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Abstract

Background: Forging a relationship between progenitors with dynamically changing gene expression and their terminal
fate is instructive for understanding the logic of how cell-type diversity is established. The mouse spinal cord is an ideal
system to study these mechanisms in the context of developmental genetics and nervous system development. Here we
focus on the Gastrulation homeobox 2 (Gbx2) transcription factor, which has not been explored in spinal cord development.

Methodology/Principal Findings: We determined the molecular identity of Gbx2-expressing spinal cord progenitors. We
also utilized genetic inducible fate mapping to mark the Gbx2 lineage at different embryonic stages in vivo in mouse.
Collectively, we uncover cell behaviors, cytoarchitectonic organization, and the terminal cell fate of the Gbx2 lineage.
Notably, both ventral motor neurons and interneurons are derived from the Gbx2 lineage, but only during a short
developmental period. Short-term fate mapping during mouse spinal cord development shows that Gbx2 expression is
transient and is extinguished ventrally in a rostral to caudal gradient. Concomitantly, a permanent lineage restriction
boundary ensures that spinal cord neurons derived from the Gbx2 lineage are confined to a dorsal compartment that is
maintained in the adult and that this lineage generates inhibitory interneurons of the spinal cord. Using lineage tracing and
molecular markers to follow Gbx2-mutant cells, we show that the loss of Gbx2 globally affects spinal cord patterning
including the organization of interneuron progenitors. Finally, long-term lineage analysis reveals that the presence and
timing of Gbx2 expression in interneuron progenitors results in the differential contribution to subtypes of terminally
differentiated interneurons in the adult spinal cord.

Conclusions/Significance: We illustrate the complex cellular nature of Gbx2 expression and lineage contribution to the
mouse spinal cord. In a broader context, this study provides a direct link between spinal cord progenitors undergoing
dynamic changes in molecular identity and terminal neuronal fate.

Citation: Luu B, Ellisor D, Zervas M (2011) The Lineage Contribution and Role of Gbx2 in Spinal Cord Development. PLoS ONE 6(6): e20940. doi:10.1371/
journal.pone.0020940

Editor: Branden Nelson, Seattle Children’s Research Institute, United States of America

Received September 21, 2010; Accepted May 16, 2011; Published June 16, 2011

Copyright: � 2011 Luu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by startup funds (MZ). BL was partially supported by Brown University Undergraduate Teaching and Research Awards
(2007, 2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Mark_Zervas@brown.edu

Introduction

The spinal cord coordinates motor and sensory information and

serves as a central conduit between the external environment and

brain. The spinal cord has generated intense interest because of its

relevance to disease and trauma, the extent and etiology of which

is related to the diverse population of neurons underpinning spinal

cord function. The spinal cord can be broadly partitioned into two

anatomical and functionally distinct regions along the dorsal-

ventral (D-V) axis. The dorsal spinal cord contains sensory

neurons that process somatosensory modalities of touch, heat, and

pain [1]. This information is relayed to ventral motor neurons as

part of a reflex circuit and to brain centers including the

brainstem, thalamus, and cerebellum as part of a higher order

integrative circuit. In contrast, the ventral cord contains neurons

that control proprioception and motor output [2,3]. The

cytoarchitecture of the spinal cord is organized into ten regions

[4]: laminae I–VI in the dorsal gray matter horn, laminae VII–IX

in ventral gray matter horn, and area X, which surrounds the

central canal [5]. In addition to this spatial arrangement, diverse

arrays of molecularly and physiologically distinct neuronal sub-

populations with varying axonal projection patterns reside in each

lamina [2,3,6,7].

Because of the spinal cord’s functional importance and clinical

relevance a great amount of research has focused on how spinal

cord neuron subtype diversity is established during embryonic

development [6,7]. Consequently, early spinal cord development

has become an outstanding model system to study molecular

signaling and the transcriptional regulation that controls nervous

system patterning and cell fate specification during embryogenesis

[8,9]. During embryogenesis, graded Sonic Hedgehog (SHH)

signaling from the floorplate patterns the ventral neural tube and

establishes five molecularly distinct ventral neural progenitor

domains [10]. In contrast, graded Wingless/Int (WNT) and bone

morphogenic protein signaling from the roofplate pattern the

dorsal neural tube to establish six dorsal progenitor domains

[7,11]. Furthermore, a precisely choreographed transcriptional

code is required for spinal progenitors to acquire their early

neuronal and positional identity [10,12]. In addition, homeodo-

main or bHLH transcription factors exhibits cross-repressive
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effects that refine and maintain the D-V border between specified

progenitors [8,13]. Subsequent to specification, differentiating

neurons express unique combinations of post-mitotic transcription

factors to diversify regional cell fate, positioning, and axonal

projection patterns [14–16]. This multi-step process occurs along

the anterior-posterior (A-P) axis and is regulated in part by

paraxial mesoderm [6].

Spinal cord progenitors undergo cell fate decisions that are

intimately related to their invariant position in the adult spinal cord

and that are determined by intricate molecular control mechanisms

[17]. However, the spatial and temporal contribution of spinal cord

progenitors based on their genetic history to the biochemically and

functionally diverse neuronal subtypes in the developing and adult

spinal cord is largely unresolved. We begin to address the link

between progenitors, cell behaviors, and neuronal types directly

with genetic lineage analysis in mouse. Specifically, we determine

the cell fate of Gbx2-expressing progenitors marked at varying stages

of embryonic spinal cord development. Gbx2 is first expressed at the

mid-streak stage during mouse embryogenesis [18], continues

through mouse embryonic day (E)7.5 in all three germ layers

[18,19], and molecularly distinguishes the posterior domain of the

developing embryo [19,20]. Gbx2 is expressed in the neural tube at

E8.5 [20] and in the spinal cord from E9.5–E14.5 [19,21,22].

However, the molecular identity of Gbx2-expressing progenitors and

their relationship to other spinal cord progenitors has not been

determined. We hypothesized that the spatial expression and timing

of Gbx2 determines the cytoarchitectonic organization and cell fate

of spinal cord neurons derived from this lineage. Functionally, Gbx2

is temporally required for cerebellar development [23], for thalamic

development [24], and for maintaining the midbrain/hindbrain

boundary [20,21]. Because of its functional requirement in other

embryonic brain regions, we further hypothesized that Gbx2 plays a

functional role in spinal cord development.

To test these hypotheses, we utilized molecular analysis and a non-

invasive Genetic Inducible Fate Mapping strategy (GIFM) [25–27]

with Gbx2CreER-ires-eGFP; R26R mice [24]. This knock-in allelic

configuration allowed us to mark progenitor cells of the Gbx2 lineage

with fine spatial and temporal control and to track them in vivo. The

Gbx2CreER-ires-eGFP allele is advantageous because it can also be used to

identify populations of neuronal progenitors dynamically expressing

Gbx2. We show that the Gbx2-lineage marked at distinct early time

points differentially contributes to spatially segregated sub-popula-

tions in the embryonic spinal cord including dorsal spinal cord

interneuron precursors. By analyzing Gbx2CreER-ires-eGFP/CreER-ires-eGFP

mutants and tracking mutant cells by GIFM we show that Gbx2 loss of

function causes aberrant spinal cord patterning at E10.5 and E12.5.

Finally, long-term lineage analysis revealed that calbindin, GAD6,

and Pax2 expressing subtypes of dorsal interneurons in the adult

spinal cord were derived from progenitors that expressed Gbx2 at

specific time points during embryogenesis.

Results

Characterization and utility of Gbx2CreER-ires-eGFP mice in
spinal cord development

To study Gbx2 expression, lineage contribution, and function we

utilized the mouse line, Gbx2CreER-ires-eGFP that was generated by

targeting CreERT2-ires-eGFP to the 59 untranslated region of Exon 1

in the Gbx2 locus by homologous recombination [24]. In this

configuration, the eGFP element allowed us to monitor Gbx2

expression at the time of analysis by GFP whole mount

fluorescence or by GFP antibody labeling of sections. Thus, we

operationally defined Gbx2-expressing cells as being Gbx2(GFP)+.

We validated that GFP accurately reflected endogenous Gbx2

expression in the spinal cord by comparing anti-GFP antibody

labeling to in situ hybridization with a labeled RNA probe specific to

Gbx2 on adjacent transverse sections from embryonic (E)8.5–E12.5

Gbx2CreER-ires-eGFP/+ embryos (Figures 1 and S1). The CreERT2 element

[28], indicated as CreER, in the Gbx2CreER-ires-eGFP allele allowed us to

perform GIFM [27,29] (Figure S2). GIFM and tamoxifen adminis-

tration indelibly marked the Gbx2 lineage at distinct time points. With

this approach and molecular marker analysis, we fate mapped and

tracked the Gbx2-derived progeny, assessed their current state of Gbx2

expression, and determined their molecular identity during develop-

ment and in the adult. We also took advantage of this line to

determine the functional requirement of Gbx2 in spinal cord

development by analyzing Gbx2CreER-ires-eGFP/CreER-ires-eGFP homozygous

mutant embryos.

The molecular identity of Gbx2-expressing spinal cord
progenitors and differentiating neurons

Gbx2(GFP) in E8.5 Gbx2CreER-ires-eGFP/+ embryos was expressed

along the D-V axis and extended caudally from the border of the

mesencephalon (mes) and rhombomere 1 (r1) posteriorly along the

length of the neural tube (Figure 1A,B). These findings are

consistent with Gbx2 detected by in situ hybridization (Figure 1B)

[21]. Whole mount fluorescence at E9.5 revealed that Gbx2

continued to be expressed in r1 and was restricted to the caudal

neural tube and presumptive spinal cord (Figure 1C). We used

marker analysis and GFP immunocytochemistry to characterize

the molecular identity of Gbx2(GFP)-expressing cells at E9.5. In the

dorsal spinal cord, Gbx2(GFP) co-localized with the upper tier

expression domain of Pax7, which is a transcription factor that

defines dorsal interneuron progenitors and delineates the border

between dorsal and ventral neural tube (Figure 1D) [8,30,31].

Closer inspection revealed that a combinatorial code of

Gbx2(GFP)/marker expression defined five progenitor domains

along the D-V axis at E9.5 (Figure 1E). The dorsal domains

consisted of a (1) a Gbx2 negative/weakly staining Pax7+ domain

corresponding to pD1–pD2, (2) a domain of Gbx2(GFP)+/Pax7+
double positive cells corresponding to pD3–pD4, and (3) a

Gbx2(GFP)2/Pax7+ domain corresponding to pD5–pD6

(Figure 1D,E). The ventral domains were comprised of (4) a

cluster of Gbx2(GFP)+ cells located just ventral to the Pax7 border

corresponding to pV0/V1 while (5) a more ventral domain was

devoid of Gbx2 and corresponded to pMN-pV3 (Figure 1D).

