
An Information Theoretic, Microfluidic-Based Single Cell
Analysis Permits Identification of Subpopulations among
Putatively Homogeneous Stem Cells
Jason P. Glotzbach1., Michael Januszyk1., Ivan N. Vial1., Victor W. Wong1, Alexander Gelbard1, Tomer

Kalisky2, Hariharan Thangarajah1, Michael T. Longaker1, Stephen R. Quake2, Gilbert Chu3, Geoffrey C.

Gurtner1*

1 Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America, 2 Department of Bioengineering, Stanford University

School of Medicine, Stanford, California, United States of America, 3 Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford,

California, United States of America

Abstract

An incomplete understanding of the nature of heterogeneity within stem cell populations remains a major impediment to
the development of clinically effective cell-based therapies. Transcriptional events within a single cell are inherently
stochastic and can produce tremendous variability, even among genetically identical cells. It remains unclear how
mammalian cellular systems overcome this intrinsic noisiness of gene expression to produce consequential variations in
function, and what impact this has on the biologic and clinical relevance of highly ‘purified’ cell subgroups. To address these
questions, we have developed a novel method combining microfluidic-based single cell analysis and information theory to
characterize and predict transcriptional programs across hundreds of individual cells. Using this technique, we demonstrate
that multiple subpopulations exist within a well-studied and putatively homogeneous stem cell population, murine long-
term hematopoietic stem cells (LT-HSCs). These subgroups are defined by nonrandom patterns that are distinguishable
from noise and are consistent with known functional properties of these cells. We anticipate that this analytic framework
can also be applied to other cell types to elucidate the relationship between transcriptional and phenotypic variation.
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Introduction

A fundamental question for both developmental biology and

regenerative medicine is how a single cell can generate a complex

organism containing cells with diverse patterns of gene expression.

Several investigators have demonstrated that numerous stochastic

transcriptional events conspire to produce variations in patterns of

expression among individual genetically identical cells [1,2,3,4,5].

Yet, transcriptional patterns at the organism level appear to be

distinctly non-random [6,7,8]. The mechanisms underlying tran-

scriptional stochasticity have been studied widely in bacteria and

yeast [3,4,5,9,10], but their role in generating the heterogeneity

observed in mammalian stem cell populations remains unknown.

Traditional methods of gene expression analysis necessitate exam-

ination of pooled mRNA from thousands of cells, resulting in an

averaged picture of gene expression across an entire cell popula-

tion. Recent studies have increasingly employed technologies for

analyzing gene expression within individual cells [3,4,11,12]. The

significant variations in gene expression demonstrated across in-

dividual cells by these investigations have made it clear that this

transcriptional heterogeneity must be addressed in order to ade-

quately describe a cell population [13,14]. However, the rela-

tionship between stochastic variations of gene expression within

individual cells and heterogeneous transcriptional profiles across a

population of cells remains poorly understood.

A commonly used approach to characterize the heterogeneity of

a large complex cell population (such as a stem cell population) is

to fractionate the cells using surface antigen expression profiles and

cell sorting strategies such as fluorescence activated cell sorting

(FACS). As sorting strategies become more sophisticated, distinct

functional subgroups of cells emerge. One method to predict

whether a cell subgroup still harbors phenotypic variation (i.e. is still

heterogeneous), is to determine if it can be further broken down

into subpopulations with meaningful transcriptional differences be-

tween them (Figure S1).

Bone marrow hematopoietic stem cells (HSCs) are an ideal

system in which to explore the relationship between stochastic

noise and meaningful variations in transcriptional profiles. In the

bone marrow niche, cells exist as individual units, yet function

collectively to create a complex hierarchical organ system (the
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blood) [15]. Each level of the canonical HSC lineage hierarchy has

been defined, allowing prospective isolation of each cell type with a

high degree of purity [16]. At the pinnacle of this hierarchy, long-

term HSCs (LT-HSCs) exist as a putatively homogenous and

largely quiescent population with the potential to generate all the

cells of the hematopoietic system [16,17,18]. However, the homo-

geneity of this compartment has been recently been called into

question by the work of Wilson et al., which demonstrated that a

tightly sorted LT-HSC population harbors significant functional

heterogeneity with regard to cell cycling and stem cell capacity

[19]. The molecular basis for this heterogeneity cannot be eluci-

dated from pooled populations of cells, but requires single cell

analysis [13,20,21].

