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Abstract

Recent investigations have demonstrated that human milk contains a variety of bacterial genera; however, as of yet very
little work has been done to characterize the full diversity of these milk bacterial communities and their relative stability
over time. To more thoroughly investigate the human milk microbiome, we utilized microbial identification techniques
based on pyrosequencing of the 16S ribosomal RNA gene. Specifically, we characterized the bacterial communities present
in milk samples collected from 16 women at three time-points over four weeks. Results indicated that milk bacterial
communities were generally complex; several genera represented greater than 5% of the relative community abundance,
and the community was often, yet not always, stable over time within an individual. These results support the conclusion
that human milk, which is recommended as the optimal nutrition source for almost all healthy infants, contains a collection
of bacteria more diverse than previously reported. This finding begs the question as to what role this community plays in
colonization of the infant gastrointestinal tract and maintaining mammary health.
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Introduction

Due to the considerable health benefits it confers, human milk is

universally considered the optimal source of nutrition for almost all

healthy infants. For instance, breastfeeding provides infants with

critical protection from diarrheal [1] and respiratory diseases [2],

especially in developing countries, and is associated with reduced

long-term risk of obesity [3,4]. Past research [5,6] has extensively

investigated the presence and health implications of the traditional

nutrients in milk, such as fatty acids, vitamins, and minerals;

however, recent work has shown that human milk also contains

communities of bacteria [7,8,9,10,11,12] that may have health

implications.

Culture-dependant methods have long confirmed the presence

of bacteria in aseptically collected milk including Staphylococcus and

Streptococcus species [7], whereas culture-independent studies

utilizing microbial characterization techniques based on the

amplification of bacterial 16S rRNA have shown that human

milk contains several additional genera of bacteria including

Lactobacillus and Bifidobacterium [8,9,10]. While these studies provide

clear evidence that aseptically collected milk contains bacteria,

very little work has examined the possibility that a core milk

microbiome exists among lactating women, or investigated the

stability of these communities within an individual over time.

These types of analyses are critical because they make it possible to

determine the roles these communities may play in maintaining

mammary gland health, bacterial colonization of the infant’s

gastrointestinal tract, and other indices of short- and long-term

maternal and infant health. Consequently, the present study was

designed to probe more deeply into the stability and diversity of

human milk bacterial communities over time. We hypothesized

that human milk contains a greater diversity of bacterial phylo-

types than previously noted, and that these communities would be

stable over time within each individual lactating woman.

Results

With the exception of milk collected from one participant who

donated only 2 samples, bacterial genomic DNA was extracted

from milk samples collected at 3 time points over a 4-wk interval

from 16 lactating women self-described as healthy and free from

lactational mastitis. Samples were collected using a method

designed to reduce skin contamination. The V1-V2 region of

the bacterial 16S rRNA gene was amplified from the DNA using

universal primers, and barcoded pyrosequencing of the amplicons

produced approximately 300,000 reads. Conservative quality

control measures were employed to remove sequences with

potential error such as those that had ambiguous bases, did not

match the forward primer sequences, failed to align correctly to an

established 16S rRNA sequence database, or were flagged as
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potential chimeras. These quality control measures reduced the

data set to ,160,000 high quality sequences with a mean of 3400

sequences per sample. To examine the bacterial genera present,

sequences were then assigned to the most likely bacterial genera

using the Ribosomal Database Project (RDP) Bayesian classifier.

The most abundant genera in milk (Figure 1; Table S1) were

Streptococcus, Staphylococcus, Serratia and Corynebacteria; however, eight

other genera represented $1% of the communities observed

across samples. Additionally, assignment of sequences into

operational taxonomic units (OTUs) using a 3% similarity cutoff

identified 100–600 OTUs present in the samples from each subject

(Figure 2).

The variation among samples was studied to evaluate the

stability (or lack thereof) of the communities within women.

