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Abstract

Background: The species boundaries of some venerids are difficult to define based solely on morphological features due to
their indistinct intra- and interspecific phenotypic variability. An unprecedented biodiversity crisis caused by human
activities has emerged. Thus, to access the biological diversity and further the conservation of this taxonomically muddling
bivalve group, a fast and simple approach that can efficiently examine species boundaries and highlight areas of
unrecognized diversity is urgently needed. DNA barcoding has proved its effectiveness in high-volume species identification
and discovery. In the present study, Chinese fauna was chosen to examine whether this molecular biomarker is sensitive
enough for species delimitation, and how it complements taxonomy and explores species diversity.

Methodology/Principal Findings: A total of 315 specimens from around 60 venerid species were included, qualifying the
present study as the first major analysis of DNA barcoding for marine bivalves. Nearly all individuals identified to species
level based on morphological traits possessed distinct barcode clusters, except for the specimens of one species pair.
Among the 26 individuals that were not assigned binomial names a priori, twelve respectively nested within a species
genealogy. The remaining individuals formed five monophyletic clusters that potentially represent species new to science
or at least unreported in China. Five putative hidden species were also uncovered in traditional morphospecies.

Conclusions/Significance: The present study shows that DNA barcoding is effective in species delimitation and can aid
taxonomists by indicating useful diagnostic morphological traits, informing needful revision, and flagging unseen species.
Moreover, the BOLD system, which deposits barcodes, morphological, geographical and other data, has the potential as a
convenient taxonomic platform.
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Introduction

The Veneridae (Rafinesque, 1815), known as venus clams, is the

most speciose family of heterodont bivalve mollusks [1]. Similar to

other heterodont bivalves, larval venerids are planktonic and

adults live in substrate environments such as mud, coarse sand,

and gravel, and some of them even burrow in weathered rock and

coral reefs (e.g., genus Irus Schmidt, 1818). To adapt to various

substrate environments, their burrowing behavior has led to

extensive parallelism of interspecific morphological variability, as

well as pronounced intraspecific ecophenotypes. As a result, the

intra- and interspecific phenotypic variability of many venerids are

indistinct or even overlapping. Therefore, species boundaries of

these clams are difficult or even impossible to define accurately

based solely on morphological features. Many taxonomic experts

disagree regarding the subjective interpretation of variable

morphological characters and the validity of species. For some

notorious closely related species complexes, even quite varying

opinions are held by the same conchologists at their different

stages. Thus, Veneridae comprises one of the least understood and

most poorly defined molluscan taxa as espoused by Mikkelsen

et al. [2].

Considering the species boundaries of some venerids are

difficult to delimit based on morphology, additional ecological,

reproductive, and other biological data should be employed.

However, large-scale investigations using these methods are

unlikely launched for this extremely speciose family due to the

dwindling of trained taxonomists, as well as costly and time-

consuming data collection. An unprecedented biodiversity crisis

caused by human activities, such as overharvesting, habitat

degradation, global warming, pollution, biological invasions, and

other stressors, have emerged in the past decades [3–5]. Accurate

species delimitation and documentation is vital to accessing

biological diversity and furthering conservation. Therefore, a

heuristic and high-throughput proxy, that can facilitate the

determining of conditions that merit more detailed taxonomic

revisions and further aid in focusing the efforts of taxonomists in

characterizing biodiversity, should be developed.