Microfluidic-based platforms are being increasingly utilized to

interrogate gene expression on the single cell level [22,23,24,25].

We and others have previously demonstrated that high-resolution

single cell transcriptional analysis is efficient and reliable on a small

scale using single cell FACS and multiplexed quantitative poly-

merase chain reactions (qPCR) within a chip-based microfluidic

large-scale integration system [12,23,24,26,27,28,29]. Here, we apply

this analytic method to allow more thorough interrogation of the

heterogeneity present within the LT-HSC compartment at the

single cell level using microfluidic-based single cell transcriptional

analysis (Figure 1A). We apply a computational method employing

principles of information theory to interpret the resulting single cell

data. Using this approach, we demonstrate that nonrandom levels

Figure 1. Single cell gene expression analysis demonstrates transcriptional variation in murine LT-HSCs. (A) Schematic of high
throughput microfluidic chip-based single cell transcriptional analysis. A single cell is sorted by FACS into each well of a 96-well plate that has been
preloaded with RT-PCR reagents (see methods for complete description). A low-cycle RT-PCR pre-amplification step creates cDNA for each gene
target within each individual cell. Single cell cDNA is then loaded onto the microfluidics chip along with the primer-probe sets for each gene target.
The BioMark machine performs qPCR for each cell across all 48 gene targets in parallel, resulting in 2,304 data points for each chip run. (B) FACS
sorting parameters of two populations of HSCs isolated from primary murine bone marrow. All cells were LSK (Linneg Sca-1+ cKit+) CD48–

CD135–CD150+ and were sorted into two distinct populations based on CD34 expression (CD34lo and CD34hi). SSC = side scatter. (C) Histogram
presenting raw qPCR cycle threshold values for individual genes across 300 LT-HSCs. Each dot represents a single gene/cell qPCR reaction, with
increased cycle threshold values corresponding to decreased mRNA content. Cycle threshold values of 40 were assigned to all reactions that failed to
achieve detectable levels of amplification within 40 qPCR cycles. For convenience, genes that failed to amplify in the majority of cells have been
omitted (see Figure S1 for complete dataset). (D) Single-gene coefficient of variance (COV) values for individual CD34lo HSCs. Error bars represent
standard deviations derived through bootstrapping over 100,000 iterations as previously described [50].
doi:10.1371/journal.pone.0021211.g001
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of transcriptional heterogeneity are present within this putatively

homogenous stem cell population.

Results

HSC Cell Sorting
We reproduced the sorting strategy used previously to define

LT-HSCs [19] to isolate 300 individual cells from the CD34lo

fraction of the LSK (lineageneg Sca-1+ cKit+) CD48- CD135-

CD150+ subset of primary murine bone marrow (Figure 1B). For

each of the LT-HSCs, we measured the expression of 43 genes

known to be highly relevant to hematopoiesis (Table S1) using a

microfluidic-based method [29]. This work represents the largest

study to date of gene expression in single cells from a purified

murine hematopoietic stem cell population, both in terms of the

number of cells and number of genes analyzed.

Single-Cell Transcriptional Variability
As expected, we observed cell-to-cell variation in the expression

of all genes (Figures 1C and S2). The expression patterns for many

genes followed a relatively normal distribution (e.g., the structural

gene Actb, the hematopoietic surface antigen Ptprc, and the tran-

scription factor Runx1). Such gene distributions exhibited a tenden-

cy for decreased relative transcriptional variation with increasing

mRNA expression, consistent with prior observations [6,30]. How-

ever, some genes (e.g., the transcription factor Tal1 and the cell

cycle-related genes Cdkn2a, Rbl1, and Ccnd1) displayed markedly

asymmetric transcriptional distributions. These variations may be

the result of transcriptional bursts as reported by others [30,31] or

could arise from physiological factors, such as discontinuities across

the cell cycle.

We have previously shown that the univariate coefficient of

variance (COV) can be used to describe single gene variability

(Equation 1) [26]. In the present study, the range of COV for

individual genes (0.5 [Ptprc, also known as CD45] to 1.9 [Mycn])

(Figure 1D) was consistent with that previously reported for

murine HSCs [12,26]. If all variations in gene expression were

completely independent, we could extend this analysis to construct

a rudimentary index of population heterogeneity based on the

multivariate generalization of COV over a given set of n genes

(Equation 2) [32].

cv~
s

m
ð1Þ

cvn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 s2

i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~1 m2
i

q ð2Þ

Each si
2 refers to a single gene variance, with mi representing its

mean level of expression. The resulting dimensionless index (cvn)

would provide a standardized, scale-invariant measure of disper-

sion. However, this simple metric fails to account for co-variations

among genes, which are present throughout our transcriptional

data. Thus a more comprehensive approach to evaluate hetero-

geneity within LT-HSCs is needed.