Examination of the communities on a sample-by-sample basis

within subject suggested that the stability and membership of

bacterial communities present were different among women

(Figure 1; Table S1). For example, in each of the samples from

‘‘Subject 5,’’ Staphylococcus was either the first or second most

abundant genera in the milk representing 22–59% of her bacterial

community. In contrast, in all 3 samples collected from ‘‘Subject

1,’’ Staphylococcus was only a minor contributor to the community,

consistently composing ,5% of the bacteria therein. In samples

from some individuals the milk bacterial communities were

consistent and relatively unchanging over time (e.g., subjects 1

and 3); for others there was little stability as the relative abundance

of the bacterial genera present shifted over time (e.g., subjects 13

and 16). Cluster analysis comparing the community structure of

each sample (Figure 3) demonstrated a range of similarity in

samples across subjects. All samples from four of the subjects

clustered with each other, two samples from five subjects clustered

directly together, whereas none of the samples from six of the

subjects clustered together. Of the total OTUs observed in the

samples from each woman only 4–20% were present in every milk

sample collected from that woman over time (Figure 2). However,

these few persistent OTUs dominated the community, represent-

ing between 60–99% of the bacterial abundance in samples from a

particular woman.

Among subject variation was apparent in the relative abun-

dances of bacterial genera (Figure 1; Table S1) and the six-fold

difference in number of observed OTUs (Figure 2). In samples

from several subjects Streptococcus was considerably more abundant

than any other genera, whereas in samples from several other

women Staphylococcus was the most abundant genera, and in

samples from the remaining women no genera were consistently

most prevalent. However, a set of 9 OTUs (Table 1) was found to

be present in every sample from every subject. This small

proportion of the overall membership of the milk microbiome

represented a reasonably large (50%) proportion of the relative

abundance in the total communities of the 16 subjects.

Discussion

Previous culture-based and culture-independent studies have

established that human milk contains several species of bacteria

that are potentially important in maternal or infant health

[7,11,12]. We extended these studies by performing an in-depth

analysis of the bacterial communities in milk with high throughput

sequencing techniques. The methods used in this study allowed us

to carry out a more thorough examination of the biodiversity

present in our samples by employing primers that are designed to

be ‘‘universal’’ in nature, or capable of detecting most bacteria

present in clinical samples [13]. Additionally, this type of

technology facilitated the analysis of thousands of sequences per

sample, which increased the capacity to observe less abundant

bacterial phylotypes. The results of this study, therefore, provided

a more comprehensive view of the ecology of milk bacterial

communities.

Based on this difference in methodological approach it is

reasonable that our results identified a much greater diversity of

bacteria in milk than what has previously been reported in culture

independent studies that relied on less broad range (quantitative

PCR) [10] or precise (PCR-DGGE) [8] methods. Confirming

previously published reports of milk microbiota [7,10], we found

several genera of bacteria in every sample, and the major

phylotypes observed were Streptococcus and Staphylococcus. Addition-

ally, as also reported in another analysis of milk bacteria that

employed universal primers [8], we detected Serratia and

Propionibacterium in the milk samples we analyzed. Conversely,

whereas previous work has identified Lactobacillus and Bifidobacteria

as common but minor members (2–3% relative abundance) of

milk microbiota [9,10], very few sequences from these phylotypes

were observed in our samples (Table S1). This difference may be

attributable to genetic, cultural, environmental, or dietary diffe-

rences among subjects, especially considering that the previous

studies were performed in Europe and the current study in the US.

Additionally, differences in the primers used may be responsible

for these conflicting findings.

An analysis of the microbial community membership across all

the samples from the 16 subjects suggests that a ‘‘core’’ milk

microbiome was present. Of the hundreds of OTUs detected in

the milk of every woman, only 9 were present in every sample

from every woman. Surprisingly, these 9 ‘‘core’’ OTUs repre-

sented about half of the microbial community observed, although

the relative abundance of these 9 core OTUs varied greatly

between subjects. Of course, that means that the remaining half of

the community was not conserved across women. This is in stark

contrast to the gut microbiome, where no highly abundant set of

OTUs is shared among individuals [14], or the vaginal micro-

biome which comprises several different core groups [15]. In

addition, studies of the various sites of the human microbiome

indicate that the bacterial communities associated with a particular

individual over time are often highly personalized [16]. This was

also true of the human milk microbiome observed in this study;

persistent OTUs present in every sample from an individual

represented a large proportion of the abundance of the bacterial

community observed.