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e21326



The term DNA barcoding was coined by Hebert and colleagues

for the use of a standardized DNA region as a tag to fast and

reliably identify known species and to aid in the discovery of

undescribed species [6,7]. The 59 end of the mtDNA cytochrome c

oxidase I (COI) gene has been suggested by the Barcode Initiative

as a barcode sequence for animal species [8]. To date, this DNA

fragment has proved its effectiveness in species identification for

the major metazoan animal clades, including both vertebrates

(e.g., [9–11]) and invertebrates (e.g., [12–14]). The efficiency of

this barcode marker in the detection of cryptic species has also

been well documented in a large array of animal taxa (e.g., [14–

16]). COI-based barcoding has also revealed very high perfor-

mance for bivalve groups, albeit only a few species were included

[17–20]. According to a recent review by Zink and Barrowclough

[21], the signal from mtDNA is rarely contradicted by supple-

mental analyses at nuclear markers. Various recent research have

also indicated that divergent barcode clusters indeed correspond to

reproductively isolated groups, proving a link between DNA

Figure 1. Distribution of locations for the 315 specimens sampled along the coast of mainland China. See Table S1 for the detailed
sampling information. Demarcation of marine molluscan faunal regions of China is mapped. I: Far East Subregion of North Pacific Region, IIA: Sino-
Japanese Subregion of Indo-West Pacific Region, and IIB: Indo-Malayan Subregion of Indo-West Pacific Region.
doi:10.1371/journal.pone.0021326.g001

Figure 2. A diagrammatic representation of the standard barcoding region and the primer binding sites used in this study.
doi:10.1371/journal.pone.0021326.g002
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barcode and the biological species [22–25]. Hence, this promising

standardized molecular approach may have the power to play the

role in broadly examining species boundaries of venerids.

In the present study, Chinese venerid fauna was chosen to

examine whether DNA barcoding is sensitive enough to reveal

discrete biological entities, and how this molecular biomarker

complements taxonomy and explores species diversity. As one of the

most extensive coastline in the Western Pacific Region, the coastline

of China has extensive latitudinal range, well-characterized

oceanography, and dramatic geological history [26]. Two mollus-

can faunal regions have been demarcated along the coast of China

(Figure 1), with approximate 100 venerid species reported [27,28].

Among these venerid species, only eight were described in the last

century, and just two were described by local taxonomic experts

(i.e., Chinese malacologists) [28]. This situation suggests that the

traditional taxonomy of Chinese venerid fauna is substantially

outdated and that venerid biodiversity might be severely underes-

timated. Therefore, genetic barcoding analysis presented herein also

provides an ideal opportunity to offer fresh insights into the

taxonomy and biodiversity of this poorly understood fauna.

Materials and Methods

Biological Material Sampling
The samples included in the present study were collected along

the coast of China from April 2004 to May 2010 (Figure 1 and

Table S1). These samples were stored in 95% ethanol and deposited

as voucher specimens in Fisheries College, Ocean University of

China. Species were delimited a priori based on currently published

taxonomic literature. In cases when the identification was difficult,

some taxonomic specialists were consulted. However, some

specimens still could not be reliably assigned binomial names.

These specimens were just identified to taxonomic level as low as

possible (Table S1). The classification scheme proposed by Habe

[29] was followed throughout this study. Photographs of specimens

used in this study as well as collecting data are available in the

project ‘Bivalves along the Coast of China’ on the Barcode of Life

Data System (BOLD) at http://www.barcodinglife.org/.

Molecular Data Collection
A double mechanism of transmission, called ‘‘doubly uniparen-

tal inheritance’’ (DUI), that both male (M-type) and female (F-

type) mtDNA are inherited uniparentally, is known in some

bivalves including venerid Ruditapes philippinarum [30]. Infrequent

M-type mtDNA is restricted to male gonadal tissue [31]. Thus, to

avoid collecting M-type mtDNA, total genomic DNA was

extracted only from the adductor muscle tissue using a modified

phenol-chloroform procedure described by Li et al. [32].

Polymerase chain reaction (PCR) was performed in a total

volume of 50 ml with 2 U Taq DNA polymerase, 100 ng template

DNA, 1 mM each primer, 200 mM of each dNTP, 16PCR buffer,

2 mM MgCl2, and 4% DMSO. The PCR cycles were carried out

under the following conditions: an initial denaturation for 3 min at

94uC, followed by 35 cycles of 40 s at 94uC, 40 s at primer-specific

annealing temperatures (Table 1), 40 s at 72uC, and with a final 5-

min extension at 72uC. Kappner’s [33] and Mikkelsen’s [2]

primers were employed to amplify COI when Folmer’s [34]

primers failed. However, some taxa still could not be sequenced

successfully. Thus, two sets of customized primer cocktails for

venerids were developed to better match this mitochondrial gene

region (Figure 2 and Table 1). Sequencing was performed in both

directions, and the complementary DNA sequence strands were

edited, assembled, and merged into consensus sequences using the

software program Seqman II 5.07 (Lasergene, DNASTAR). All

Table 1. Primer sequences and annealing temperatures used to amplify DNA barcodes in this study.