Prior theoretical work has attempted to determine whether cell-

to-cell transcriptional variation arises from noise-generated fluc-

tuations around a stable fixed point in a homogeneous population

or whether variation arises from multiple eigenstates within a

heterogeneous population [6,7,33]. Many of these efforts have

focused on modeling transcriptional noise through the framework

of statistical mechanics, in which system-wide gene expression is

reduced to a master equation describing the evolution of gene-

state probability distributions over time [6,33]. These models have

provided valuable insight into the mechanisms of the cellular

transcriptional machinery, particularly for regulatory feedback

systems near equilibrium that would attenuate noise in data such

as ours. Most experimental studies investigating single cell gene

expression and stochasticity have focused on the changes within an

individual cell over time [3,4,10] or have addressed only a small

number of genes [5,11,34]. Here, we measured transcription in

300 cells from a tightly sorted population at a single point in time.

Establishing a Threshold for Transcriptional Homogeneity
An ideal test for homogeneity would compare the transcrip-

tional distribution measured across a population to some fixed

level of baseline noise. However, at present no consensus exists

regarding the basal level of variability inherent to steady-state gene

transcription, and we expect that the magnitude of this noise

would (1) vary with absolute mRNA quantity (i.e., not hold

constant) and (2) depend upon the intrinsic biochemical properties

of specific genes or gene classes [6]. Given the current limitations

in measurement technology, such a dynamical systems approach

to characterize baseline transcriptional heterogeneity becomes

unwieldy for even very small numbers of genes, suggesting that an

absolute threshold for homogeneity will be difficult to define.

Alternatively, one could apply traditional statistical methods to

compare the variability observed across a given population against

that of a ‘‘control’’ group (generally accepted to be phenotypically

homogeneous, e.g. a clonal cell line), evaluated using an identical

panel of genes. However, the multipotent nature of LT-HSCs is

such that those genes which best characterize this population are

not, to our knowledge, universally expressed across any other cell

type. Further, the capacity of LT-HSCs for differentiation has

precluded comparative evaluation of a clonal LT-HSC popula-

tion. These inherent limitations are not unique to LT-HSCs, and

may be relevant to the study of many rare cell populations.

These factors have motivated us to develop an approach using

principles of information theory and statistical physics to test the

hypothesis of relative transcriptional homogeneity. Information

theory focuses on understanding and correcting for randomness or

entropy within a dataset to allow quantification and interpretation

of heterogeneous data, and work in statistical physics has gen-

erated methods for applying probability functions to inherently

stochastic processes. In the absence of an acceptable external

comparison, these methods permit us to utilize relationships de-

rived from the variability within our data itself in order to provide

insight into the dynamics of this complex system. This approach

itself is not novel, and similar methods have been applied with

great success to problems in signal processing and control theory

[35,36]; however, these techniques have only recently gained

traction as tools to characterize biological systems [37,38,39].

We stipulate that a given population (Pn) of n cells (with

transcriptomes T1, …Tn) is ‘‘homogeneous’’ if all individual cell

transcriptomes are governed by identical steady-state probability

functions (i.e. all cells are drawn from a single probability field)

(Figure 2A). It follows that the transcriptional fingerprint of a

homogeneous population measured at a single timepoint should

recapitulate this single distribution through the transcriptional

states of all individual cells (Figure 2B). Thus, establishing the

homogeneity of Pn is equivalent to demonstrating that no set of

subpopulations P’
1<P’

2< … <P’
s = Pn exists for which the

observed data (T1, … Tn) are more likely to have arisen from their

joint probability distribution than from Pn itself. Conversely, if a

cell population represents two or more probability distributions, it

HSC Single Cell Transcriptional Heterogeneity
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Figure 2. A transcriptional distribution-based model of population homogeneity. Given the noisiness inherent to transcription, an
individual cell will exhibit a variable transcriptional signature if measured precisely over time (A). A cell population can be considered
‘‘homogeneous’’ if all individual cell transcriptomes are governed by identical steady-state probability functions (i.e. all cells are drawn from a single
probability field). It follows that the transcriptional fingerprint of a homogeneous population measured at a single timepoint (B) should, through the
transcriptional states of all individual cells, recapitulate the single distribution observed for any one cell measured across multiple time points (A). By
contrast, if the distribution of individual cell transcriptomes from a population at a single timepoint (D) more closely reflect that of two (or more)
independent probability functions (C), then the population may be designated as heterogeneous.
doi:10.1371/journal.pone.0021211.g002
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can be considered heterogeneous (Figure 2C, D). We applied this

paradigm to our multivariate system of gene expression in order to

evaluate the heterogeneity of this highly purified population of

LT-HSCs.