The origin of the bacterial communities inhabiting milk is

unknown. However, utilizing infrared photography, Ramsay et al.

[17] demonstrated that a high degree of retrograde flow back into

the mammary ducts occurs during suckling. This back flow may

provide an ideal route for the exchange of bacteria from the

infant’s mouth into the mammary gland. Indeed, ecological niches

in the human microbiome are not thought to be isolated

environments, but rather a network of inter-related communities

experiencing constant exchange [16]. It is likely that milk bacterial

communities are no exception, and that they are constantly

influenced by exposure to the other microbial populations asso-

ciated with the mother and her infant. Little is known about the

salivary microbiome of infants, but investigations of the adult

salivary microbiome have demonstrated that Streptococcus species

are the dominant phylotype therein [18,19]. As previously noted,

Streptococcus species were the most abundant phylotype in the milk

samples we analyzed, supporting the hypothesis that the infant

salivary bacteria play a role in establishing milk bacterial commu-

nities, or vice versa.

Several of the phylotypes typically present on adult skin such as

Staphylococcus, Corynebacteria, and Propionibacteria [20,21] were found

Bacterial Communities in Healthy Human Milk
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in the milk of every woman. This presents the possibility that skin

bacterial communities may be another source for the origin of milk

bacteria and that interaction with the maternal skin microbiota

may also help shape the distribution of milk microbiota. How-

ever, because we recognized the possibility that skin microbiota

could contaminate our samples, the breast was cleansed with an

Figure 1. The community composition of the 15 most abundant bacterial genera in each of 3 milk samples from 16 subjects was
diverse. The communities observed were found to be reasonably complex, and while consistent in composition over time for some subjects, a great
deal of variation was observed over time in the samples of others.
doi:10.1371/journal.pone.0021313.g001
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iodine-based solution prior to milk sample collection. Additionally,

a comparison of the bacterial communities we detected in milk to

those of sebaceous skin of the type found on the breast indicates

that although the two communities share many of the same

phylotypes, major differences exist. Most notably, the genus found

in greatest abundance in these milk samples (Streptococcus) is only a

minor component of sebaceous skin microbiota, representing

,10% of the genera found there [20,21]. Likewise, Propionibacteria

has been reported to be the most abundant genus on sebaceous

skin, but this phylotype was not among the 5 most abundant

genera in our milk samples. If the bacterial communities detected

in our milk samples were merely due to skin contamination, then

these communities would not only be expected to share several

phylotypes, but the relative abundance of these phylotypes would

also be similar. This difference between the two communities

suggests that bacterial communities in milk are not simply a result

of skin contamination.

The characteristics of commensal communities of bacteria in

human milk with the level of complexity and individuality

observed in our study may have important implications for the

mammary health of lactating women. During the course of

lactation, up to 30% of women suffer from breast infections or

inflammation (mastitis), often leading to fever, redness, swelling,

and breast pain [22]. Interestingly, whereas many women who

experience mastitis do so repeatedly, others report no such

problems throughout the course of several lactations [23]. It is

possible that the composition of mammary communities, which

the present data show are often unique to an individual, are

important factors that influence whether a woman will suffer

reoccurring episodes or avoid mastitis altogether. It is possible that

mechanisms such as competitive exclusion for nutrients and other

resources, or production of bacteriocins by particular members of

the commensal communities in milk repress potential pathogens

and the subsequent signs and symptoms of mastitis [7].