Set name Primer name Sequence (59–39) Annealing T (6C) Source

Folmer 48–52

LCO1490{ GGTCAACAAATCATAAAGATATTGG [53]

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA [53]

Mikkelsen 48

COIF-ALT{ ACAAATCAYAARGAYATYGG [6]

COIR-ALT TTCAGGRTGNCCRAARAAYCA [6]

Venus-CS 48–50

COIF-ALT{ ACAAATCAYAARGAYATYGG [6]

COIF-VSA{ ACCAATCATAAAGATATTGG Modified from [52]

COIRVBSI CCNAYHGTAAAYATATGRTG This study

COIRVBSO CCDRCNGTAAAYATRTGATG This study

Kappner 48–54

LCO1490-Ven{ ATTATTCAGAACCAATCATAAAGATATTGG [52]

HCOI900-Ven TGTAGGAATAGCAATAATAAAAGTTAC [52]

Venus-CL 48–50

COIF-ALT{ ACAAATCAYAARGAYATYGG [6]

COIF-VSA{ ACCAATCATAAAGATATTGG Modified from [52]

COIRVBLP CCTGTAGGAATAGCAATAAT This study

COIRVBLJ CCWGTWGGRACAGCAATAAT This study

{Forward primer.
Reverse primer.

doi:10.1371/journal.pone.0021326.t001
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sequences were deposited in GenBank under accession numbers

from HQ703031 to HQ703342 and BOLD with numbers from

BCC001-10 to BCC315-10 (See Table S1 for details).

As complementary data, additional barcodes were obtained

from BOLD. All 320 public records (Document S1) were

downloaded, and 310 sequences longer than 400 bp in length

were merged with the sequences collected by ourselves (hereafter

referred to as the ‘‘original dataset’’), creating a complete dataset

of 622 sequences (hereafter referred to as the ‘‘complete dataset’’).

DNA Barcoding Analyses
Genetic distances were calculated using the Kimura 2-parameter

(K2P) model [35] in MEGA 4.1 [36]. The analyses were performed

as follows: (a) Maximum intraspecific distances and minimum

Figure 3. Statistical results of genetic distance analyses. A. Maximum intraspecific distances versus minimum interspecific distances.
Performances were based on individuals reliably identified a priori to the species level. %: Species were monophyly with low genetic diversity. #:
Species divided into two well-separated clusters. e: Individuals of species pairs exhibited very low level of genetic diversity. B. Distribution of distances
among conspecific, congeneric, consubfamilial, and consubfamilial individuals. Species assignments were the final assignments according to our
barcoding analysis. C. Pairwise distances within Veneridae. (a): 48516 pairs from the original dataset. (b): 193131 pairs from the complete dataset.
doi:10.1371/journal.pone.0021326.g003

Table 2. Barcode divergence statistics for the five apparent cases of cryptic variation (%).

MOTU
number Defined a priori Within MOTU Between MOTU Final assignment

Min. Mean Max. Min. Mean Max.

16 Gafrarium dispar 0.00 0.95 2.04 13.26 14.32 15.14 Gafrarium dispar A

19 — — — Gafrarium dispar B

7 Circe scripta 0.15 0.72 1.40 7.70 8.11 8.75 Circe scripta A

8 0.00 0.00 0.00 Circe scripta B

28 Meretrix petechialis 0.15 0.52 1.15 6.42 6.96 7.67 Meretrix petechialis A

72 0.00 0.79 1.70 Meretrix petechialis B

116 Paphia gallus — — — 14.42 14.36 14.43 Paphia gallus A

96 0.15 0.20 0.31 Paphia gallus B

102 Periglypta puerpera 0.00 0.50 1.17 13.37 14.15 14.58 Periglypta puerpera A

82 — — — Periglypta puerpera B

doi:10.1371/journal.pone.0021326.t002
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interspecific distances of individuals, which were reliably assigned

binomial names a priori, were calculated; (b) Distances were

calculated at the species, genus, subfamily, and family level

respectively based on the original dataset; and (c) Pairwise distances,

based on the original dataset and the complete dataset respectively,

were calculated among venerids regardless of their binomial names.