Clustering Algorithm, Feature Selection, and Optimization
In order to determine whether LT-HSCs (Figure 3A) represent

a homogeneous population or several discrete subpopulations, we

applied a unifying procedure for model selection and multimodal

inference based on the principles of information divergence,

originally described by Kullback and Leibler [40]. In order to

increase statistical efficiency, a subset of genes was selected whose

transcriptional variation would most likely represent meaningful

differences among cells. To accomplish this, we employed Kolmo-

gorov-Smirnov statistics to compare CD34lo cells against a popu-

lation of otherwise identically sorted CD34hi HSCs (Figure 1B),

Figure 3. A multivariate, information-theoretic approach permits characterization of patterns in higher-order correlated gene
expression. (A) Hierarchical clustering of simultaneous expression of 43 genes among 300 individual CD34lo HSCs. Gene expression is presented as
fold change from median on a color scale from yellow (high expression, 32-fold above median) to blue (low expression, 32-fold below median). (B)
Differentially-expressed genes between CD34lo and CD34hi HSCs identified using non-parametric two sample Kolmogorov-Smirnov testing. Nine
genes exhibit significantly different (p , 0.01 following Bonferroni correction for multiple comparisons) distributions of single cell expression
between the two populations, illustrated here using median-centered histograms (bin size = 0.5 qPCR cycle thresholds). (C) Comparison of CD34lo

and CD34hi populations. Cells are clustered hierarchically based on a Kolmogorov-Smirnov-significant gene subset.
doi:10.1371/journal.pone.0021211.g003

HSC Single Cell Transcriptional Heterogeneity

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21211



which have been shown to harbor a much lower stem cell capacity

[19]. This identified a subset of nine genes with distributions of

expression that were different between the two cell populations

(p , 0.01 following Bonferroni correction for multiple compar-

isons) (Figure 3B, C) [19,40,41,42,43,44]. Transcriptional data for

all LT-HSCs were evaluated using a generalized fuzzy c-means

clustering algorithm, which permits partial memberships via

‘‘soft partitions’’ representing overlap in probability distributions

(Figure 4A) [43]. We then utilized an information metric, Akaike

Information Criterion (AIC), to assess the ‘‘goodness of fit’’ for

each of the resulting cluster configurations, optimizing the cluster

parameters (i.e., cluster number and fuzziness coefficient) in order

to minimize information loss (Figure 4B). This permits robust,

objective comparison of the single-cluster model against all per-

mutations of multi-cluster alternatives [40,44].

HSC Cluster Membership
In the optimal partitive model, as determined by our method,

CD34lo HSCs distributed relatively evenly across three clusters,

each with distinctive transcriptional fingerprints (Figure 4C). The

number of clusters was found to be relatively stable against changes

in cell selection, gene selection, gene number, and clustering algo-

rithm (Figures S3, S4, S5). For these analyses, certain genes (e.g.,

Mycn and Cdkn2a) consistently showed high expression associated

with specific clusters, whereas other genes (for example, Runx1 and

Myb) exhibited stochastic variation among clusters (Figure 4C and

Figures S3B-D). Thus our results suggest the presence of both

stochastic and nonstochastic variations in gene expression.