Gbx2(GFP) continued to be expressed in spinal cord, and to a

lesser extent, in r1 at E10.5 (Figure 1F,G). Marker analysis at

E10.5, when spinal progenitors acquire their neuronal subtype

identity [7,10], uncovered the spatial domains and molecular

identity of Gbx2(GFP)-expressing cells (Figure 1H–S). Dorsal

Gbx2(GFP)-expressing cells were localized to the upper tier of

the Pax7 domain although there was less overlap than at E9.5

(Figure 1H versus 1D). Gbx2(GFP)-expressing cells did not overlap

with ventral Isl1/2, dorsal Lim1/2-expressing cells, nor with the

upper tier of the ventral Lim1/2 domain (Figure 1I–J). Gbx2(GFP)-

expressing cells did overlap with the ventral tier of Lim1/2

(Figure 1J, arrows). We furthered our analysis by immunolabeling

transverse sections with antibodies recognizing the following well-

defined spinal cord markers (Figure 1, E10.5 schematic, reviewed

in [1,7,8]): Pax3 (dl1–dl6), Pax7 (dl3–d6), Brn3a (lateral dl1–dl3,

dl5-V1), Lim1/2 (dl6, V0–V1), Pax2 (dl4, dl6, V0–V1), Evx1/2

(V0), Isl1/2 (lateral dl3, MN), and Nkx2.2 (V3). We observed that

Gbx2(GFP) was co-expressed with Pax3 (middle tier), Pax7

(upper tier), Lim1/2 (V1), Pax2 (V1), Isl1/2 (lateral dl3)

(Figure 1K,L,N,O,Q). In contrast, Gbx2(GFP) did not co-localize

with Brn3a, Evx1/2 (V0), ventral Isl1/2 (MN), or Nkx2.2 (V3)

(Figure 1M,P,Q,R). Gbx2(GFP) expression was also not present in

Gbx2 and Spinal Cord Development

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e20940



Gbx2 and Spinal Cord Development

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e20940



the roof plate or floor plate. Collectively, our marker analysis

indicated that Gbx2(GFP) was expressed in molecularly and

spatially distinct subsets of dorsal spinal cord neurons at E10.5.

In contrast, Gbx2(GFP) expression was observed in V1 interneu-

rons with few scattered neurons at the V0/V1 interface.

Gbx2(GFP) expression was not in motor neurons or V3

interneurons. Analysis with the mitotic marker phosphorylated

histone H3 (pH3) at E10.5 showed that dorsomedial Gbx2(GFP)-

expressing cells were proliferating within the spinal cord

ventricular zone (Figure 1S). In contrast, dorsolateral Gbx2(GFP)-

expressing cells did not express pH3 and thus were non-mitotic

cells that had migrated laterally from the ventricular zone. Ventral

Gbx2(GFP)-expressing cells also did not co-express pH3 and

therefore were non-mitotic (Figure 1S). In summary, dorsal

Gbx2(GFP) expression at E10.5 delineated proliferating dI3–4

interneuron progenitors as they migrated laterally while

Gbx2(GFP) ventrally primarily labels post-mitotic V1 interneurons.

Gbx2(GFP) was strongly expressed along the A-P axis of the

E12.5 spinal cord in a broad dorsal domain and in a ventral strip

on sagittal sections (Figure 1T–V). The Gbx2(GFP) expression

domain on transverse sections at E12.5 spanned the entire medial-

lateral axis in the dorsal spinal cord (Figures 1W,X and 2K–M). In

contrast, Gbx2(GFP) expression ventrally was limited to two well-

delineated bi-lateral columns (Figures 1W,X and 2K–M). Notably,

the Gbx2(GFP)+ domains exactly recapitulated the RNA in situ

pattern of Gbx2 expression at E12.5 (Figure S1). Compared to the

expression pattern at E10.5, dorsal Gbx2(GFP) expression at E12.5

spanned a proportionally broader D-V domain and extended up

to the dorsal-most point of spinal cord, excluding the roof plate

(Figures 1K–R,1W–X). The Gbx2(GFP) cells dorsally expressed

Pax2, a class-A transcription factor that defines late-born

inhibitory interneurons at E12.5 [32] (Figure 1W,W9). Gbx2(GFP)

expression co-localized more extensively with Pax2 dorsolaterally

indicating that Gbx2(GFP) was also expressed in differentiating

earlier-born inhibitory interneurons that have settled in the mantle

and marginal zones (Figure 1W,W9). The most ventral Gbx2(GFP)-

expressing cells only rarely co-expressed Pax2 (Figure 1W0).

Gbx2(GFP) at E12.5 expression did not co-localize with dorsal

Isl1/2 (Figure 1X,X9), which is a marker for dorsal excitatory

interneurons [30]. To assess Gbx2(GFP) expression in motor

neuron populations we analyzed ventral Isl1/2, which is a marker

for all differentiating motor neurons in the ventral spinal cord [33].

Ventral-lateral Gbx2(GFP) expressing cells were nested within the

Isl1/2+ medial and lateral motor columns (Figure 1X,X0), but did

not did not co-localize with Isl1/2. Therefore, Gbx2(GFP)

expression does not identify motor neuron sub-populations at

E12.5, but Gbx2(GFP) expression at E12.5 defines early and late-

born dorsal inhibitory interneuron sub-populations.

Cell behaviors of the Gbx2 lineage in spinal cord
To assess how Gbx2 expression in progenitors during early to mid-

embryogenesis related to the positional identity of Gbx2-derived cells

as they differentiated into neurons, we marked and tracked the Gbx2-

lineage using GIFM [26,27] (Figure S2). We administered tamoxifen

at E8.5, E9.5, or E10.5 and examined ß-gal immunolabeling in

E12.5 spinal cords (Figure 2). Cells of the Gbx2 lineage (ß-gal+)

marked at E8.5 were distributed across the D-V axis along the full A-

P extent of the spinal cord at E12.5 (Figure 2A–D). Therefore, Gbx2-

expressing cells at the open neural tube stage (E8.5, Figure 1A,B)

contributed substantially to the differentiating neurons of the spinal

cord at E12.5 (Figures 2A–D and S3). In contrast, neurons of the

Gbx2 lineage marked by tamoxifen at E9.5 were differentially

restricted based on their position along the A-P axis at E12.5

(Figures 2E–G and S4). At the upper limb level, Gbx2(GFP)-

expressing cells marked at E9.5 were primarily concentrated in the

dorsal spinal cord (Figures 2E and S4B). At the thoracic level, Gbx2-

derived cells were primarily distributed in the dorsal cord and were

present only sparsely in the ventral spinal cord (Figure 2F). At the

lower limb level, Gbx2-derived cells marked at E9.5 contributed to

the entire D-V extent of the spinal cord with the exception of the roof

plate (Figures 2G and S4C). Therefore, Gbx2CreER plus tamoxifen at

E8.5 marks ventral cells anteriorly (upper limb level) while marking at

E9.5 does not (Figures 2B, S3, 2E and S4B). These findings indicate

that between E8.5 and 9.5, the ventral Gbx2(GFP)-expressing

progenitors begin to down regulate Gbx2 rostrally. We then asked

whether this wave of Gbx2 down-regulation among ventral

progenitors occurs in posterior spinal cord (lower limb level) over

time. In sharp contrast to earlier marking, the Gbx2 lineage marked at

E10.5 was constrained by a tight boundary (Figures 2H–J,

arrowhead) that confined marked neurons to a dorsal domain along

the length of the spinal cord at E12.5 (Figures 2H–J and S5).

Therefore, Gbx2 expression is dynamic in progenitors and is

temporally down-regulated in an A-P gradient, which progressively

restricts the Gbx2 lineage from contributing to the ventral spinal cord.

We also assessed the laminar distribution of Gbx2 descendants

marked at either E8.5 or E9.5 in adult spinal cord (Figure S6). The

descendants of Gbx2 progenitors marked at E8.5 were distributed

across the full D-V and A-P extent of adult cord, extending from

just posterior to the brain stem through the cauda equina (Figure

S6A,B). In addition, X-gal labeling was seen in dorsal root ganglia

(Figure S6B, arrows) and in cerebellar folia and in caudal

hindbrain (Figure S6A,B). ß-gal immunolabeling on transverse

sections showed that the Gbx2 lineage marked at E8.5 spanned the

entire dorsal-ventral and medial-lateral extent of gray matter at all

A-P levels (Figure S6C–E). E8.5-marked descendants also

populated the white matter at all three levels, although Gbx2-

derived cells populated white matter less densely at the cervical

versus lumbar level (Figure S6C–E). Thus, it appears that Gbx2-

derived cells that contributed to the entire extent of the spinal cord

at E12.5 were not substantially depleted during early embryogen-

esis, but rather persisted in their contribution to the spinal cord

through the adult stage. Descendants from progenitors marked at

E9.5 were concentrated in the dorsal region of the adult spinal

cord, and consistent with the distribution at E12.5, did not

contribute to rostral DRG (Figure S6F–J). X-gal activity was also

detected in the cerebellum and in brainstem nuclei (Figures S6I,J).

Figure 1. Dynamic expression of Gbx2 in the developing spinal cord. Gbx2(GFP) expression detected in whole mount embryo (A). GFP
immunolabeling (B, top row) and adjacent sections processed for Gbx2 in situ hybridization (B, bottom row) from E8.5 Gbx2CreER-ires-eGFP embryo; inset in
‘‘A’’ shows wildtype littermate. (C) Gbx2(GFP) expression in lateral view of an E9.5 embryo. (D–E) GFP and Pax7 immunolabeling on E9.5 Gbx2CreER-ires-eGFP/+

sections. (F–G) Lateral (F) and (G) dorsal views of EGFP fluorescence in E10.5 Gbx2CreER-ires-eGFP/+ embryo. (H–J) Antibody labeling of GFP and indicated
markers on sagittal sections of E10.5 spinal cord; Note restricted ventral strip of Gbx2(GFP) expression (J, arrows). (K–S) Antibody labeling of GFP and
indicated D-V markers on transverse hemi-sections of E10.5 spinal cord at the upper limb level. The insets show a high magnification view of the region
indicated by the arrow. (T–U) EGFP fluorescence of E12.5 Gbx2CreER-ires-eGFP/+ embryo showing lateral (T) and dorsal (U) view. (V) GFP antibody labeling on
sagittal sections of E12.5 spinal cord. GFP/Pax2 (W–W0) and GFP/Isl1/2 (X–X0) immunolabeling on transverse E12.5 hemi-sections of spinal cord at the
upper limb (rostral) level. Abbreviations: mesencephalon (mes), rhombomere 1 (r1), intermediate (int) and posterior (post) neural tube, neuroepithelium
(ne), blood vessel (bv), prosencephalon (pros), thalamus (thal), spinal cord (sc).
doi:10.1371/journal.pone.0020940.g001
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ß-gal immunofluorescence labeling on cross sections confirmed

that E9.5-marked descendants were concentrated in the dorsal

gray matter at the cervical level, with only a few cells residing in

the dorsomedial white matter (Figure S6F). At the thoracic level,

E9.5-marked descendants were in the dorsal horn, but were also

scattered in more ventral cell populations (Figure S6G). At the

lumbar level, E9.5-marked descendants spanned the full D-V

extent of gray matter and were detected in the medial and lateral

white matter (Figure S6H). These results suggest that once Gbx2

was down-regulated in ventral progenitors beginning rostrally, the

Gbx2-derived cells obeyed a lineage boundary that prevented cells

from moving into ventral structures and together these mecha-

nisms controlled the final cytoarchitectonic positioning of the Gbx2

lineage in adult spinal cord.

