UVB-induced sunburn cells are considered as

apoptotic cells in the skin. For this purpose, NER-deficient and

their wild-type (NER-proficient) mice were used. NER-deficient

mice are sensitive to UVB-induced DNA damage and photo-

carcinogenesis because they are deficient in DNA repair

mechanism. In contrast, the wild-type mice are relatively resistant

to UVB-induced DNA damage and photocarcinogenesis because

of presence of NER system. Keeping this difference in mind,

NER-deficient mice were exposed to 50 mJ/cm2UVB dose while

wild-type mice were exposed to 240 mJ/cm2 UVB dose with and

without topical treatment with silymarin (1 mg/cm2 skin area).

Using these UVB doses we were able to induce approximately

equivalent number of sunburn cell formation in two different

mouse strains. Although, the UV irradiation doses are unequal, we

can compare the chemopreventive effects of silymarin on sunburn

cells on both strains of mice separately. Mice were sacrificed 24 h

after UVB irradiation. Skin samples were collected, kept in 10%

formalin buffer, and paraffin blocks were obtained. Microscopic

evaluation of H&E stained skin sections revealed that the number

of sunburn cells were higher in UVB-exposed NER-deficient and

their wild-type mouse skin compared with non-UVB-exposed skin

of these strains of mice. Sunburn cells are shown by dark brown.

Treatment of NER-proficient mouse skin with silymarin resulted

in significant reduction in number of sunburn cells (63%,

Figure 4. Silymarin stimulates the mRNA levels of NER genes in
UVB-exposed NHEK. NHEK were exposed to UVB with and without
the treatment of silymarin (20 mg/mL). Cells were harvested 1 h later
and RNA was extracted. The mRNA levels of NER genes were

determined using real-time PCR. The data of mRNA expression levels
of various NER genes are expressed as mean6SD. Experiments were
repeated three times. Statistically significant difference versus UVB
alone, *p,0.001, {p,0.05.
doi:10.1371/journal.pone.0021410.g004
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Figure 5. Silymarin protects UVB-induced DNA damage and cell death in NER-proficient fibroblasts but not in NER-deficient
fibroblasts. (A), NER-proficient and NER-deficient human fibroblasts were exposed to UVB (150 J/m2) with or without the treatment of silymarin
(20 mg/mL) and cells were harvested 36 h later, cytospun, and subjected to cytostaining to detect CPD+ cells. CPD-positive cells are dark brown. CPD+
cells were not detectable in non-UVB-exposed cells. Magnification, x400. (B), The analysis of UVB-induced DNA damage in the form of CPDs was
performed by dot-blot analysis. Genomic DNA from various treatment groups was subjected to dot-blot analysis using an antibody specific to CPDs.
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P,0.001) compared with non-silymarin treated UVB-exposed

mouse skin (Figures 6A and 6B). In contrast, we could not find a

significant difference in the number of sunburn cells in the

silymarin-treated or non-silymarin-treated UVB exposed NER-

deficient mouse skin (Figures 6A, 6B). The numbers of sunburn

cells in each treatment group are summarized in Figure 6B in

Figure 6. Effect of silymarin on UVB-induced sunburn cells in the skin of NER-deficient and their wild-types. (A), Silymarin repairs UVB-
induced sunburn cells in NER-proficient mouse skin but not in NER-deficient mouse skin. Mice were exposed to UVB (240 mJ/cm2) with or without the
treatment of silymarin, and sacrificed 24 h later. Skin samples were collected and subjected to H&E staining for the analysis of sunburn cells under
microscope. Sunburn cells are shown by dark brown, n = 5/group. Some sunburn cells are shown by arrows. (B), The number of sunburn cells were
counted per 1 cm length of epidermis from each mouse, and data are summarized in terms of mean6SD, n = 5 mice/group. Significant less number
of SCs in NER+/+ mouse skin vs non-silymarin-treated NER+/+ wild-type mice, *P,0.001. ND = not detectable.
doi:10.1371/journal.pone.0021410.g006

Results are shown from a single experiment and is representative of 3 independent experiments. (C and D), UVB-induced cell death in NER-proficient
and NER-deficient cells was detected by Cell Death Detection ELISA following manufacturer’s protocol. Treatment protocol was same as reported in
panels A and B. The amount of apoptotic cell death is reflected by increase of absorbance at 405 nm (optical density), as shown on the y-axis.
*P,0.001. ND = not detectable.
doi:10.1371/journal.pone.0021410.g005
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terms of mean6SD in 1 cm length of the epidermis (n = 5/group).

Sunburn cells were not detectable in the non-UVB-exposed mouse

skin, whether it is treated with silymarin or not treated with

silymarin. These data suggest that repair of UVB-induced sunburn

cells by silymarin required active NER system.

Discussion

In the present study, we demonstrate a novel mechanism by which

silymarin, a plant flavanoid, prevents UVB-induced apoptosis and

enhances DNA repair in UVB-exposed skin cells. UVB radiation-

induced apoptosis has been extensively studied in human keratino-

cytes, which is the major cellular target for solar UVB radiation.

