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Abstract

Background: Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The
susceptibility to pulmonary insults is attributed to ‘‘low pulmonary reserve’’, ostensibly reflecting a combination of age-
related musculoskeletal, immunologic and intrinsic pulmonary dysfunction.

Methods/Principal Findings: Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal
survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age.
Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring
between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is
soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The
temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace
enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin
deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4
(toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace
enlargement during late life stages.

Conclusion/Significance: Our findings establish that a tissue-specific aging program is evident during a presenescent
interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage
expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These
signature events, during middle age, indicate that early stages of the aging immune system may have important correlates
in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by
structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology.
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Introduction

A stereotyped pattern of structural changes which occur in the

human lung as it ages, termed ‘‘senile lung’’, is characterized by

airspace enlargement that is similar but not identical to acquired

emphysema [1,2]. Although the chronicity of this process is poorly

understood with respect to time of onset or progression, the

reproducibility of the underlying pattern suggests that the lung

harbors instructions from birth that orchestrate the timing and

morphology of age-related structural changes. We hypothesized

that by studying an informative inbred strain of mice, the aging

DBA/2 strain, the molecular signatures of these age-related

changes could be identified. Furthermore, these signatures could

serve to construct a candidate genetic profile that may define those

persons at risk for lung dysfunction with aging.

A limitation of previous surveys of organ-specific aging

programs is the use of binary constructs of the aging phenotype,

focusing on ‘‘young’’ versus ‘‘old’’. Since the young organ is not

necessarily the ‘‘control’’ for the old organ, we sought to develop

an alternative approach to describe tissue aging. By performing a

genome-wide transcriptional time course survey of the aging

murine lung (over six time points), we were able to extract genes
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that not only displayed more complex patterns of expression with

aging but also reflected known histologic events that could not be

replicated by simple pair-wise comparisons. In this study, we focus

on the gene cluster which corresponds to the transcriptional

transition attending the onset of airspace enlargement, e.g. 8–12

months of age.

Previous genomic surveys of murine lung aging showed that 1)

the terminal structural changes seen in the aged lung are

associated with an altered transcriptome and 2) that the aging

lung harbors both tissue-specific and aging specific molecular

signatures. Misra and colleagues found that airspace enlargement

in senescent DBA/2 mice is associated with the down-regulation of

elastin and several collagen genes despite increased collagen

content compared with the young adult controls [3,4]. However,

whether this pattern temporally approximated the onset of

structural changes in the aging lung was not established. Thus,

the senescent transcriptional program could reflect either an active

pro-aging process or terminal changes in a failing tissue. Recently,

Zahn reported tissue-specific transcriptomes, including the lung, of

aging C57Bl/6 mice over four time points [5]. However, no

correlation with architectural changes in tissues was pursued.

These important findings augur a need for a more detailed

assessment of the molecular signatures of aging lung pathology.

In this study, we show that airspace enlargement develops

during the mid-range of the murine life-span and progresses

through the late, preterminal time points and is accompanied by

early oxidative stress, cell death and elastase activation. We also

show that several genes are transiently induced during the onset of

this structural change, and may possibly be the first signature of a

tissue-specific aging program. This period, we further demon-

strate, is punctuated by a marked, transient induction of

immunoglobulin genes, accompanied by B lymphocyte (B-cell)

activation/expansion, immunoglobulin deposition and macro-

phage infiltration. Taken together, our strategy has shown that

time course data informed by structural surveys can reveal relevant

pathways involved in tissue-specific aging that might be over-

looked with conventional young-old pairwise analyses.

Results

Strategy of time course survey of the aging lung
In order to delineate the critical signaling events which attend

the onset of airspace enlargement during the aging of DBA/2

mice, we performed a detailed histologic and molecular analysis of

the lungs of the mice at six different time points during adult life: 2

months, 4 months, 8 months, 12 months, 16 months and 20

months. These time points loosely correspond to specific

maturation stages in humans: early adulthood (2–4 months),

middle-age (8–12 months) and old age (16–20 months) (Figure 1A).

At each time point, lungs were processed for histology, expression

profile analysis and protein immunoblotting (Figure S1).

Lung histology and morphometry in aging mice
We found a nonlinear pattern of airspace enlargement, denoted

by MLI (mean linear intercept), that commenced at 12 months of

age and progressed thereafter (Figure 1B,C). The airspace

enlargement was homogeneous without any histologic stigmata

of tissue destruction. Of note, the large vessels and microvascu-

lature showed no evidence of morphologic change with aging.

Consistent with the 8 to 12 month period representing a critical

transition with respect to organismal aging, we found that the

trend toward significant weight loss with age started at 12 months

(Figure 1D). When MLI was adjusted for weight, a quadratic (but

not linear) association was identified resulting in a p-value of 0.002

with an adjusted R2 of 0.28. Since weight has a bimodal curve

morphology with age, we considered whether analysis of mice $8

months of age might show an independent association between

MLI and weight. The observed linear association between MLI

and weight in this group, however, was eliminated with adjustment

for age (p = 0.68). A significant association existed between MLI

and age (R2 0.89) with no evidence of improved association when

weight was included in the model. Taken together, these data

show that even when corrected for weight, age remains an

independent factor contributing to MLI.

Measures of lung injury with aging
Airspace enlargement frequently accompanies various forms of

lung injury that result in oxidative stress, cell death, reduced

proliferation and/or local inflammation. Increased oxidative stress

is a signature of systemic aging and likely contributes to the higher

incidence of malignancy, fibrosis and low-grade inflammation in

elderly persons [6,7]. Immunohistochemical staining for nitrotyr-

osine, a marker of oxidative stress, revealed a progressive increase

in oxidative stress from 2 month to 20 months of age (Figure 2A,B).