The regulation of Gbx2 expression in the Gbx2 lineage
We next determined whether Gbx2-derived cells continued to

express Gbx2 as they differentiated. The distribution of the Gbx2

lineage (ß-gal+) (Figure 2A–J) was strikingly different from

Gbx2(GFP) expression (Figure 2K–M) in differentiating neurons

Figure 2. Spatial distribution of the Gbx2 lineage in E12.5 spinal cord. (A–D) Gbx2-derived cells marked at E8.5 (ß-gal+, red) on sagittal
sections of E12.5 spinal cord at the indicated levels. (E–G) Transverse sections of E12.5 spinal cord at the indicated levels showing ß-gal+ cells (red)
that were marked at E9.5. (H–J) The Gbx2 lineage (ß-gal+, red) marked at E10.5 was confined to the dorsal spinal cord at all axial levels at E12.5. (K–M)
Transverse sections showing Gbx2(GFP)+ cells at indicated levels in E12.5 spinal cord. (N–P) Comparison of the Gbx2 lineage (ß-gal+, red) marked at
E8.5 (N), E9.5 (O), and E10.5 (P) versus Gbx2 expression (GFP+, green) in E12.5 spinal cord. (N) Four D-V Gbx2-derived sub-populations can be classified
by the presence or absence of Gbx2: zones 1 and 3 are Gbx2-derived cells that persisted in Gbx2 expression while zones 2 and 4 have down-regulated
Gbx2. (O) Gbx2-derived cells marked at E9.5 continued to express Gbx2(GFP) in dorsal spinal cord at E12.5 in contrast to few ventral cells. (P) The
majority of Gbx2(GFP)-expressing cells marked at E10.5 were confined to a dorsal domain and continued to express Gbx2(GFP).
doi:10.1371/journal.pone.0020940.g002
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at E12.5. Double immunolabeling revealed that Gbx2(GFP)-

expressing progenitors marked at E8.5 were partitioned into four

sub-populations along the D-V axis in the maturing spinal cord

based on persistent or transient Gbx2(GFP) expression (Figures 2N,

S3A–G). The dorsal region consisted of a ß-Gal+/GFP+ cohort in

the upper tier of the dorsal cord (Figure 2N, zone 1) and a ß-Gal+/

GFP2 population confined to the lower tier of the dorsal cord

(Figure 2N, zone 2). A similar arrangement was observed in

ventral spinal cord: an upper tier cohort of ß-Gal+/GFP+ cells and

a lower tier of ß-Gal+/GFP2 cells (Figure 2N, zones 3 and 4,

respectively). These findings indicate that a group of dorsal tier

cells in the spinal cord continued to express Gbx2 from E8.5 to

E12.5 while lower tier neurons down-regulated Gbx2 between

these stages along the R-C axis (Figure S3A–G). To assess how

Gbx2 progenitors marked at E9.5 regulated Gbx2 expression as

cells transitioned from the progenitor stage to early stages of

differentiation, we again compared the Gbx2 lineage (ß-gal) to

Gbx2(GFP) expression at E12.5. Cells that had expressed

Gbx2(GFP) at E9.5 co-expressed GFP at E12.5 in dorsal cord at

all levels (Figures 2O, S4D) indicating that these cells continuously

expressed Gbx2 from E9.5–E12.5. In contrast, only a small amount

of cells that had expressed Gbx2 at E9.5 continued to express

Gbx2(GFP) ventrally at the thoracic and lower limb levels at E12.5

(Figure 2O; arrow). Finally, we assessed Gbx2 regulation in the

cohort marked at E10.5. Cells in the ventral cord at all A-P levels

that expressed Gbx2(GFP) at E12.5 were rarely derived from

progenitors expressing Gbx2(GFP) two days earlier (Figure 2P,

arrows and Figure S5D, S5E). However, Gbx2-derived cells

marked at E10.5 were confined to the dorsal cord at all axial

levels (Figure S5B,C) and persisted in their expression of

Gbx2(GFP) over the ensuing two days (Figures 2P, S5D, S5E).

Interestingly at E10.5, dorsal Gbx2-expressing cells (GFP+) were

positioned in dl3–dl4, which is located in the middle third of the

dorsal cord, and were not observed in dl1–dl2 (Figure 1K–1S).

However, by E12.5 Gbx2(GFP)-expressing cells expanded and

occupied the dorsal cord up to the roof plate at E12.5 (Figure 2K–

L). This change in expression can be interpreted in two ways: Cells

located dorsal to the Gbx2(GFP) expression domain at E10.5 began

to newly express Gbx2 after E10.5 or cells expressing Gbx2(GFP) at

E10.5 migrated dorsally and settled near the roof plate. In situ

hybridization with a Gbx2 probe showed that Gbx2(GFP)

expression at E10.5 was not in dl1–dl2. Coupled with GIFM at

E10.5, these findings suggest that Gbx2-derived dl3–dl4 cells

marked at E10.5 migrated dorsally and continued to express

Gbx2(GFP) in their final location.

Early neuronal fate decisions of the Gbx2 lineage
We next ascertained the intermediate fate of the Gbx2 lineage

marked at different stages by analyzing ß-gal+ cells and well-

characterized markers at E12.5 (Figure 3A–U). Pax2, a transcrip-

tion factor that distinguishes a subset of differentiating inhibitory

dorsal horn interneurons (Figure 3B) [34] was expressed in Gbx2-

derived cells marked at E8.5, E9.5, or E10.5 at upper (Figure 3D–

F) and lower (Figure 3M–O) limb levels. Therefore, Gbx2(GFP)-

expressing progenitors continually gave rise to dorsal Pax2+
inhibitory neurons. Because Gbx2(GFP) was expressed throughout

the neural tube at E8.5 and contributed to the entire cord, we

hypothesized that the Gbx2 lineage would contribute to motor

neurons at E12.5. Comparing ß-gal expression with Isl1/2

expression, which defines all differentiating motor neurons in

ventral spinal cord [33], demonstrated that progenitors expressing

Gbx2(GFP) at E8.5 gave rise to Isl1/2+ motor neurons at all A-P

levels of the maturing spinal cord (Figure 3G,P). In contrast, Gbx2-

derived progenitors marked at E9.5 no longer contributed to Isl1/

2+ motor neurons at the upper limb level (Figure 3H), although

the Gbx2 lineage marked at E9.5 gave rise to motor neurons at the

posterior lower limb level (Figure 3Q). We observed a complete

exclusion of the Gbx2 lineage marked at E10.5 from contributing

to motor neurons at all A-P levels (Figure 3I,R). The dorsal root

ganglia (DRG), which contain Isl1/2+ post-mitotic neurons [35],

was derived from the Gbx2 lineage (ß-gal+) marked at E8.5 along

the full length of the maturing spinal cord (Figure 3J,S). Similar to

motor neurons, ß-gal+ cells from E9.5 marking were not detected

in upper limb DRG (Figure 3K), but were observed at lower limb

level of spinal cord (Figure 3T). Finally, the Gbx2 lineage marked

at E10.5 did not contribute to Isl1/2+ DRG neurons at any A-P

level (Figure 3L,U). Therefore, both dorsal and ventral popula-

tions in spinal cord are derived from a progenitors expressing Gbx2

for twenty-four hours beginning at E8.5. Rapidly though, at the

upper limb level, ventral motor neurons and DRG neurons were

no longer derived from the Gbx2 lineage. In contrast, motor

neurons and DRG neurons at the lower limb level were derived

from the Gbx2 lineage twenty-four hours longer than those located

rostrally.

Terminal neuronal identity of the Gbx2 lineage
An important question in spinal cord development is how

molecularly distinct progenitors contribute to adult spinal cord

cytoarchitecture. To begin to address this, we marked the Gbx2

lineage in vivo and ascertained the terminal fate of Gbx2-derived

neurons marked at E8.5 and E9.5 using biochemical markers for

functionally distinct neurons (Figure 4). Calbindin-D28K (CALB)

and calretinin (CALR) are calcium-binding proteins that are

expressed in a subset of interneurons located in superficial dorsal

laminae I/II [36]. Lamina I was sparsely populated with CALB+
and CALR+ interneurons. In contrast, lamina II was densely