We organized the CD34hi HSCs around the cluster centroids

generated through the clustering of CD34lo HSCs, and observed

a dramatically different distribution across these three clusters

(Figure 4D). CD34lo HSCs have been shown by others to contain

a much larger subset of dormant LT-HSCs with a high stem cell

capacity in comparison to CD34hi HSCs [19]. Thus, it is possible

that the different clusters identified by our analysis reflect sub-

populations that account for the observed functional differences

between these two HSC populations. To test this relationship, we

utilized an alternate isolation protocol for LT-HSCs that yields

a side population (SP) based on cellular Hoechst dye 33342 ex-

trusion (Figure S6) [45,46]. When organized around the same

cluster centroids, 68% of the SP LSK CD34lo cells were associated

with cluster 1 (Figure 4E). Taken together, these findings suggest

Figure 4. Optimized partitive modeling of LT-HSC single cell transcriptional data. (A) Individual cells are clustered within a hypothetical 2-
gene space (represented by horizontal and vertical axes). Fuzzy c-means clustering allows shared membership of an individual cell within two or
more clusters. Cluster centers (k1, k2, k3) are determined based on the similarities across all cells in the sample. A ‘‘fuzziness coefficient’’ modulates
the degree to which partial membership is encouraged among clusters. (B) Iterative application of Akaike Information Criterion (with a second order
correction for small sample sizes [44]) to determine optimal clustering parameters. An exhaustive approach was used to determine the information
loss (z-axis) associated with different permutations of the number of clusters (y-axis) and the fuzziness coefficient (x-axis). The trough of the three
dimensional plot (grey asterisk) represents the optimal set of clustering parameters for the given data set that will minimize theoretical information
loss. (C–E) Fuzzy c-means clustering of HSC single cell transcriptional data using the optimal clustering parameters (3 clusters and a fuzziness
coefficient of 1.05). Only the Kolmogorov Smirnov-significant genes (Figure 3B) are displayed for visual simplicity. Cluster centroids are determined
based on partitioning of the CD34lo cells and applied across the other two experimental groups. (C) CD34lo HSCs are relatively evenly distributed
across the three clusters. (D) CD34hi HSCs demonstrate a substantially different distribution. Membership in cluster 19 is limited to 4% of the cells and
cluster 29 membership is the most common. (E) Side population CD34lo HSCs would be expected to be substantially enriched for HSC capacity and
should resemble the CD34lo HSCs. Membership in cluster 199 is significantly expanded, suggesting that cells in this subpopulation are characteristic of
highly enriched LT-HSCs.
doi:10.1371/journal.pone.0021211.g004
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that LT-HSC capacity may exist within a subpopulation of cells

that are largely absent from the CD34hi population (cluster 1,

Figure 4) and that additional surface marker sorting will be needed

to isolate a homogeneous population of LT-HSCs.

Discussion

Single cell analysis is essential to understand the heterogeneity

within rare or complex cell populations (such as stem cells);

however techniques for interpreting this fundamentally new type

of data are still in their infancy. Recent technological advances

have vastly increased the ability of qPCR to detect gene expression

within a single cell [4,27]. With these high-resolution measure-

ments, it has become apparent that transcription is an inherently

noisy process at the level of a single gene within an individual cell.

In order for single cell transcriptional analysis to contribute to our

understanding of cell biology, it must overcome the ambiguity

created by this noisiness. To address this need, we have developed

a novel application of microfluidic technology coupled with ana-

lytic principles from information theory that defines transcriptional

signatures of individual cells and provides the capability to dis-

criminate-on the single cell level-meaningful variation (signal) from

background stochasticity (noise) in the transcriptomes of a hetero-

geneous cell population.

We designed our analytic approach to perform direct computa-

tion of correlations in cell/gene expression at the single cell level

and identify groups of cells that exhibited similar patterns of

higher-order correlated gene expression, similar to the way in

which classical microarray cluster analysis identifies groups of genes

that exhibit similar patterns across multiple tissue samples [47].

We elected to cluster these data using an adaptive fuzzy c-means

algorithm, a well-established extension of traditional k-means clus-

tering [43] that permits partial membership for each cell in

multiple clusters. This method is well-suited to the temporal

framework of our data, which is essentially a snapshot in time of a

dynamic system, and was stable against small perturbations in our

dataset, converging to the k-means solution (Figures S3 and S4)

[48]. Although AIC itself is poorly suited to traditional null

hypothesis testing, multiple methods have been developed to eva-

luate uncertainty in model selection [44]. Application of these

information theoretic measures to examine differences among the

canonical 1-cluster model, the ‘‘optimal’’ (three-cluster) model, and

other cluster arrangements, supports the conclusion that these

highly purified cells exist in distinct subpopulations rather than as

one homogeneous population (Table S2).