The pathogenic agent most commonly associated with lacta-

tional mastitis is Staphylococcus aureus [24], although often cases are

considered ‘‘noninfectious’’ due to the lack of pathogen confir-

mation via the widely utilized, culture-based analyses [25]. We

Figure 2. A small proportion of the total richness was persistent within subject and represented the majority of the community
present. A. The number of OTUs (as defined by 97% sequence similarity) observed across all samples for each woman ranged from 100 to 600;
however, only a small proportion of those OTUs were present in every sample from an individual subject-representing the individual core milk
microbiome. B. The individual core milk microbiome for each woman was composed of the OTUs present in each of her samples. This relatively small
number of OTUs represented the majority of the relative abundance of the community observed over time.
doi:10.1371/journal.pone.0021313.g002
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believe these conclusions may have been influenced by method-

ological bias. In support of this, we analyzed the milk samples

collected in the present study using culture-dependent techniques

to highlight the difference between what culture-independent

methods were capable of, and what is usually determined with the

industry standard for analysis of pathogens associated with

mastitis. The method that was employed is currently recom-

mended by the National Mastitis Council Laboratory and Field

Handbook on Bovine Mastitis [26], which aims to determine the

presence or absence of a pathogen. Briefly, samples of milk were

cultured aerobically on blood agar plates and checked for growth

at 24 and 48 h. Isolates were then identified as coagulase-positive

or -negative Staphylococci, Streptococcus, Cornybacterium or coliforms.

The interesting outcome of this analysis was that even with this

simple method of screening for bacterial growth the shortcomings

of culture based methods for analysis of milk bacteria became

apparent when roughly 20% of samples were void of bacterial

growth. The culture conditions used should support the growth of

a variety of organisms, yet growth from these samples was limited.

Therefore, this example of a basic culture analysis supports the

conclusion that culture-independent methods provide valuable

additional insight into the bacteriology of milk.

For example, although the women who participated in this

study defined themselves as free from lactational mastitis, an

intriguing microbial pattern was observed in the first sample from

subject 13 (Figure 1). This sample was dominated by an apparent

bloom of Streptococcus, which represented 95% of the total bacterial

relative abundance. In contrast, the 2 other samples collected from

this same woman displayed a more even phylotype distribution.

Interestingly, at the time the Streptococcus-dominated sample was

obtained, the somatic cell count of the sample, which is a measure

of mammary gland inflammation commonly used in the dairy

industry to detect mastitis [27], was five-fold greater when

compared to the other two samples collected from the same

subject. This drastic increase in a marker of inflammation suggests

that acute lactational mastitis was likely occurring at the first time

point, and provides evidence that culture-independent methods

may help identify imbalances in milk microbial ecology associated

with this often debilitating condition.

The potential effects of the richness of milk microbiota reported

in this study on infant gut colonization are intriguing. Clearly,

human milk consumption introduces the infant to hundreds of

phylotypes of bacteria that have a direct route to the gastrointes-

tinal tract. Exposure of the breastfed infant to the bacterial

richness in milk may be one factor contributing to the differential

fecal microbiota between breastfed and formula-fed infants [28].

Additionally, ingestion of such a wealth of bacterial phylotypes

Figure 3. The community structure of bacterial OTUs in a milk sample often aligned by subject. The complete linkage clustering of the
samples based on the Bray-Curtis similarity metric demonstrated that, with several exceptions, samples from the same woman were often most
similar to other samples from that same subject. Colored boxes represent samples from the same subject that clustered together.
doi:10.1371/journal.pone.0021313.g003

Table 1. Genus assignments of the 9 OTUs identified in every
sample (n = 47) and their relative abundance (%).

Core OTU Genera
Relative abundance of OTU
in total community (%)

Staphylococcus 15.8

Streptococcus 8.2

Serratia 7.6

Pseudomonas 4.5

Corynebacterium 3.8

Ralstonia 3.7

Propionibacterium 3.6

Sphingomonas 2.4

Bradyrhizobiaceae 1.9

Sum of all ‘‘core’’ OTUs 51.5

doi:10.1371/journal.pone.0021313.t001
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may also contribute to the protective effects of breastfeeding

against diarrheal [1] and respiratory [2] disease, and reduced risk

of developing obesity [3,4].