packed with CALB+ interneurons and moderately populated with

loosely arranged CALR+ neurons (Figure 4A–D) [37]. The Gbx2-

lineage marked at E8.5 or E9.5 was evenly distributed across

laminae I–II and co-localized with CALB+ in lamina II, but was

only interspersed with CALB+ cells in laminae I (Figure 4A,B). In

contrast, the Gbx2-lineage marked at E8.5 or E9.5 only rarely

contributed to CALR+ neurons in layer II (Figure 4C,D). The

Gbx2-lineage (ß-gal+) marked at E8.5 or E9.5 contributed to

inhibitory neurons in dorsal laminae I–IV expressing glutamic acid

decarboxylase (GAD) (Figure 4E,F, insets of 3-D rendered neurons

provides clarity of labeling, which was confirmed with single 1 mm

thick optical sections in the XZ and YZ plane, not shown). Finally,

Figure 3. Molecular identity of the Gbx2 lineage in E12.5 spinal cord. (A) Sagittal section of E12.5 embryo with nuclear staining (blue)
showing regions analyzed. (B) Pax2 expression in dorsal spinal cord (indicated by bracket) in a hemi-transverse section. The box indicates the
dorsolateral area of high magnification sampled for panels D–F, M–O (C) Isl1/2 expression in hemi-transverse sections of ventral spinal cord at the
upper limb level. Isl1/2 is expressed in all developing motor neurons (MN) and dorsal root ganglia (DRG). Marker analysis of upper (D–L) and lower
(M–U) limb levels at E12.5. The Gbx2 lineage (ß-gal+, red) marked at E8.5, E9.5 or E10.5 gave rise to Pax2+ neurons (green) at both upper (D–F) and
lower (M–O) limb levels; insets highlight colocalization. (G–I) The Gbx2 lineage (ß-gal+, red) marked at E8.5, but not E9.5 or E10.5, contributed to
ventral MNs (Isl1/2+, green) at upper limb level. (P–R) MNs (Is1/2+, green) at lower limb level were derived from the Gbx2 lineage (ß-gal+, red) marked
at E8.5 and E9.5, but not E10.5. (J–L) Neurons in upper limb DRG (Isl1/2+, green) were derived from the Gbx2 lineage at E8.5 but not at later stages. (S–
U) Caudal DRG (Isl1/2+, green) were derived from the Gbx2 lineage at E8.5 and E9.5.
doi:10.1371/journal.pone.0020940.g003
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Figure 4. Terminal neuronal fate of the Gbx2 lineage. The Gbx2 lineage (ß-gal+, red) marked at E8.5 (A) or E9.5 (B) contributed to dorsal spinal
cord. Calbindin+ interneurons (green) were derived from the Gbx2-lineage marked at both stages; Insets reveal colocalization. (C–D) Gbx2-derived
cells (ß-gal+, blue) marked at E8.5 (C) or E9.5 (D) were interspersed and only rarely co-localize with calretinin+ (CALR) interneurons; Insets show lack of
overlap in lamina II. (E–F) GABAergic inhibitory neurons (GAD6+, green) were derived from Gbx2-expressing progenitors marked at E8.5 (E) or E9.5 (F).
Diffuse GAD6 labeling in axonal and dendritic projections engulfs ß-gal labeling in neuronal cell bodies (insets E–F). (G–H) Gbx2-derived cells (ß-gal+,
red) marked at E8.5 (G) or E9.5 (H) contributed to Pax2+ (green) interneurons; arrowheads show co-localization. (I–K) Choline-Acetyl-Transferase
(ChAT, red) or CALR (red) expression compared to ß-gal immunolabeling (blue) shows that the Gbx2 lineage marked at E8.5 (I, K) but not E9.5 (J)
contributed to both cholinergic motor neurons and interneurons in ventral horn at the upper limb level (Insets in I, K show colocalization; inset in J
shows lack of contribution). (L) The Gbx2 lineage (ß-gal+, red) marked at E8.5 contributed to brain lipid binding protein (BLBP)+ glial cells in white
matter. (M) Summary schematic of Gbx2 lineage (red circles) contribution to distinct laminae in the adult spinal cord. The summary is based on data
presented in this figure and in Figure 6. The Gbx2 lineage marked at E8.5 gave rise to motor neurons and interneurons in ventral spinal cord (blue) as
well as dorsal lamina interneurons (orange). The Gbx2 lineage marked at E9.5 occupied distinct D-V spinal cord domains depending on the A-P
location in adult spinal cord. At the upper limb level (anterior, A), the Gbx2 lineage marked at E9.5 gave rise to dorsal interneurons (green) including
superficial lamina (orange), but not ventral motor neurons (blue). At the lower limb level (posterior, P), the Gbx2 lineage marked at E9.5 spanned the
D-V axis and gave rise to ventral motor neurons (blue) and dorsal interneurons (green, orange).
doi:10.1371/journal.pone.0020940.g004
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the Gbx2 lineage marked at E8.5 and E9.5 gave rise to Pax2+
inhibitory interneurons dispersed throughout the dorsal horn

(Figure 4G,H).

To determine whether Gbx2-derived Isl1/2+ motor neuron

precursors marked at E8.5 terminally differentiated into motor

neurons we compared ß-gal and Choline Acetyl Transferase

(ChAT), which defines cholinergic motor neurons [38–40]. Gbx2-

expressing progenitors marked at E8.5 gave rise to ChAT+ motor

neurons at both cervical and lumbar levels of adult ventral spinal

cord (Figure 4I,M). In contrast, Gbx2-descendants marked at E9.5

did not contribute to ChAT+ motor neurons at the cervical level

(Figure 4J,M). This pattern of contribution with marking at E8.5,

but not E9.5, was similar for ventral CALRET+ interneurons

(Figure 4K,M). The Gbx2 lineage was not confined to neurons as

Gbx2 fate mapping at E8.5, but not E9.5, resulted in ß-gal+/

BLBP+ glial cells in the periphery of the ventral cord (Figure 4L).

In summary, the dorsal Gbx2 lineage marked at E8.5 and E9.5

comprise a heterogeneous population of CALB+, Pax2+, and

GAD+ interneurons in the dorsal horn. The ventral Gbx2 lineage

contributed to both interneurons and motor neurons when

marked at E8.5.

Gbx2 is required to pattern the neural tube and establish
early spinal cord cytoarchitecture

To test whether Gbx2 was required for spinal cord patte-

rning, we bred Gbx2CreER-ires-eGFP/+ heterozygotes [24] to yield

Gbx2CreER-ires-eGFP/CreER-ires-eGFP homozygote embryos that were

effectively Gbx2-null because the CreER-ires-eGFP cassette disrupts

Gbx2 in Exon 1 to generate a loss of function allele [24]. Gbx2-null

mutant embryos had an obvious deletion of r1 consistent with

previous reports of Gbx2 mutants [21] (Figure 5A,A9). We assessed

the expression of Gbx2 by RNA in situ hybridization, which showed

a Gbx2 expression domain that did not expand to the lateral limit

of the neural tube in controls and a complete absence of Gbx2

transcripts in mutants (Figure 5B,B9). The knock-in configuration

allowed us to detect cells that would have expressed Gbx2 (Gbx2-

null mutant cells) by EGFP whole mount fluorescence or GFP

antibody labeling. Gbx2CreER-ires-eGFP/CreER-ires-eGFP mutants (n = 4)

versus Gbx2CreER-ires-eGFP/+ heterozygote controls (n = 3) revealed an

apparent ventral expansion of Gbx2-mutant (GFP+) cells

(Figures 5C,C9,*V). Gbx2-mutant (GFP+)/Pax72 cells were

detected dorsal to the wildtype dl3–dI4 domain and often

encroached upon dl1–2 (Figure 5D,D9,*d). Gbx2-mutant cells were

also aberrantly positioned laterally and co-expressed Brn3a

(Figure 5C9,*1), which was not seen in heterozygous controls

(Figures 5C, arrow). The phenotype was also seen in the ventral

spinal cord where ectopic Brn3a+ cells expanded ventrally and

mixed with V0/V1 (Figure 5C,C9,*2). We were concerned that

having two copies of CreER in Gbx2CreER/CreER mutants versus one

copy in Gbx2CreER/+ control littermates would confound the direct

comparison of GFP expression in progenitors. Therefore, we

repeated the experiment comparing Gbx2CreER/+ (n = 3) to

Gbx2CreER/2 (n = 3) littermates, which allowed us to assess control

versus mutant spinal cords, both with one copy of GFP (Figure 5E–

E0). We measured the dorsal-ventral extent of GFP and although

we observed a broader GFP domain in some Gbx2CreER/2 mutants,

it was not statistically significant. We also measured the medial to

lateral extent of the GFP-expressing domain (figure 5E9,E0) and

compared it to the medial to lateral extent of the spinal cord,

which revealed a statistically significant medial expansion

(P,0.05) (Figure 5E, inset graph).

We then performed comprehensive triple marker analysis of cell

types distributed along the D-V axis in Gbx2CreER/CreER mutants

(n = 4) versus heterozygote controls (n = 3) at E10.5 (Figure 6).

Figure 5. Distribution and identity of Gbx2 mutant cells at E10.5. Gbx2CreER-ires-eGFP/+ control heterozygote (A) and mutant
Gbx2CreER-ires-eGFP/CreER-ires-eGFP embryos (A9) showing intact (r1) and reduced r1 (r1*), respectively at E10.5. Gbx2 in situ with an RNA probe on E10.5
transverse spinal cord sections from control (B) versus Gbx2 mutant embryos (B9). Note that Gbx2 was expressed in a broad dorsal (d) and in a restricted
ventral (v) domain in wildtype embryos and absent in mutants. E10.5 control (C,D) and mutant (C9,D9) transverse sections immunolabeled with GFP
(green) and indicated markers (red). Gbx2-deficient cells (GFP+, green) were co-localized with Brn3a in a wider swath of cells dorsally (*1). Gbx2(GFP) was
broader and co-localized with Pax7 ventrally (*v) and in some cases dorsally (*d). Brn3a+ cells were in an ectopic ventral domain (*2); arrows indicate
regions shown in insets. (E–E0) Compared to control Gbx2CreER-ires-eGFP/+ sections (E9), those obtained from Gbx2CreER-ires-eGFP/2 mutants (E0) showed a
significantly broader Gbx2(GFP) medial-lateral domain:spinal cord width (E, inset). Notably in E,E9 both embryos have only one copy of GFP.
doi:10.1371/journal.pone.0020940.g005
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Dorsomedial progenitors expressing Pax7 and Pax3 were

unperturbed in Gbx2 mutants (Figure 6A,A9,E,E9). However, the

domains defined by expression of Brn3a, Isl1/2, Pax2, and Lim1,

and the combinatorial co-localization patterns between these

markers appeared wider than normal in Gbx2 mutants (Figure 6A–

D9,*1) consistent with expanded Gbx2(GFP) expression. In control

embryos, ventral Brn3a expression lined up with the ventral

border of Pax2 and Lim1 expression and was juxtaposed to Isl1/

2+ ventral motor neurons (Figure 6A,B,C,D). In contrast, Gbx2

mutants had Brn3a+ cells that extended ventrally, almost reaching

the Nkx2.2+ (V3) domain (Figure 6A9,C9,*2). In addition, Gbx2

mutants had a reduction of ventromedial Isl1/2 motor neurons

that comprise the median motor column (MMC) (Figure 6B,B9,*).

To investigate a potential mechanism for the expansion of markers

for differentiating neurons in the dorsal marginal zone, we stained

for mitotic marker pH3 and observed a fewer mitotic cells in Gbx2

mutants compared to heterozygous controls (Figures 6F,F9).

Secreted WNT family molecules from the roof plate mediate

patterning and control neuronal identity in dorsal spinal cord [41],

while SHH signaling controls ventral cell fates [10]. Therefore, we

evaluated Wnt1 and Shh expression by in situ hybridization. The

Wnt1-expression domain was subtly expanded in Gbx2-null

mutants (Figure 6G,G9) while Shh remained unperturbed in

(Figure 6H,H9). These findings suggest that the Gbx2 mutant

phenotype was largely independent of changes in opposing D-V

morphogen gradients.