For the threshold-based approach, the sequences were also

grouped into provisional clusters as molecular operational

taxonomic units (MOTUs) using the alignment-based parametric

software TaxonDNA 1.6.5 [37]. The MOTUs were defined for

both the original and the complete datasets. The analyses were

implemented at cut-off values ranging from 0–25% sequence

divergence.

A neighbor-joining (NJ) tree was reconstructed for the complete

dataset using the K2P model with a bootstrap support analysis

(1000 replicates) in MEGA. To infer the systematic relationships

among species of certain groups more effectively, the maximum

likelihood (ML) approach was applied using PhyML 3.0 with 1000

bootstrap replicates [38]. The best-fit models of nucleotide

substitution were inferred using jModeltest 0.1.1 [39].

Results

A total of 315 venerid specimens were analyzed, among which,

289 were defined into 51 species based on morphological

characters. Appropriate binomial names were not assigned to

Figure 4. Variation in the numbers of MOTUs defined at cut-offs from 0 to 25% for barcodes.
doi:10.1371/journal.pone.0021326.g004

Figure 5. A maximum likelihood tree of barcodes from individuals of the subfamily Dosiniinae. Numbers near the nodes indicate ML
bootstrap support. Support values less than 50 are not shown. Species names and GenBank accession numbers are given at branch tips. Periglypta
puerpera is selected as outgroup.
doi:10.1371/journal.pone.0021326.g005
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the remaining 26 individuals because they were either still

undescribed or were unable to be reliably identified based on

available reference materials. These specimens were provisionally

assigned into 13 morphologically distinct groups.

Majority of the individuals that were reliably identified to species

level based on their morphological characters displayed very low

ratios of maximum intraspecific distance to minimum interspecific

distance (Figure 3a). However, a high level of intraspecific variation

was observed in five morphospecies (Gafrarium dispar, Circe scripta,

Meretrix petechialis, Paphia gallus and Periglypta puerpera) (Table 2), and

individuals of Phacosoma biscoticum and P. fibulum showed evidence of

extremely low level of interspecific genetic diversity. These

individuals, that displayed uncommon maximum intraspecific to

minimum interspecific distance ratios, might be suffering wrong

species delimitations. Thus, some specimens were reallocated to

new provisional species groups. Based on the final species

delimitations, the genetic distances among individuals that shared

the same assignments ranged from 0 to 3.17%, and the adjusted

congeneric comparisons were between 5.45% and 34.17%

(Figure 3b). The mean congeneric distance (19.64%) was approx-

imately 40-fold higher than the conspecific variation (0.49%).

Nearly all congeneric distances were higher than 10%, except for

the species pairs Macridiscus aequilatera and M. semicancellata, M.

petechialis A and B, and C. scripta A and B. Although no large gap

between intra- and interspecific genetic divergence variation was

observed, the K2P distances ranging from 4% to 10% were

regarded as the barcoding ‘‘gap region’’ because very few barcode

distances fell in this rank. The 310 sequences downloaded from the

BOLD database were subsequently included into our pairwise

genetic distance analyses, with this broader sampling not evidently

filling this barcoding gap region (Figure 3c).

Variations in the richness of the MOTUs delimited at cut-offs

ranging from 0 to 25% for venerid barcodes are shown for both

the original dataset and the complete dataset in Figure 4. Both of

these two datasets exhibited a plateau in MOTU numbers

consistent with the barcoding gap region. The MOTUs designated

by TaxonDNA should have the highest correct assignment rate at

the gap region. Considering that a lower cut-off value can more

efficiently screen potential lumping taxa and uncover hidden

biological diversity, our final MOTU name assignments were

adopted at the restrictive arbitrary value of 4%. At this cut-off

threshold, 62 and 131 MOTUs were recognized for the original

dataset and the complete dataset, respectively.

The five morphospecies with high conspecific variations

respectively formed two monophyletic clusters in our NJ analysis

(Figure S1). When the barcodes downloaded from BOLD database

were considered, four additional cases (Globivenus toreuma, M.

lamarckii, Protothaca jedoensis, and Pitarina japonica) that might represent

cryptic species were revealed. Moreover, amounts of barcodes from

BOLD did not nest among their putative conspecifics but fell far

afield within the clusters formed by other species (Figure S1; see

Figure 5 and Figure 6 for two obvious cases).