We therefore establish the effectiveness and relevance of our

large-scale computational method by demonstrating non-random,

transcriptionally defined subpopulations that have not previously

been described within the well-studied and putatively homogenous

murine LT-HSC cell population. Our results demonstrate the fea-

sibility of measuring gene expression in multiple individual cells

from a stem cell population using single cell qPCR in a mul-

tiplexed array based on microfluidic large-scale integration tech-

nology [27]. Using this approach, we detected variations in gene

expression profiles within a well-studied murine LT-HSC popu-

lation that could not be accounted for by stochastic transcriptional

noise alone. Specifically, we identified several transcriptionally

defined subpopulations that were consistent with the known

functional heterogeneity of LT-HSCs [19].

It is important to note that post-transcriptional factors such as

mRNA translation or protein modification may serve to mitigate

(or amplify) the impact of this heterogeneity [5,10]. In addition,

these results will have to be confirmed with empirical testing of the

functional differences displayed by the HSC subpopulations we

describe here. This will require the identification and application

of new sorting parameters to prospectively isolate these subpop-

ulations. Given the observed variations in gene expression, this

search is warranted, as the development of new sorting parameters

may permit further enrichment of hematopoietic stem cells. More

broadly, these findings demonstrate the utility of such an approach

to define the transcriptional organization of complex cell popu-

lations on a tissue and organ level. We believe that this approach

may be applied both for systems biology research and, potentially,

for quality control to accompany the development of novel stem

cell-based therapies.

Materials and Methods

Ethics Statement
All vertebrate animal work described in this manuscript was

conducted according to the Stanford University Administrative

Panel on Laboratory Animal Care (Protocol #12080), which

specifically approved this study.

Animals and HSC Isolation
11-week-old male C57BL/6 mice were purchased from Jackson

Laboratories (Bar Harbor, ME). All animal protocols were

approved by the Administrative Panel on Laboratory Animal

Care at the Stanford University School of Medicine. After

euthanasia, femora and tibiae were harvested and the marrow

cavities were flushed with 2% fetal bovine serum (FBS) solution.

Marrow plugs were dissociated by trituration, filtered through a

70 mm cell strainer, and pelleted by centrifugation. The cell

suspension was incubated with biotin-conjugated murine antibod-

ies against lineage surface antigens (CD5, CD45R, CD11b, Gr-1,

7-4, Ter119). After washing, non-labeled cells were extracted from

the cell suspension using anti-biotin paramagnetic Micro Beads

and the MACS separation system (Miltenyi Biotec, Gladbach,

Germany).

Antibody Staining and FACS Sorting
The following monoclonal antibodies were used in the

experiments: CD11b-PECy5 (M1/70; eBioscience, San Diego,

CA), CD45R-PECy5 (RA3-6B2; eBioscience), Gr-1-PECy5 (RB6-

8C5, eBioscience), CD8a-PECy5 (53-6.7; eBioscience), CD4-

PECy5 (GK1.5; eBioscience), Ter119-PECy5 (TER-119; eBio-

science), cKit-AF700 (ACK2; eBioscience), cKit-APC (2B8; BD

Pharmingen, San Diego, CA), cKit-PE (ACK45; BD Pharmingen),

Sca-1-APC (D7; BioLegend, San Diego, CA), Sca-1-FITC (E13-

161.7; BD Pharmingen), Sca-1-eFluor605 (D7; eBioscience),

CD150-PECy7 (TC15-12F12.2; BioLegend), CD34-Pacific Blue

(RAM34; eBioscience), CD34-FITC (RAM34, BD Pharmingen),

CD48-PECy5 (HM48-1; BioLegend), CD48-APC (HM48-1; Bio-

Legend), CD135-PECy5 (A2F10; eBioscience). Concentrations

were determined based on the manufacturers’ recommendations.

For Hoechst dye extrusion (side population) studies, cells were

incubated with 5 mg/mL Hoechst 33342 (Sigma-Aldrich, St.

Louis, MO) for 90 minutes at 37uC. Control groups were also

incubated with 50 mM verapamil (Fisher Scientific, Chicago, IL).

Lineage-depleted and stained bone marrow cells were sorted

using a BD FACSAria equipped with a robotic cloning arm

(Becton Dickinson Biosciences, San Jose, CA). To maximize the

fidelity of the single cell sort and exclude unwanted cells, we used

restrictive gating based on size and complexity and performed

doublet discrimination to exclude aggregated cells. We doubled-

sorted the cells, first with high precision 4-way purity parameters

(yield mask 0/32, purity mask 32/32), followed by a single cell sort

using maximal precision parameters (yield mask 0/32, purity

HSC Single Cell Transcriptional Heterogeneity
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mask 32/32 and phase mask 16/32) in order to minimize sorting

errors.