To more fully assess the extent of the patterning defect in spinal

cord progenitors, we first determined the total number of

molecularly defined progenitors in hemi-transverse spinal cord

(n = 3 controls, n = 4 mutants). There were no significant

differences of the total number of indicated progenitors between

controls (Figure 7A–F) and mutants (Figure 7G–L); see Quanti-

tative approaches in Material and Methods for counts). We then

generated quantitative spatial maps of the progenitors in control

versus Gbx2 mutants to assess the distribution of mutant

progenitors (See Materials and Methods and Figure 7A–L). Our

Cartesian coordinate system was comprised of 4 M-L columns

(ML1–ML4, most medial to most lateral, respectively) and D-V

rows (DV1–DV10, most dorsal to most ventral, respectively)

(Figure 7M–R). In Gbx2 mutant embryos at E10.5, there was a

reduction of Brn3a+ progenitors along the D-V extent of the off-

midline column (ML2), with the largest loss in dorsal ML2

(p,0.05), and an increase in Brn3a+ progenitors in ML3

(Figure 7A,G). We also observed an increase in Brn3a+
progenitors in the ventral half of the mutant spinal cord with

the most prominent increase in ML3-DV5 to ML3-DV9

(Figure 7A,G). In control embryos, Isl1/2+ progenitors were

primarily located in the MMC (ventral ML2) and LMC (ventral

ML3) (Figure 7B). In Gbx2 mutants, there was a significant

depletion of Isl1/2+ progenitors in the MMC (p,0.05) (Figure 7H)

and a significant increase of Lim1+ progenitors in MMC and

LMC (Figure 7C,I). Double immunolabeling revealed a subtle

Figure 6. Gbx2 loss affects spinal cord progenitor patterning. Hemi-transverse sections from E10.5 wildtype (A–H) and Gbx2CreER-ires-eGFP/CreER-ires-eGFP

mutant embryos (A9–H9) triple immunolabeled with indicated markers. (A, A9) Broader Brn3a domain dorsally (*1) and Brn3a expressing cells in the ventral
domain (*2) in Gbx2 mutants. (B, B9) Brn3a+/Isl1/2+ neurons (arrows) and depletion of the medial-ventral domain of Isl1/2+ neurons (medial motor
column,*) in Gbx2 mutants. Qualitatively, some ventral Isl1/2+ neurons inappropriately expressed Brn3a (yellow overlap). (C,C9) Ectopic Brn3a expressing
cells in close proximity to the ventral Nkx2.2 population (*2). (D,D9) Medial-lateral expansion of early differentiating neurons in Gbx2 mutant embryos (*1,
brackets). In addition, ectopic Brn3a+/Lim1/2+ neurons were seen ventral to their normal position (arrow). (E,E9) Pax3/Pax2 showing that the Pax3 domain is
unchanged. (F,F9) Immunolabeling for phosphorylated-Histone H3 (pH3) showing fewer mitotic dorsally in mutant littermates. Wnt1 expression in the
roofplate (RP) was subtly expanded (G,G9,*) while Shh expression in the floor plate (FP) and notochord (NC) was unaffected in mutants (H,H9).
doi:10.1371/journal.pone.0020940.g006
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increase Brn3a+/Isl1/2+ progenitors in domains DV3–DV5 in

column ML3 in mutants versus controls and a reduction in

Brn3a+/Isl1/2+ progenitors in MMC (p,0.05) (Figure 7D,J).

Brn3a+/Lim1+ and Pax2+ cells were not significantly different

between controls and mutants. Finally, there was a significant

depletion of pHH3+ cells in mutant versus control (p,0.05) spinal

cords (figure 7F,L). The decrease was seen across the extent of the

cord with the largest loss observed in the dorsal half (DV1–DV4) of

the spinal cord with an emphasis on the dorsal-lateral cord (ML4-

DV2) (Figure 7F,L). This finding and the observation that the

spinal cord was not overtly depleted of neurons suggests that

proliferating cells prematurely exited the cell cycle and contributed

to the general patterning defect resulting from Gbx2 loss.

Gbx2CreER-ires-eGFP/CreER-ires-eGFP mutants (n = 3) at E12.5

(Figure 8A,B) had Gbx2-mutant (GFP+) neurons that were

distributed in a broader morphologically distinct dorsal ventricular

zone replete with differentiating mutant neurons at E12.5

(Figure 8C,C9). This finding was consistent with our observations

at E10.5. Dorsal Isl1/2+ interneurons and dorsal Pax2-expressing

inhibitory interneurons were distributed in a similar pattern as

controls (Figure 8D–E9). In contrast, we observed ectopic clusters

of Gbx2(GFP) mutant cells in the ventricular and mantle zones of

the ventral spinal cord (Figure 8C,C9,*). Ventromedial Isl1/2+
motor neurons of the MMC were depleted in Gbx2 mutants

(Figure 8D,D9,*) consistent with our findings at E10.5. The

number of Gbx2(GFP) mutant cells that co-expressed Pax2+ in

ventral spinal cord (33612/hemisection) was doubled in compar-

ison to wildtype Gbx2(GFP)+/Pax2+ cells (16612/hemisection)

(Figure 8E,E9,*). The lateral spinal cord of mutants had 2.5 times

more Gbx2(GFP)+/Pax2+ cells while the medial spinal cord had a

1.8 fold increase. Finally, we addressed whether the state of

mutant lineage derived cells changed over time by administering

tamoxifen to Gbx2CreER-ires-eGFP/CreER-ires-eGFP embryos at E9.5. The

Gbx2(GFP) mutant cells at E12.5 were not derived from the

mutant progenitors (ß-gal+) marked at E9.5, which was similar to

control littermates (Figure 8F,F9). Interestingly, the ventral Pax2+
neurons in Gbx2CreER-ires-eGFP/CreER-ires-eGFP embryos were scattered

and loosely organized compared to controls

(Figure 8G,G9,*1,*2,*3), but the Pax2+ cells were not derived from

the Gbx2 mutant lineage marked at E9.5. These findings suggested

that a deficiency in Gbx2 did not result in a cell-autonomous fate

change in mutant progenitors marked at E9.5 (Figure 8G,G9).

Rather, our findings indicated that a cohort of Gbx2(GFP)+/Pax2+
cells in mutant spinal cord resulted from an attempt to re-initiate

the expression of Gbx2(GFP) at E12.5 and not from a failure of

turning off Gbx2(GFP). Finally, the Gbx2 mutant lineage was

aberrantly distributed in ventricular zone of the ventral region of

the spinal cord at thoracic and upper limb levels (Figure 8H–H9,

arrows). This finding suggested that the lineage boundary was

compromised in the absence of Gbx2.

Discussion

The relationship between molecularly distinct progenitors that

transiently or dynamically express specific genes during embryo-

genesis and the ultimate terminal differentiated cell types they give

rise to is fundamentally important for the establishment of

complex tissues. In addition, understanding developmentally

regulated gene expression and cell lineage may be instructive for

cell-based therapeutic approaches designed to replace specific

populations that may be compromised in disease or injury. In this

study, we used a combination of GIFM, Gbx2 expression and

marker analysis, and genetic mutant mice to examine the lineage

and function of the transcription factor Gbx2 at specific time points

in spinal cord development. We chose Gbx2 because the

expression, contribution, and role of this transcription factor in

spinal cord development has been unexplored.

The Gbx2 lineage in the ventral spinal cord is dynamically
regulated and under tight temporal control

The dynamic change in Gbx2 in ventral spinal cord over a short

time window precludes understanding how progenitors expressing

Gbx2 at any given time are related to their spatial location and cell

fate at later stages. To overcome this issue, we used GIFM to mark

and track the Gbx2 lineage. In addition, by comparing the Gbx2

lineage (ß-gal+ cells) with respect to Gbx2(GFP) expression at E12.5

we determined how Gbx2(GFP) expression was regulated in the

Gbx2 lineage. The Gbx2-lineage marked at E8.5 is distributed

throughout the entire ventral spinal cord consistent with its early

broad expression. It is interesting that only a subset of the Gbx2-

expressing cells in the ventral spinal cord (Gbx2ventral) continue to

express Gbx2(GFP) at E12.5. This finding indicates that some

Gbx2ventral cells at E12.5 initiated and maintained Gbx2 expression

beginning four days earlier while others did not maintain Gbx2

expression (Figure S3). More importantly, this finding indicates

that timing of gene expression within a genetic lineage defines

distinct cohorts of neural progenitors. Gbx2ventral progenitors have

a molecular identity of Gbx2+/Lim1/2+/Pax2+/Evx1/22/

Nkx2.22/pH32 indicating that ventral Gbx2(GFP) expression

was restricted to pV1 at this stage. The Gbx2ventral population

expanded between E10.5 and E12.5. suggesting that Gbx2

expression is initiated de novo in a small number of Gbx2ventral

cells at E12.5. Interestingly, the Gbx2-lineage derived from

Gbx2ventral progenitors at all axial levels at E10.5 did not

significantly contribute to the Gbx2(GFP)-expressing population

in ventral spinal cord at E12.5. Consistent with this, we very rarely

detected Gbx2-derived cells marked at E9.5 in adult rostral-ventral

spinal cord. One possibility to account for these observations is

that Gbx2ventral cells at E9.5 and E10.5 are post-mitotic and don’t

substantially expand during development, which masks their

contribution. Coupled with the mosaic nature of GIFM [29],

marking post-mitotic neurons may result in significantly fewer fate

mapped cells than when marking a proliferating progenitor pool.

A second possibility is that Gbx2ventral cells marked at E9.5 or

E10.5 are depleted over time or migrate into a more dorsal

location. This seems unlikely because we do not see the

appearance of loosely scattered cells emanating away from a

diminishing ventral cohort of marked cells. Therefore, our data

suggests that Gbx2 expression is rapidly down-regulated in ventral

Figure 7. Quantitative assessment of aberrantly distributed spinal cord progenitors in Gbx2 mutant embryos. Quantitative spatial
analysis of control Gbx2CreER-ires-eGFP/+ (A–F) and mutant Gbx2CreER-ires-eGFP/CreER-ires-eGFP (G–L) spinal cords at E10.5. The average number of progenitors
was assessed by counting cells with expressing the indicated markers in two sections at the upper limb level from control embryos (n = 3) and mutant
embryos (n = 4). To facilitate a clear comparison of the spatial distribution across samples, we a Cartesian coordinate system where ML1-DV1

represented the most medial-dorsal quadrant, ML1-DV10 the most medial-ventral quadrant, ML4-DV1 the most lateral-dorsal quadrant, and ML4-DV10

the most lateral-ventral quadrant (M–R). The yellow boxes in panels M–R are shown at higher magnification with white dots used to track counted
cells. The yellow boxes also correlate with the domains that were highlighted in the graphs with a yellow arrow. Quantitative spatial mapping
revealed the distribution of Brn3a+ cells (A,G,M), Isl1/2+ (B,H,N), Lim1+ (C,I,O), Brn3a+/Isl1/2+ (D,J,P), Brn3a+/Lim1+ (E,K,Q), and pHH3 (F,L,R).
doi:10.1371/journal.pone.0020940.g007
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progenitors that express Gbx2 early (between E8.5 and E10.5) and

that a small number initiate Gbx2 late (between E10.5 and E12.5).