Discussion

Utility of COI for Species Delimitation
Our analyses indicate that the individuals, that were reliably

assigned binomial names a priori, possessed distinct COI sequences,

except for the five individuals of P. biscoticum and P. fibulum. Among

the individuals which were unable to assign binomial names, 11

formed five monophyletic clusters. These units of diversity are

likely species new to science or at least unreported in China

because of their significant morphological distinctness to well-

established species from the coast of China. The remaining 12

specimens cohesively nested unambiguously within a species

genealogy respectively. Considering that morphologically ambig-

uous and/or taxonomically controversial species were readily

detected and potential cryptic diversities were also efficiently

uncovered by barcodes herein, this genetic maker is sensitive for

the delimitation of venerid species.

Figure 6. A maximum likelihood tree of barcodes from
individuals of the genus Meretrix. Numbers near the nodes indicate
ML bootstrap support. Support values less than 50 are not shown. The
MOTU numbers of each barcode clusters are given at branch tips.
Cyclina sinensis is selected as outgroup.
doi:10.1371/journal.pone.0021326.g006
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One of the earlier criticisms on DNA barcoding was that

specimen sampling is not sufficiently exhaustive [40]. Herein,

when data downloaded from BOLD were included our analyses,

the barcoding region still existed (Figures 3c and 4). Heteroplasmy

(e.g., DUI) is another reason for deep mtDNA divergence within

the same biological species, even the same individuals. Our results

show that M-type and F-type barcodes of R. philippinarum formed

separate clusters (Figure S1). Considering the barcode array for

one species remains distinct from the others, geographical

differentiation and heteroplasmy apparently does not pose a

significant issue for tree-based barcoding analysis.

The Role of Local-scale DNA Barcoding Projects
Although animal groups including numerous marine bivalves

whose morphological taxonomy are in chaos would greatly benefit

from DNA barcoding, no global barcoding campaign for bivalves

have been performed as in other relatively well-understood animal

groups. Nevertheless, building databases for regional fauna and

feedback between DNA and traditional taxonomy will also assist us in

refining the current taxonomic status and understanding biodiversity.

1. Mapping Diagnostic Morphological Traits. Inter-

mediate types exist in numerous venus siblings, even in some

taxon assemblages without controversies at the species level. Some

intermediate types are too misleading to correctly determine their

binomial names even for taxonomic specialists because the key

characters for separating sister species are difficult to determine

[28]. Mapping morphological characters into genetic clusters is an

additional way to assist taxonomists in determining diagnostic

traits. The morphology of some individuals of G. dispar and G.

divaricatum, for example, are intermediate. Based on their well-

separated barcode clusters, all G. divaricatum specimens were found

to have crenulations in their interior shell margin in contrast to

individuals of G. dispar specimens (Figure 7). This conchological

trait was ignored in most former taxonomic literature. After re-

examining more than 400 specimens deposited in our laboratory,

we found this character was unambiguous for separating these two

species.

2. Informing Revision of Current Taxonomy. Given that

many taxonomic experts disagree regarding the interpretation of

variable morphologic characters to keep species apart or together

Figure 7. A maximum likelihood tree of barcodes from two conchologically similar Gafrarium morphospecies. Numbers near the nodes
indicate ML bootstrap support. Support values less than 50 are not shown. Distinguishing morphological traits were mapped into barcode clusters, I:
crenulated interior shell margin of G. divaricatum, and II: smooth interior shell margin of G. dispar A and B.
doi:10.1371/journal.pone.0021326.g007
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in some venerid groups, shell morphology apparently could not

provide additional useful information to clarify their biospecies

status. The barcoding approach provides new insights in

examining species boundaries herein. The number of species

that should be recognized within the C. scripta complex is

controversial, whether one species [41,42], two species [29], or

three species [28]. Two barcode clusters were recovered here but

they do not represent any morphospecies of traditional taxonomy.