Microfluidic Chip-Based Single Cell Analysis
Single cell transcriptional analysis was performed as previously

described [23,24,29]. Single cells were sorted into each well of a

96-well plate preloaded with 10 mL of a master mix containing

Tris-EDTA buffer (pH 7.0), Superscript III reverse transcriptase

enzyme (Invitrogen, Carlsbad, CA), Cells Direct reaction mix

(Invitrogen, Carlsbad, CA), target gene-specific TaqMan assay

(primer/probe) sets (Applied Biosystems, Foster City, CA) (Table

S1), and SUPERase-In RNAse inhibitor (Applied Biosystems,

Foster City, CA). Exon-spanning primers were used where possible

to avoid amplification of genomic background. Cells were lysed

and reverse transcription was performed (20 minutes at 50uC, 2

minutes at 95uC), followed by a gene target-specific 22-cycle pre-

amplification (denature at 95uC for 15 minutes, anneal at 60uC for

4 minutes, each cycle). Resultant single cell cDNA was mixed with

sample loading agent (Fluidigm, South San Francisco, CA) and

Universal PCR Master Mix (Applied Biosystems, Foster City, CA)

and loaded into 48.48 Dynamic Array chips (Fluidigm, South San

Francisco, CA) along with TaqMan assays (Table S1) and assay

loading agent according to the manufacturer’s instructions

(Fluidigm, South San Francisco, CA). Products were analyzed

on the BioMark reader system (Fluidigm, South San Francisco,

CA) using a hot start protocol to minimize primer-dimer

formation, 30 quantitative PCR cycles were performed.

Statistical Analysis
We utilized a well-established metric for comparison of em-

pirical distributions, the two-sample Kolmogorov-Smirnov (K-S)

test, to identify genes whose expression patterns differed signifi-

cantly between population pairs (Figure 3B) using a strict cutoff of

p,0.01 following Bonferroni correction for multiple samples.

Expression data from all chips were normalized relative to the

median expression for each gene in the pooled sample and

converted to base 2 logarithms. Absolute bounds of +/2 5 cycle

thresholds (corresponding to 32-fold increases/decreases in expres-

sion) were set, and zero-expressers were assigned to this floor.

In order to detect overlapping patterns within the single cell

transcriptional data, we employed an adaptive fuzzy c-means

clustering algorithm using a standard Euclidean distance metric.

Each cell was assigned partial membership to each cluster as

dictated by similarities in expression profiles. We employed an

exhaustive optimization scheme using Akaike Information Crite-

rion (AIC) with a second order correction for small sample sizes

[44] to evaluate all possible combinations of cluster number and

fuzziness coefficient, and selected parameters that minimized the

theoretical ‘‘information loss’’ over our data [49]. Optimally

partitioned clusters were then sub-grouped using hierarchical

clustering in order to facilitate visualization of data patterning

within and across these clusters. Figure S7 provides an overview

of this process for a hypothetical set of single cell transcriptional

data.

Supporting Information

Figure S1 Conceptual framework of transcriptional
heterogeneity within a tightly sorted population of cells.
There likely exist several metastable and interconvertible tran-

scriptional states of cells that combine to create a functionally

heterogeneous population. Using precise single cell analysis, it is

possible to determine whether the larger population of cells can be

further subdivided into subpopulations that are different from each

other, despite harboring a significant amount of stochastic varia-

tion within each subpopulation.

(TIFF)

Figure S2 Histogram presenting raw qPCR cycle
threshold values for each gene across all 300 LT-HSCs.
Individual dots represent single gene/cell qPCR reactions, with

increased cycle threshold values corresponding to decreased mRNA

content. Cycle threshold values of 40 were assigned to all reactions

that failed to achieve detectable levels of amplification within 40

qPCR cycles.