Collectively, these mechanisms limit the contribution of Gbx2

progenitors of the ventral spinal cord to distinct temporal epochs.

The dynamic regulation of Gbx2(GFP) ventrally occurs in a

rostral-caudal direction that translates into a lineage code where V1

interneurons, Isl1/2+ motor neurons, and Isl1/2+ DRG neurons

are temporally derived from the Gbx2 lineage. The source of the

Gbx2 lineage contributing to DRG neurons are likely delaminating

neural crest progenitors that express Gbx2, consistent with the role of

Gbx2 in patterning Xenopus [42], while motor neurons and V1

interneurons are derived from the neural tube. This is an interesting

finding because it provides definitive evidence that interneurons and

motor neurons in the ventral spinal cord are derived from the same

genetic lineage at the same time. Subsequently, motor neurons and

non-V1 interneurons derived from the Gbx2-lineage at E8.5 rapidly

shut off Gbx2, while V1 interneuron progenitors remain Gbx2+. Our

findings coupled with studies showing that molecular repression and

response elements determine ventral spinal cord lineage decisions

[8,9,17,43] suggests that the molecular control of cell fate occurs in a

common pool of Gbx2-expressing progenitors. Furthermore, our

data suggest that the anterior-to-posterior down-regulation of Gbx2

in the ventral neural tube helps define a short temporal window that

delineates anterior motor neuron fate [Gbx2(GFP)+ cells marked at

E8.5 only] versus V1 interneuron fate [Gbx2(GFP)+ cells marked

from E8.5–E10.5]. In contrast, caudal Isl1/2+ motor neurons are

derived from the Gbx2 lineage, but over a prolonged two day

window (marked from E8.5–9.5) while caudal V1 is marked from

E8.5–E12.5, similar to anterior motor neurons. Interestingly, the

caudal progenitors don’t simply express Gbx2 for a twenty four hour

window that is offset compared to the rostral cord. This suggests that

caudal motor neurons and DRG are comprised of progenitors that

have a longer pulse of Gbx2 expression. Collectively, these findings

augment previous descriptions of rostral to caudal specification of

motor neurons [44] and indicate that developmental timing and

lineage as well as a transcription code identifies rostral versus caudal

motor neurons and DRG neurons.

The Gbx2 lineage in dorsal spinal cord exhibits complex
behaviors and contributes to inhibitory interneurons

In contrast to the ventral spinal cord, Gbx2(GFP) expression was

apparent in the dorsal spinal cord (Gbx2dorsal) from E8.5–E12.5.

After E8.5, Gbx2(GFP)-expressing cells co-expressed Pax7 dorsally

in dl3/dl4 and by E10.5 Gbx2dorsal cells had the following

molecular identity: Gbx2(GFP)+/Pax3+/Pax7+. This is an inter-

esting finding in the context of how dorsal interneurons are

classified at E10.5. The absence of the transcription factor Lbx1

distinguishes class A (dl1–dl3) interneurons from class B (dl4–dl6)

interneurons that do express Lbx1 [45]. Our data suggest that both

class A dl3 and class B dl4 interneuron progenitors are derived

from a common pool of progenitors. More importantly, though,

our findings further advance our knowledge of defining progen-

itors in terms of anatomical position and marker analysis and can

be used to refine progenitors based on genetic lineage. Therefore,

dorsal interneurons can be classified as originating from the

Gbx2dorsal lineage that is then further partitioned molecularly. Gbx1

is expressed in a subset of class B progenitors referred to as the

class B dlLA interneurons [22]. It is interesting to speculate that a

combinatorial code of Gbx transcription factors is imparted on

dorsal spinal cord progenitors to further refine a molecularly

heterogeneous population of differentiating class B interneurons.

Our GIFM and marker analysis revealed cell behaviors of

Gbx2dorsal cells. Gbx2dorsal cells at E10.5 are not localized to the

Pax3+/Pax72 domain, which corresponds to dl1–dl2. However,

by E12.5, Gbx2dorsal cells were located in the dorsal spinal cord

(excluding roofplate) and co-express Pax2, but not Isl1/2

consistent with an inhibitory interneuron identity. This suggests

that either Gbx2-expression was initiated dorsally or that dl3–dl4

derived cells migrate dorsally between E10.5–E12.5. GIFM

reveals that Gbx2-expressing progenitors initially located in dl3/

dl4 at E9.5 and E10.5 contribute to a dorsal domain that spans

42.363.1% of the spinal cord, excluding the roof plate, at E12.5.

Collectively, our findings are consistent with cells in dl4 migrating

and settling in the dorsal horn [30,45]. Interestingly, once

Gbx2(GFP) expression is restricted dorsally, the marked lineage

does not migrate into, or settle in, the ventral cord during

development. In addition, the lineage derived cells continue to be

retained in the adult dorsal cord. These findings indicate that a

genetic lineage boundary is permanently fixed and confines the

Gbx2-lineage to a dorsal compartment where they can intermingle

and populate a broad dorsal domain. This is the first demonstra-

tion of a lineage boundary and compartmentalization in mouse

spinal cord. A lineage restriction boundary is in agreement with

clonal analysis in chick where clones labeled in the early neural

tube disperse widely along the D-V axis, but are rapidly restricted

from mixing and become confined to localized domains [46,47].

Based on our timing of tamoxifen administration, the spinal cord

lineage boundary in mouse is established at E9.5 rostrally and

follows a rostral-to-caudal wave that completely fixes the boundary

along the entire A-P axis within twenty-four hours. Collectively,

we show that Gbx2dorsal cells are confined to a dorsal

compartment and acquire an inhibitory interneuron fate.

Gbx2 is required for correct spinal cord patterning
We utilized mice that have the Gbx2 locus replaced by CreER-ires-

eGFP and ascertained how the loss of Gbx2 affects spinal cord

development. The expression of GFP in Gbx2CreER-ires-eGFP/CreER-ires-eGFP

cells shows that the Gbx2 locus is capable of responding to gene

regulation and that mutant cells do not die in the absence of Gbx2.

Marker analysis revealed that Gbx2-mutant spinal cords had an

improperly patterned ventral domain. This finding coupled with the

early contribution of the Gbx2 lineage (marked at E8.5, but not later)

to the ventral spinal cord indicates an early role of Gbx2 in

patterning the ventral spinal cord. We also observed that Gbx2 loss

Figure 8. Gbx2 mutant lineage at E12.5. Control Gbx2CreER-ires-eGFP/+ (A) and mutant Gbx2CreER-ires-eGFP/CreER-ires-eGFP (B) embryos at E12.5; mutants
have reduced r1 (r1*). (C,C9) GFP immunolabeling on level-matched hemi-transverse sections of E12.5 heterozygous control (C) versus Gbx2 mutant
embryos (C9). Ectopic clusters of Gbx2 mutant (GFP+) cells (*) in the ventricular zone. (D,D9) Isl1/2 immunolabeling on transverse sections of E12.5
heterozygous (D) versus Gbx2 mutant embryos (D9) showing loss of medial motor neurons in Gbx2 mutant embryos (*). (E, E9) Immunolabeling for
GFP and Pax2 showing ectopically located ventral Gbx2(GFP)-mutant/Pax2+ interneurons (*) in mutant embryos; arrows indicate regions shown in
insets. (F–G9) GIFM of thoracic sections from wildtype control (F,G) versus mutant (F9,G9) spinal cord. (F) ß-gal and GFP immunolabeling showing the
wildtype Gbx2 lineage (ß-gal+, red) marked at E9.5 and Gbx2-expressing neurons at E12.5. (F9) The Gbx2-mutant lineage marked at E9.5 (ß-gal+, red)
and Gbx2-mutants cells (GFP+, green) analyzed at E12.5. (G, G9) ß-gal expression resulting from lineage marking at E9.5 versus Pax2 expression in
E12.5 control (G) versus Gbx2 mutant embryos (G9). Note that some ventral Pax2+ cells are disorganized (*1, *2), and others are ectopically located
(*3). (H–H9) Cells of the Gbx2 mutant lineage marked at E9.5 reside in ectopic locations (arrows) that are ventral to the lineage boundary seen in
controls (arrowheads).
doi:10.1371/journal.pone.0020940.g008
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results in a dorsal patterning defect which consists of a broader than

normal M-L domain of Brn3a, Isl1/2, Pax2, and Lim1/2 and a

prominent decrease in mitotic cells in the dorsal spinal cord

suggesting that Gbx2 maintains the proliferative status of dorsal

progenitors. Specifically, Gbx2 may prevent progenitors from

prematurely exiting the cell cycle and migrating laterally from the

ventricular zone. This would be consistent with Gbx2 involvement in

cell proliferation during cerebellar development, where Gbx2 loss

results in decreased cell proliferation in the dorsal isthmus and

medial cerebellar anlage [23]. In the context of cerebellar

development, Gbx2 indirectly maintains proliferation by inhibiting

anti-proliferative activity of FGF8 [23]. However, whether Gbx2

plays a direct cell-autonomous or non-autonomous role in spinal

cord proliferation is unresolved.

We addressed whether the role of Gbx2 in patterning is

concomitant with a requirement in cell fate specification of

interneurons. Gbx2(GFP)-mutant/Pax2+ precursors ectopically

located in the ventral spinal cord at E12.5 were not derived from

mutant Gbx2(GFP)-mutant progenitors marked at E9.5. This is

interesting because the wildtype Gbx2-lineage marked at E8.5, but

not at E9.5 or E10.5, gives rise to ventral Pax2+ cells (primarily at

the dorsal margin of Pax2 expression) and the ventral Pax2+ cells

generally do not continue to express Gbx2 at E12.5. If Gbx2-mutant

progenitors failed to down regulate the Gbx2 locus between E8.5

and E9.5 and instead persisted in driving the expression of the Gbx2

locus (and therefore CreER) at E9.5 and became Pax2+ precursors,

then GIFM with tamoxifen at E9.5 would have marked these

mutant cells. However, this was not the case, which indicates that

the ectopic Gbx2(GFP)-mutant/Pax2+ cells were most likely Pax2+
interneurons that re-initiated de novo expression from the Gbx2 locus

(accounting for the persistent GFP expression) at E12.5. The

dysregulation of the Gbx2 locus and the patterning defect in the

mutant spinal cord suggests that spinal cord gene regulation is

altered in the absence of Gbx2. This is consistent with the structure

and function of Gbx2, which acts as a transcriptional repressor that

uses an Engrailed-like homology 1 motif to interact with the WD40

domain of the Groucho/Tle family of co-repressors [48]. Interestingly,

this is a typical feature of transcription factors that are used for cross

repressive interactions in the spinal cord [43] and Gbx2 uses this

mechanism to repress Otx2 expression during midbrain-hindbrain

development [18]. It will be interesting in future studies to test if

Gbx2 uses this mechanism in spinal cord patterning.