In summary, results from this study have confirmed that human

milk bacterial communities are highly diverse and complex. A

logical next step will be to investigate a larger population to

determine which characteristics, if any, of the milk microbiome are

associated with enhanced health outcomes for women and their

infants. Likewise, it is of interest to determine if factors such as

maternal race, parity, mode of delivery, and maternal diet

influence these community characteristics. Previous studies have

shown that the microbiota present in the lower gastrointestinal

tract [29], vagina [30] and oral cavity [31], and more importantly

the differential composition of these communities in healthy versus

diseased states, are related to the health of the human host. The

application of these principles to human milk may have important

implications for mammary health, bacterial colonization of the

infant’s gastrointestinal tract, and short- and long-term infant

health.

Materials and Methods

Participants and sample collection
Breastfeeding women (n = 16) were recruited from Pullman, WA

and the surrounding area. Inclusion criteria required being self-

reported as healthy, between 20–40 yr of age, and nursing $5

times/d. Procedures were carried out under the approval of the

Washington State University Institutional Review Board and the

University of Idaho Human Assurances Committee.

Participants elected one breast from which to donate samples

for the duration of the study and were asked not to nurse or

express milk from that breast during the 2 h prior to sample

donation. Three samples were collected from each woman

between 0700 and 1000 h with a 1–2 wk interval between

samples. On each sample collection day, participants completed

a short health questionnaire describing unusual health- or

lactation- related problems. With the exception of one woman

who was not able to donate one sample due to non-health related

circumstances, each participant donated 3 samples.

Before sample collection, the breast was cleaned with an iodine

swab to reduce bacteria residing on the skin, and breast milk was

collected with a HygienikitH sterile milk collection unit (Ameda,

Cary, IN) and an electric breast pump. To ensure the collection of

a ‘‘complete’’ expression, participants continued to pump until

flow had subsided. The somatic cell count of all samples was

analyzed using the Delaval somatic cell counter (Delaval, Tumba,

Sweden). Samples were immediately frozen and stored at 220uC
until further analysis.

DNA isolation and PCR amplification
DNA extraction was performed as previously described [32].

Briefly, 0.5 mL aliquots of each milk sample were submitted to an

enzymatic lysis with lysozyme (500 mg), mutanolysin (50 mg), and

lysostaphin (4 mg) and incubated at 37uC for 1 h. Mechanical lysis

was then performed by bead-beating with 0.1 mm diameter

zirconia-silica beads (Biospec) using the FastPrep machine (MP

Biomedicals). DNA was then extracted with the QIAamp DNA

Mini Kit (Qiagen) according to the manufacturer’s instructions.

The QIAamp protocol was modified slightly with the addition of

100 mL of 3 M sodium acetate to the milk lysate before passing it

through the QIAamp mini spin column. This additional step

lowered the pH of the milk lysate below 7.0 to allow for maximum

DNA binding to the silica column lending to an overall improved

DNA yield.

PCR reactions were performed using the universal primer set

27F and 338R to amplify the V1–V2 hypervariable segment of the

16S rRNA gene resulting in ,300 base pair amplicons which are

suitable for phylogenetic classification of bacteria [33]. The primer

sequences were as follows:

27F- GCCTTGCCAGCCCGCTCAGTCAGAGTTTGATC-
CTGGCTCAG, and

338R- GCCTCCCTCGCGCCATCAGTGNNNNNNNNCA-

TGCTGCCTCCCGTAGGAGT.

The 454 Life SciencesH primers B and A are underlined in the

27F and 338R primers respectively, whereas the universal primers

27F and 338R are bolded. The series of Ns in the 338R primer

denotes the location of the eight base pair barcode unique to each

sample embedded in the primer set for each sample as previously

described [13].