Ongoing work is investigating this issue using both molecular and

morphological methods. Phacosoma biscoticum and P. fibulum, which

are two independent species in taxonomic history, lacked

intraspecific divergence. To rigorously examine their biospecies

status, the sampling should be more adequate and nuclear markers

should be added in future studies. Paphia schnelliana, described in

the Chinese literature [28,42,43], possesses relatively distinct

morphological characters from P. schnelliana (Dunker, 1862), and

individuals of P. schnelliana Zhuang (2001) clustered with P. amabilis

in our barcode tree. Therefore, the P. schnelliana reported in China

might be P. amabilis rather than P. schnelliana, or these two species

should probably be synonymized.
3. Flagging Hidden Diversity. Five putative hidden species

were flagged in M. petechialis, C. scripta, G. dispar, P. gallus and P.

puerpera. In addition, six unrecognized species in China were

uncovered based on morphology and barcodes, except for Timoclea

sp. whose barcode data are absent. It is quite intriguing to note that

four small specimens (Meretrix sp.), which were initially inferred as

juvenile M. lyrata due to the similarity of their shells to that of M.

lyrata and concurrent sampling of some M. lyrata individuals at the

same collecting locality, formed an independent cluster in our NJ

tree. Meretrix sp. was documented as M. planisulcata, a new record in

China by Xu and Zhang [28]. However, M. planisulcata possesses

some conchological characters such as inequilateral shells, narrow

posterior end and wide hinge plate [44,45], which are markedly

different from Meretrix sp. Therefore, the specimens sampled in

China likely represent a new species in the genus Meretrix.

Current Limitations of BOLD and Its Potential Roles
Amounts of publicly available BOLD data did not nest among their

putative conspecifics in our NJ tree. Most of these specimens might

have been misidentified by submitters. For example, the barcodes of

D. corrugata downloaded from BOLD nested within P. japonicum

sampled by ourselves, whereas published barcode of P. japonicum

nested within our D. corrugate cluster. Considering that the genera

Phacosoma and Dosinella occupied different positions in the ML tree

(Figure 5), we inferred that these records in BOLD likely resulted from

misidentifications. On the other hand, species-name discordance

might reflect errors in the taxonomic literature of some countries,

which is caused by the scarcity of both reliably identified reference

collections and expert taxonomists. For example, the present

barcoding analyses evidences that the specific name M. meretrix has

been used for various species, and M. lusoria and M. petechialis are

intertwined with each other as pointed out by Yamakawa et al. [46]

and by Yoosukh and Matsukuma [47] (Figure 6).

Given the unreliability of the current venerid reference barcode

library in BOLD, identification of venus clams using the BOLD

Identification Systems is not prudent at present. However, our

barcoding analyses show that BOLD still has the potential to flag

unseen species and reveal cases of errors in the taxonomic

literature of some countries. Nevertheless, to enable the possibility

of scrutinizing the identity of the specimen from which a sequence

was obtained, comprehensive morphological and geographical

data, and if necessary, other information such as barcode nature

(e.g. M-type and introgression), additional independent genetic

markers, and the ecological data of voucher specimens must be

submitted along with barcodes.

Conclusion
DNA barcoding was proposed for dual purposes: species

identification and species discovery [6,7]. Considering that barcod-

ing is more sensitive than morphological analysis in some

morphologically confusing animal groups, taxonomy disentangle-

ment should be its third role. However, in spite of their potential for

efficiently examining species boundaries, barcode clusters fulfill the

phylogenetic species concept and are not destined to be biological

species [48]. Therefore, when the overlumpings and oversplittings of

traditional taxonomy are flagged by barcoding analyses, additional

taxonomic methods are required to draw solid conclusions.

Supporting Information

Table S1 List of specimens with the classification,
collection details, and voucher numbers. Species names

defined based on morphological characters and our barcoding

analysis are reported respectively. GenBank accession numbers

and BOLD specimen numbers are given in the last tow columns.

(PDF)

Document S1 FastA file with all 320 public venerid
barcodes in the BOLD database.
(TXT)

Figure S1 A neighbour-joining tree of 622 COI sequence
from venerid species sampled by ourselves and obtained
in BOLD, using K2P distances. Numbers near the nodes

indicate NJ bootstrap support. Species names and GenBank

accession numbers are given at branch tips.

(PDF)
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