UVB-induced apoptosis has been recognized as a protective

mechanism because it contributes to the removal of cells carrying

DNA damage, thereby preventing malignant transformation [2].

Cells undergo apoptosis because of irreparable DNA damage. If this

damage can be repaired, cells may avoid apoptosis as well as cells may

avoid abnormal deregulation, proliferation or replication of damaged

DNA containing cells, and thus malignancy can be inhibited. Our

data demonstrate that silymarin prevents UVB-induced apoptosis in

skin cells, and this prevention is due to repair of damaged DNA

caused by exposure of the cells to UVB radiation.

We show that silymarin stimulates repair of UVB-induced DNA

damage and that leads to the prevention of apoptosis in UVB-

exposed human epidermal keratinocytes as well as fibroblasts. UVB

radiation induces DNA damage either through DNA fragmentation

and/or the formation of CPDs in cells. In addition, UVA in

particular is also responsible for oxidative DNA damage, and that

can be repaired by base excision repair mechanism. As UVB-

induced CPDs have been recognized as a molecular trigger for the

induction of immunosuppression as well as an initiator of skin

carcinogenesis, we focused our attention on the repair mechanism of

DNA damage by silymarin. Silymarin repairs UVB-induced DNA

fragmentation as demonstrated by comet assay as well as the

formation of CPDs in UVB-exposed cells, and this may be one of the

possible mechanisms by which silymarin inhibits UVB radiation-

induced skin tumor development in mice. As, silymarin has been

shown to have anti-oxidant effect in UVB-exposed mouse skin, the

repair of UVB-induced damaged DNA may also be mediated, at

least in part, through antioxidant effect of silymarin [8,9].

NER is a major mechanism of DNA repair in mammalian cells.

Since the treatment of cells with silymarin enhances the repair of

UVB-induced DNA damage, we further examined whether the

repair of UV-induced CPDs by silymarin is mediated via induction

of NER genes. Our real-time PCR data reveal that treatment of

NHEK with silymarin enhances the levels of NER genes (e.g., XPA,

XPC, RPA1 and DDB2) in UVB-exposed NHEK compared to non-

silymarin-treated cells and that may have contributed in the rapid

repair of damaged DNA in NHEK. The role of NER mechanism

was further confirmed by assessing the effect of silymarin on UVB-

induced DNA damage in human NER-deficient (or XPA-deficient)

cells obtained from human patients suffering from xeroderma

pigmentosum disease and NER-proficient cells were obtained

from normal healthy person. Cells derived from patients suffering

from xeroderma pigmentosum either lacks or have reduced DNA

repair capacity due to genetic mutations in several components of

the NER. The XPA complementation type represents the most

severe phenotype, because the XPA gene is the most crucial

component in the DNA repair process and, thus, cells lacking the

XPA gene are completely deficient in NER [16]. Our immuno-

staining and dot-blot data indicated that silymarin was able to

repair UV-induced CPDs in NER-proficient cells but was not able

to repair in NER-deficient cells. These observations support the

evidence that repair of UV-induced DNA damage in skin cells by

silymarin is mediated through the NER-dependent mechanism.

XPA is part of the core incision complex of the NER system [19].

Therefore, XPA-deficient mice are severely deficient in NER [12].

Because UV-induced DNA damage is known to be the major

molecular trigger for the induction of apoptosis [3], NER-deficient

mice have a higher number of apoptotic keratinocytes than wild-

type counterparts, and therefore have a higher risk of developing

UV-induced skin cancer upon chronic UV exposure due to the

impaired capacity to remove UV-induced DNA damage [12].

XPA-deficient mice are also more susceptible to UV-induced

immunosuppression as lower UV doses are required to achieve the

same level of immunosuppression as in wild-type mice [20].

Following the repair of UVB-induced DNA damage, silymarin

was able to inhibit UVB-induced apoptosis in NER-proficient

cells, however this effect was not found in NER-deficient cells.

Similar observations related with the role of XPA in DNA repair in

UVB-exposed skin cells were also found by the treatment of a-

melanocyte-stimulating hormone [21]. Administration of green tea

polyphenols in drinking water of mice have been shown to prevent

photocarcinogenesis in mice through enhanced repair of damaged

DNA in UVB-exposed skin, and DNA repairing process has been

shown to be mediated through stimulation of interleukin-12 in

mice [11,22]. Further, we present additional evidences using

NER-deficient mouse model. Using this genetically modified

mouse model, we found that silymarin does not prevent UVB-

induced sunburn cell formation in NER-deficient mice but

prevents in their wild-type counterparts. These findings have

important implications for the chemoprevention of skin cancer by

silymarin, and identify a new mechanism by which silymarin

enhances DNA repair in UVB-exposed skin and that may have

contributed in prevention of UV-induced skin tumor development.
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