Gbx2 establishes lineage boundaries that demarcate thalamic

nuclei [24] and positions the midbrain/anterior hindbrain gene

expression interface [20], which is also a lineage boundary [25].

GIFM shows that the cells derived from the mutant Gbx2 lineage

are dispersed in the ventral ventricular zone violating the

boundary. This finding indicates that similar to lineage boundaries

in thalamus, the spinal cord lineage boundary requires Gbx2 for its

establishment or maintenance. We also show that loss of Gbx2

results in a small ventral expansion of Wnt1 expression in the roof

plate at E10.5. Gbx2 does not abut the roofplate at this stage

suggesting an indirect mechanism underpinning Wnt1 expansion.

Previous studies using electroporation to ectopically express Wnt1

throughout the entire dorsal half of the cord in chick increases dl2–

dl4 neurons [11]. Additionally, Wnt1/Wnt3a double knockouts

have dorsal spinal cord patterning defects [41]. Collectively, these

findings suggest that increased WNT signaling may contribute to

the dorsal Gbx2 mutant phenotype.

Long term lineage analysis links timing of Gbx2
expression in progenitors to terminal interneuron fates

The adult spinal cord is comprised of molecularly distinct

interneurons that have a laminar cytoarchitectonic organization

[1]. However, whether genetic history and developing timing

impact this organization is not well understood. In the ventral

spinal cord the Gbx2 lineage gives rise to ventral interneuron

progenitors and to V1, but only during a short time frame. These

progenitors later become CALR+ interneurons in the ventral

spinal cord. It has been shown previously that V1 interneurons

with a history of expressing En1 primarily become CALB+ but not

group 6 or group 7 CALR+ interneurons [49]. Collectively, these

findings suggest that En1 and Gbx2 contribute to unique classes of

interneurons. In support of this idea, En1 expression is limited to a

subset of V1 interneurons during embryonic development [50]

and we show that Gbx2(GFP) is also present in a subset of V1

interneurons.

In contrast, the Gbx2 lineage, which becomes confined to the

dorsal spinal cord by a lineage restriction boundary, contributes to

interneurons in dorsal superficial lamina II when marked at both

E8.5 and E9.5. The Gbx2 lineage-derived interneurons express

CALB, but only rarely CALRET, and also gives rise to GAD+
GABAergic inhibitory neurons in the adult dorsal spinal cord.

Finally, Pax2+ dILA class B late born interneurons [22,34], which

are derived from the Gbx2-lineage marked from E8.5–E10.5

continue to express Gbx2 at E12.5 and contribute to Pax2+
neurons in the adult. These findings are consistent with Pax2 being

expressed in, and required for, GABAergic neuron development

[34]. These findings also show that Gbx2-derived dorsal spinal cord

interneuron progenitors are not progressively restricted in

competence. Thus, dorsal spinal cord interneurons are not

generated in a similar manner as Drosophila neuroblasts [51,52].

Interestingly, cortical interneurons derived from the Nkx6-2

lineage also do not follow a progressive restriction in competence

model [53], but rather behave similarly to the manner in which

spinal cord interneurons are established. In summary, our studies

forge a relationship between molecularly distinct progenitors that

dynamically express Gbx2 during embryogenesis and the ultimate

terminal differentiated neuronal types they give rise to in the adult.

We also revealed complex cellular and genetic events underpin-

ning spinal cord development and progenitor-to-neuron relation-

ships.

Materials and Methods

Ethics Statement
Mice were housed and handled in accordance with Brown

University Institutional Animal Care and Use Committee

(IACUC) guidelines. The Brown University IACUC reviewed

and approved this study (IACUC #0909081, approved October

28, 2009) in accordance with the OLAW PHS Policy on the

Humane Care and Use of Laboratory Animals and Animal

Welfare Assurance (#A3284-01). The ACF operation is overseen

by the Brown University Animal Care and Use Committee and is

accredited by AAALAC.

Genetic Knock-In Mice, Reporters, and Mutant Mice
Gbx2CreER-ires-eGFP was generated by replacing one allele of Gbx2

with CreERT2-ires-eGFP [24]. We bred Gbx2CreER-ires-eGFP/+ hetero-

zygote knock-in mice (gratefully obtained from James Li, U. Conn,

Health Center) to mice containing the R26R reporter allele [54] to

generate Gbx2CreER-ires-eGFP;R26R mice that were bred with the wild

type swiss webster strain mice (Taconic Farms) to maintain

Gbx2CreER-ires-eGFP/+;R26R progeny. We identified double positive

progeny with primers recognizing CreER and R26R as previously

described [26]. Gbx2 heterozygotes were phenotypically indistin-

guishable from Gbx2+/+ wildtype mice [21] and RNA in situ

hybridization analysis confirmed that EGFP expression faithfully
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recapitulated endogenous Gbx2 expression (See text for details).

We bred Gbx2CreER-ires-eGFP/+ heterozygote males and females to

yield both Gbx2CreER-ires-eGFP/+ heterozygote control embryos (n = 3)

and Gbx2CreER-ires-eGFP/CreER-ires-eGFP homozygote embryos (n = 4)

that lack Gbx2 and instead express two copies of CreER-IRES-

eGFP. Homozygote Gbx2-deficient embryos were easily discern-

ible by phenotype analysis because they exhibit a severe reduction

of r1 [20,21,23] and strikingly increased whole mount EGFP

fluorescence compared to heterozygotes. Gbx2CreER-ires-eGFP//+

control heterozygous embryos (n = 3) Gbx2CreER-ires-eGFP//2 (n = 3)

null mice were generously provided by J. Li. The loss of Gbx2 in

embryos was confirmed for their lack of Gbx2 expression compared

to heterozygous embryos by RNA in situ hybridization.

Genetic Inducible Fate Mapping
Fate mapping procedures were done as previously described

[26,27,55]. Vaginal plugs detected at 9–10AM in the morning

after mating were considered E0.5 days post-conceptus. Tamox-

ifen was dissolved in corn oil at a final concentration of 20 mg/ml.

To induce GIFM, 0.2 ml of tamoxifen-corn oil solution (4 mg

tamoxifen) was administered by oral gavage at 9AM on day E8.5,

E9.5, or E10.5 to pregnant swiss webster females that had mated

with Gbx2CreER-ires-eGFP/+; R26R males. GIFM could be performed

on the Gbx2-null background by administering tamoxifen to

pregnant Gbx2CreER-ires-eGFP/+; R26R females that had mated with

Gbx2CreER-ires-eGFP/+; R26R males. Mouse embryos were analyzed at

the stages indicated in the text (n$4 across two different litters);

adult mice were analyzed at 3 months of age (n = 4 across two

different litters).A balanced one-way analysis of variance power

calculation (power.anova.test) was done to determine appropriate

sample sizes. We held constant the statistical p value that meets

our requirement for significance (p = 0.05), as well as the within

and between group variance (set at 1 and 1.5, respectively). We

varied the sample (number of animals/group) size and calculated

the power. Sampling four animals/group resulted in a confidence

interval of 80%, which is consistent with our previously published

analyses [55], and is acceptable to assess statistical significance.

Immunocytochemistry, X-gal Histochemistry, RNA In Situ
Hybridization

Experimental details of tissue processing and techniques have

been described in detail [26] and can be downloaded from http://

research.brown.edu/myresearch/Mark_Zervas. Embryos were

photographed for wholemount EGFP fluorescence to visualize

Gbx2-expressing domains, then fixed in 4% paraformaldehyde,

cryoprotected with 15% and 30% sucrose, embedded in OCT

compound, and cryosectioned at 12–16 micron thickness depend-

ing on the stage. Adult spinal cord tissue was fixed by inter-cardiac

perfusion of 10 ml PBS followed by 15 ml of 4% formaldehyde.

After dissecting the intact adult spinal cord and brain, tissue

samples were allowed to sit in 4% PFA for at least one night,

cryoprotected, OCT embedded, and cryosectioned at 20–25

microns. The following antibodies were used: rabbit anti-GFP

1:600 (Invitrogen), rat anti-GFP 1:500 (Invitrogen), goat anti-ß

galactosidase 1:500 (Biogenesis), chick anti-ß galactosidase 1:500

(Abcam), mouse anti-Pax7 1:20 (Developmental Studies Hybrid-

oma Bank), mouse anti-Lim1/2 1:50 (DSHB), mouse anti-Isl1/2

1:50 (DSHB), mouse-anti Pax6 1:500 (DSHB), rabbit-anti Pax2

1:50 (Zymed), mouse anti-Pax3 1:50 (DSHB), mouse anti-Evx1/2

1:50 (DSHB), mouse anti-Nkx2.2 1:50 (DSHB), rabbit anti-Brn3a

1:1000 (gift of Eric Turner), guinea pig anti-Brn3a 1:500 (gift of

Eric Turner), mouse anti-GAD6 1:50 (DSHB), goat anti-ChAT

1:100 (Chemicon), rabbit anti-phosphorylated histone H3 1:200

(Chemicon), goat anti-Calbindin 1:1000 (Swant). The appropriate

secondary antibodies were used at 1:500 dilutions from Invitrogen-

Molecular Probes or Jackson Immunoresearch. Images were

captured on an epifluorescent compound microscope (Leica

DMB600) and processed using Volocity imaging software

(Improvision). ß-gal histochemistry was performed on freshly

perfused adult spinal cord tissue samples by immersing samples in

X-gal (5-Bromo-4-Chloro-3-Indolyl-beta-D-galactopyranoside)

substrate solution over night. RNA in situ hybridization was

performed with labeled anti-sense probes to Gbx2, Shh, and Wnt1

according to published protocols [25,26].

Quantitative approaches
Embryos were sectioned in the transverse orientation and

immunolabeled with the markers indicated above and in the text.