(TIFF)

Figure S3 Evaluation of cluster stability. We evaluated the

stability of our cluster-based approach with respect to changes in

parameterization and dataset composition. (A) Bootstrapping was

employed to evaluate 10,000 randomly selected subsets (70% [210

cells]) of our LT-HSC data. The AIC-optimal number of clusters

varied from 2 to 4 across all iterations (mean = 2.87; std. dev. =

0.52), with an optimal model of 3 clusters selected in 71.8% of all

permutations. Mean AIC values for each number of clusters (solid

line) are depicted, with dashed lines delimiting one standard

deviation. (B) We repeated our analysis using an alternate method

for gene selection, choosing the nine genes with highest coefficients

of variation (Figure 2D). The AIC-optimal model again consisted

of three clusters, similar but not identical to those chosen with the

earlier method. (C–D) Repeat analyses using the 8 (C) or 10 (D)

genes with highest coefficients of variation, resulting in similar

AIC-optimal models. (E) Information loss as a function of cluster

number for the data in B–D (solid lines), compared with that from

Fig. 4A (dashed line). (F) Information loss as a function of cluster

number using gene selection based on Kolmogorov-Smirnov

significance (Figure 4B).

(TIFF)

Figure S4 Robustness analysis with respect to cluster-
ing technique. Having demonstrated the stability of our

approach with respect to changes in data and parameterization,

we evaluated whether our findings could be artifacts of the

approach itself. As no true precedent exists for data analysis of this

type, we re-examined our data using the most simple form of

partitional analysis (k-means clustering), in conjunction with a

supervised classification method well-suited for clustering high-

dimensional data without the need for feature selection (i.e., a gene

subset) to reduce the number of free parameters [48]. (A) Gene

expression data for all 300 LT-HSCs were evaluated using a

generic k-means algorithm, and the prediction strength of each k

(number of clusters) calculated using five-fold cross-validation over

100 iterations as previously described. Cluster validation was

achieved by maximizing the fidelity of pair-wise co-memberships

of cells within clusters across repeated sub-samplings. The appro-

priate number of clusters was determined by the largest k whose

prediction strength exceeds a certain threshold (typically set at 0.8)

[48]. (B) Optimal partitioning of LT-HSCs using k-means with

k = 3 clusters as determined above.

(TIFF)

Figure S5 Robustness analysis with respect to distance
metric. In order to verify that our clustering results were not

contingent upon any one specific measure of distance (i.e., the

transcription-based assessment of divergence between two cells),

we evaluated whether alternate metrics would produce signifi-

cantly different partitioning schemes. (A) Euclidean distance was

employed as the default measure throughout all clustering com-

putations performed in this manuscript, resulting in the 3-cluster

partition described in Figure 5C. (B–C) We repeated this central
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analysis using the Manhattan (or ‘‘city block’’) distance measure

(B), as well as the generalized Minkowski distance with order p = 3

(C). Grossly similar cluster configurations were achieved in both

instances, suggesting that this arrangement is not an artifact

attributable to any one metric.

(TIFF)

Figure S6 Isolation of LT-HSC by the side population
method. (A) FACS plots of LT-HSC isolation using Hoechst dye

extrusion (side population method), with three side population

subfractions delineated (R1-R3), as previously reported [45]. Side

population ‘‘tip’’ cells (R1) were isolated from lineage cell-depleted

murine bone marrow cells and further sorted for lineage negative,

cKit positive, Sca-1 positive, CD34lo cells using identical gates to

those presented in Figure 1B. (B) Abrogation of side population

cells after incubation with verapamil in addition to Hoechst 33342.

(TIFF)

Figure S7 Computational analysis schematic. Gene

expression data from multiple chips are pooled and blinded (top-

left). Median-based normalization is applied gene-wise to ensure

equal weighting for each gene (top-right). Fuzzy c-means clustering

is used to group cells with similar expression profiles, and para-

meterization achieved through iterative application of Akaike

Information Criterion (AIC) (bottom-left). Following cluster

optimization, cells from within each group are arrayed according

to hierarchical clustering (bottom-right).

(TIFF)

Table S1 TaqMan assays used to interrogate gene expression

within murine HSCs. All assays were obtained from Applied

Biosystems (Foster City, CA).

(TIFF)

Table S2 Likelihood inference and model selection uncertainty.

‘‘AIC differences’’ estimate the relative expected Kullback-Leibler

differences between the true (underlying) distribution and that

represented by the i-th model. The predicted best model (in this

case, 3 clusters) will have an AIC difference of 0. Akaike weights

correspond to the weight of evidence in favor of a given model

being the actual best model (of those evaluated) for the dataset.

Evidence ratios permit comparison of the relative likelihood of two

models (in terms of Kullback-Leibler information). Here all

evidence ratios are evaluated against the estimated best model (3

clusters) using the optimal fuzziness coefficient for each configu-

ration.

(TIFF)
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