PCR reactions were prepared in a hood that was UV sterilized

for 30 min before the introduction of reagents or samples, and a

negative control with no template added was carried out alongside

each sample for every primer set that was utilized. Each 50-mL

PCR reaction was carried out with reagents supplied by Applied

Biosystems including 0.5 mL of both forward and reverse primers

(10 mM), 5 mL 106 PCR buffer, 6 mL MgCl (25 mM), 2.5 mL

DMSO, 0.4 mL dNTP mix (25 mM), and 0.2 mL AmpliTaqH
DNA polymerase. Reactions were initially carried out adding 2 mL

DNA template, and later repeated adding 5 mL template for those

samples which did not generate a PCR product with 2 mL

template added. Thermal cycler settings included a 5 min

denaturation step at 94uC followed by 35 cycles of 94uC for

1 min, 55uC for 1 min, and 72uC for 2 min. A final elongation

step at 72uC for 2 min was then performed to complete each

reaction before storing PCR products at 220uC until further use.

The efficiency of the reactions and the absence of contamina-

tion in the negative controls were then verified by electrophoresis

of the PCR product on a 1% agarose gel, staining with ethidium

bromide and UV exposure. A 10-mL aliquot of each PCR reaction

was then added to a pool sample that underwent emulsion PCR as

previously described [34]. Pyrosequencing was performed at the

Institute for Genome Sciences at the University of Maryland

School of Medicine on a 454 Life Sciences Genome Sequencer

FLX machine (Roche).

Bioinformatics and statistical analysis
Mothur [35] was utilized to bin sequences by sample and carry

out quality control procedures. Although the occurrence of

sequencing error in data sets generated with 454 pyrosequencing

has been reported to be only 0.5% [36], these errors significantly

inflate the number of observed OTUs [37]. To minimize these

effects, a conservative approach was adopted and the data were

subjected to a rigorous quality control procedure. Sequences were

removed from the data set if they had any ambiguous bases,

contained homopolymer runs greater than 8 bases, greater than

one difference from the barcode, or greater than 2 differences

from the forward primer. Sequences were also removed if they did

not maintain an average quality score of 35 over a sliding window

of 50 bases. Sequences were then subjected to a pairwise alignment

using Smith-Waterman global alignment against Mothur’s Silva

reference database, and were trimmed to cover the same region.

Sequences that did not align correctly were then removed from the

dataset. A 2% single-linkage, precluster method was then

employed as it has been shown to remove sequences that may

contain sequencing error [38]. Potential chimeras were identified

and removed using Mothur’s implementation of the Chimer-

aSlayer algorithm from the Broad Institute.

Bacterial Communities in Healthy Human Milk
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Over 160,000 sequence reads passed quality control measures,

although roughly 40% of the original sequences did not. From

1,100 to 8,500 sequences were acquired for each sample with an

average of 3,400 per sample. To determine phylogeny sequences

were organized into likely phylotype assignments at the genus level

using The Ribosomal Data Base Project Bayesian classifier [39].

For OTU-based analyses the average neighbor clustering algo-

rithm was utilized to group sequences at a 3% similarity level. The

R package OTUBase [40] was utilized to cluster samples based on

the Bray-Curtis similarity index using complete linkage clustering

and generate the dendrogram. The collective ‘‘core OTUs’’ were

assigned to taxonomic groups by comparing one representative

sequence from each OTU against the Mothur SILVA SEED

database using the bayesian method for assignment to the most

likely phylogeny.

Culture dependent bacterial analysis
Culture-based bacterial analysis was performed following the

guidelines outlined by the National Mastitis Council Laboratory

and Field Handbook on Bovine Mastitis [26]. Briefly, 50 mL of

each sample was spread onto a blood agar plate and incubated

aerobically at 37uC for 48 h. Bacteria were identified as coagulase-

positive or –negative Staphylococci, Streptococcus, Corynebacterium, and

coliforms based on colony morphology, hemolytic activity,

reaction on Christie, Atkins and Munch-Peterson-esculin (CAMP)

plates, catalase production, coagulase test reactions and Gram

staining.

Supporting Information

Table S1 The total number of sequence reads for each
of the 15 most abundant genera in the milk. A. Sequence

reads are listed for subjects 1–4. B. Sequence reads are listed for

subjects 5–8. C. Sequence reads are listed for subjects 9–12. D.
Sequence reads are listed for subjects 13–16.

(DOCX)
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