The number of cells was counted on the right side of the transverse

sections. Marker positive cells were counted and analyzed from 2

sections from each of 4 mutant and 3 control embryos (Figures 6

and 7). Control spinal cords at E10.5 had the following counts

(average 6 standard deviation/hemisection): Brn3a+ (80640),

Isl1/2+ (86643), Lim1/2+ (98652), Brn3a+/Isl1/2+ (1869),

Brn3a+/Lim1+ (27616), Pax2+ (63623). Gbx2CreER/CreER mutants

had the following counts: Brn3a (87629), Isl1/2 (82635), Lim1

(135668), Brn3a+/Isl1/2+ (1767), Brn3a+/Lim1+ (2768),

Pax2+ (71619). To facilitate a clear comparison of the spatial

distribution across samples, we applied a grid [composed of 4 M-L

columns (ML1–ML4) and 10 D-V rows (DV1–DV10) to give a

4610 matrix] to one half of the spinal cord as shown in

(Figure 7M–R). With this Cartesian coordinate system, position

ML1-DV1 represented the most medial-dorsal quadrant, ML1-

DV10 the most medial-ventral quadrant, ML4-DV1 the most

lateral-dorsal quadrant, and ML4-DV10 the most lateral-ventral

quadrant. The number of marked cells in each quadrant was

averaged across all animals of the same genotype and standard

deviations were calculated. Shapiro-Wilks tests for normality were

applied to the data and ANOVAs were used to determine if there

was a significant difference between the number of Brn3a, Isl, Lim,

Brn3a/Isl, Brn3a/Lim or pHH3 positive cells in the mutant versus

control animals p values are indicated in the text. We compared

extent of the Gbx2(GFP) domain in Gbx2CreER/+ (n = 3) to

Gbx2CreER/2 (n = 3) littermates, which allowed us to assess control

versus mutant spinal cords, both with one copy of GFP (Figure 5E).

We measured the dorsal-ventral extent of GFP (measurement 2) in

relation to the dorsal marker Pax7 (measurement 1) and calculated

the ratio of GFP to Pax7 (m2/m1). We also measured the medial

to lateral extent of the GFP-expressing domain (measurement 5)

and compared it to the medial to lateral extent of the spinal cord

(measurement 4) and calculated this ratio (m5/m4) (Figure 5E,

inset). Finally, we counted the number of Gbx2(GFP)/Pax2

expressing cells in control versus mutants (two transverse

hemisections/embryo).

Supporting Information

Figure S1 GFP and RNA in situ hybridization analysis.
(A, B) Adjacent transverse sections from E12.5 embryos labeled

with a GFP antibody (A) or with a Gbx2 RNA probe showing

expression patterns that were identical. Note that Gbx2 and GFP

were excluded from the roof plate (rp) and dorsal root ganglia

(drg), but were distributed in a bilateral broad dorsal regions (top

bracket) and in smaller bilateral ventral domains (lower bracket).

Gbx2 transcripts appeared to be more intense in the marginal

zone compared to the ventricular zone although GFP in

immunolabeled sections was more uniformly seen in both zones;

this is also true for the deep dorsal region of the spinal cord. This
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may reflect the sensitivity of the antibody/immunolabeling versus

anti-sense probe/in situ hybridization. In addition, the levels of

GFP transcripts/protein are unlikely to mimic the levels of Gbx2

transcripts/protein due to differential processing. We were not

suggesting that the levels of GFP correlate with Gbx2, but rather

that GFP was a reliable indicator of cells expressing Gbx2.

(TIF)

Figure S2 Schematic of GIFM strategy. (A) The allelic

combinations required for GIFM are shown. Gbx2CreER-ires-eGFP

encodes for EGFP and allows for cells expressing Gbx2 at the time

of analysis (GFP+) to be identified, while CreER encodes a

tamoxifen-regulated Cre for lineage analysis. The recombined

‘marking’ of cells is achieved with the R26R reporter allele. (B–E)

GIFM strategy. All cells in Gbx2CreER-ires-eGFP;R26R embryos

contain the reporter allele (shown in the nucleus), but which is

quiescent because of a loxP (white triangles) flanked Stop cassette

(red line). Gbx2-expressing cells in the hindbrain and spinal cord

(GFP+, green ovals) express CreER protein (large green oval),

which is sequestered away from the nucleus and confined to the

cytoplasm because of the interaction with hsp90 (orange oval). (C)

Upon tamoxifen (red T) administration, CreER is released from

hsp90 freeing it to translocate to the nucleus. (D) Once in the

nucleus, CreER mediates recombination between same-site

orientation loxP sites causing the deletion of the intervening Stop

cassette. This results in the LacZ reporter being turned on.

Notably, this event occurs for approximately 24–30 hours in vivo

because of tamoxifen pharmacokinetics [56]. (E) The recombined

reporter allele is constitutively expressed, heritable, and highly

reproducible and serves as a genetic lineage tracer. The fate

mapped Gbx2 lineage (blue ovals) can then be followed over time

even after Gbx2 expression is extinguished.

(TIF)

Figure S3 Gbx2 lineage marked at E8.5 broadly con-
tributes spinal cord at E12.5. (A–G) ß-Gal and GFP antibody

labeling on sagittal sections of an E12.5 embryo marked by GIFM

at E8.5. Two cell populations defined by Gbx2 lineage were

distinguished at E12.5: (1) The cells that were Gbx2(GFP)+/ß-Gal+

at E12.5 had continuously expressed Gbx2 from E8.5–E12.5 in

spinal cord. These cells were distributed in the broad dorsal

domain and in a restricted ventral domain along the full rostral-

caudal extent of cord. (2) The cells that expressed Gbx2 at E8.5,

but no longer expressed Gbx2 (Gbx2(GFP)2/ß-Gal+) at E12.5 were

observed ventrally and dorsally along the full length of cord. The

Gbx2 gene was turned off in these cells at some point between

marking and E12.5 (H–J) ß-Gal antibody labeling of cells marked

by GIFM at E8.5 versus antibody labeling to Pax2 on sagittal

sections of an E12.5 embryo. Colocalization revealed that

Gbx2(GFP) expressing cells marked at E8.5 gave rise to dorsal

and ventral Pax2+ cells at all R-C levels; arrowheads show

examples of co-localization. Sections shown here are from a

medial plane, which precludes seeing dorsal Pax2+ cells because

they are distributed in a ‘‘V-shaped’’ distribution (See Figure 1).

(L–P) The Gbx2 lineage (ß-Gal+) marked at E8.5 by GIFM versus

antibody labeling of Isl1/2+ cells. Colocalization revealed that

Gbx2 expressing cells marked at E8.5 gave rise to dorsal and

ventral Isl1/2+ cells at all R-C levels.

(TIF)

Figure S4 Gbx2 lineage marked at E9.5 makes varied
contributions to the E12.5 spinal cord at different rostral
caudal positions. (A) A lateral view of an E12.5 mouse embryo

analyzed by wholemount Gbx2(GFP) fluorescence revealed Gbx2

expression. (B–E) GIFM by tamoxifen administration at E9.5 and

analysis at E12.5 (B,C) Cells expressing Gbx2 at E9.5 and marked

by GIFM that were detected by ß-Gal on sagittal sections gave rise

to cells in dorsal cord at rostral levels (upper limb level) while at

caudal levels (lower limb), the Gbx2 lineage gave rise to cells

distributed across the full dorsal-ventral and medial-lateral extent

of cord. (D) ß-Gal and GFP antibody labeling on transverse

sections of cord at the upper limb level. Cells in the dorsal domain

that were GFP+/ß-Gal+ continuously expressed Gbx2 from E9.5–

E12.5. Cells in the ventral domain that were GFP+/ß-Gal2 did

not express Gbx2 at E9.5 but expressed Gbx2 at E12.5. (E) ß-Gal

and Pax2 immunolabeling on transverse sections at the upper limb

level of an E12.5 embryo revealed that Gbx2 expressing cells

marked at E9.5 give rise to dorsal Pax2+ cells but only rarely to

ventral Pax2+ cells. (F) ß-Gal and Isl1/2 immunolabeling on

transverse sections showed marked cells were interspersed with

dorsal Isl1/2+ cells but did not give rise to dorsal or ventral Isl1/2+

cells.

(TIF)

Figure S5 Gbx2 lineage marked at E10.5 contributes
to dorsal spinal cord at E12.5. (A) A lateral view of an

E12.5 mouse embryo analyzed by Gbx2(GFP) wholemount GFP

fluorescence showed Gbx2 expression. (B,C) Cells that expressed

Gbx2 at E10.5 were detected by ß-Gal immunolabeling on

sagittal sections of rostral spinal cord. The Gbx2 lineage marked

at E10.5 gave rise to a tightly restricted dorsal domain at the

upper (B) and lower (C) limb level. (D,E) ß-Gal and GFP

antibody labeling on thoracic level transverse sections. Most

cells in the dorsal domain were Gbx2(GFP)+/ß-Gal+ and

therefore had continuously expressed Gbx2 from E10.5–E12.5.

There was no ß-Gal expression in ventral cord at the thoracic

level. Cells in the ventral domain that were Gbx2(GFP)+/ß-Gal2

did not express Gbx2 at E10.5, but did express Gbx2 at E12.5.

(F,G) ß-Gal and Pax2 immunolabeling on thoracic level

transverse sections revealed that Gbx2 expressing cells marked

at E10.5 gave rise to dorsal Pax2+ cells but not ventral Pax2+

cells. (H,I) ß-Gal and Isl1/2 immunolabeling on thoracic level

transverse sections were interspersed with dorsal Isl1/2+ cells

but did not give rise to dorsal or ventral Isl1/2+ cells.

(TIF)

Figure S6 Distribution of Gbx2 lineage marked at E8.5
and E9.5 in adult spinal cord. (A–B) Sagittal view of whole

mount brain and spinal cord processed for X-gal histochemistry

show the Gbx2 lineage marked at E8.5. Panels A and B show

medial and lateral CNS, respectively. (C–E) The Gbx2 lineage

marked at E8.5 was detected on transverse hemi-sections of adult

spinal cord at the cervical enlargement (upper limb level, C),

thoracic flank level (D), and lumbar enlargement (lower limb

level, E). The Gbx2 lineage (ß-Gal+) contributed to the full extent

of the D-V spinal cord along the entire A-P axis including both

grey and white matter (E). (F–H) The Gbx2 lineage (ß-gal+)

marked at E9.5 at the upper limb (F), thoracic flank (G), and

lower limb (H) levels. The Gbx2 lineage was restricted dorsally at

the upper limb level but contributed to both dorsal and ventral

domains at the lower limb levels although the contribution to

white matter was less than when marked at E8.5. (I–J) Sagittal

whole mount views of entire brain and spinal cord with X-gal

histochemical staining showing cells marked at E9.5. Panels I and

J show, respectively, medial and lateral CNS. Insets in panels B

and J show DRG (arrows).

(TIF)
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