The site of the staining was in the airspace epithelial compartment,

especially type II cells. Because iNOS (inducible Nitric Oxide

Synthase) activity is frequently associated with inflammation-

associated oxidative stress, we examined iNOS expression by

immunoblotting in the aging lung lysates. We saw no increase in

iNOS expression in the aging lung (data not shown). We also

measured cell death in the airspace compartment by performing

TUNEL (Terminal Transferase dUTP Nick End Labeling)

staining. We saw a different temporal pattern of staining,

compared with nitrotyrosine, with a statistically significant

enhancement in staining evident between 2 months and 12

months (Figure 2C). Using a caspase 3 bioassay, we saw no

evidence of increased caspase activity in the aging lungs until 20

months of age (Figure S2). This suggests that the early cell death

represents either caspase-independent apoptosis and/or necrosis.

Thus oxidative stress appears to precede both the development of

exuberant cell death and significant airspace enlargement in the

aging lung. Of note, the levels of oxidative stress in the aging lung

is much less than that observed in other models of airspace disease

such as the tight-skin mouse [8].

K-Means Clustering Profiles
Nine clustering profiles of the time course transcriptome were

generated using a K-means strategy. Of the nine cluster patterns,

one was selected for further interrogation based on the timing of

induction consistent with the onset of the airspace phenotype

(Figure 3A, B). This cluster contained 2220 genes out of the 25,000

known genes on the Illumina chip. The genes in this cluster were

termed the ‘‘airspace peak’’. The top pathways identified by Gene

Ontology included those involved in humoral immune response,

transport, negative regulation of cell cycle and response to

wounding (Table 1). The top 200 genes in the cluster are shown

in Table S1. Confirming the pathway analysis, immunoglobulin

genes were disproportionately represented in this peak (25 of top

50 genes). We selected eight genes represented in the top 100

within the airspace peak for further validation in triplicate by real

time RT-PCR (reverse transcriptase polymerase chain reaction).

Since our gene list is based on a profile over six time points, we

recognize that two-point comparison is not a true validation. We

elected to use three of these comparisons for these eight genes

spanning the 4 month to 12 month interval, 4 vs 8, 4 vs 12 and 8 vs

12. We specifically chose non-immunoglobulin genes for this

validation given the known overlapping specificity of immuno-

Impaired Tissue Homeostasis in the Aging Lung

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e20712



Figure 1. Time course analysis of aging lung phenotype. A. Schematic diagram of the lung harvest time points and the corresponding phases
of human aging. B. Representative lung histology from hematoxylin and eosin stains of 2 month, 12 month and 20 month old mice depict a
progressive increase in airspace size with age. Photomicrographs are representative of N = 4–6 mice per group. Original magnification 206. C.
Morphometric analysis of airspace caliber denotes transition point to progressive airspace enlargement between 8 and 12 months of age. N = 6 mice
per group. D. Body weight measurement establishes trend to weight loss initiated between 8 and 12 months of age. N = 6 mice per group. MLI-Mean
linear intercept (mm). BW-Body weight. The pale versus dark shades show different phases in the evolution of the noted parameter.
doi:10.1371/journal.pone.0020712.g001
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globulin transcript analysis. Five out of the 8 genes surveyed in the

airspace peak were increased by RT-PCR (Table S2).

Excessive immunoglobulin synthesis and deposition in
the aging lung

Although immunosenescence involves overall dampened im-

mune responses with aging, autoimmunity is an observed

accompanying pathology [9]. In fact, this low grade inflammation

has been termed inflama-aging and may contribute to organ-

specific disease pathology [10,11]. We explored whether the

exuberant immunoglobulin production observed in the 12 month

old lung suggested that immunoglobulin deposition might

contribute to the airspace pathology. ELISA (enzyme-linked

immunosorbent assay) analysis of serum showed that a trend

towards a significant increase in IgG (immunoglobulin G) in serum

was present in the 8 and 12 month old specimens compared with

the 2 or 18 month old samples (Figure 4A). Analysis of lung tissues,

by contrast, demonstrated a significant increase in immunoglob-

ulin deposition in the 8 and 12 month old samples (Figure 4B).

Quantitative densitometry of immunoblots of whole lung lysates

for IgG and IgM also showed an induction of 25 and 55 kDa

bands at the 8 and 12 month time points (Fig. 4C and Figure S3).

Immunohistochemical staining for mouse IgG showed that in 8

month old mice, compared with 2 month old mice, there was

increased staining for these complexes in the septal walls

(Figure 4D top panel and data not shown). By 12 months of

age, a marked increase in staining was evident in both epithelial

cells and in the septal walls (Figure 4D bottom panel).

Colocalization of IgG and complement C3 confirms immune

complex deposition in the 12 and 20 month old lungs that is

predominantly cell-associated (Figure 4E). Thus, immunohisto-

chemistry, ELISA, immunoblotting and transcriptional analysis all

support an elaboration of immunoglobulin production and

deposition in the presenescent lung parenchyma at a time point

that coincides with structural changes in the airspace morphology.

Immune cell dysregulation accompanies lung
simplification

Flow cytometry on whole lung preparations and BAL

(bronchoalveolar lavage) specimens from 2 months, 8 months,

12 month and 20 month old lungs showed an increase in B-cell

content between 8 and 12 months (Figure 5A,B). B-cell

immunophenotyping showed an increase in CD86+ and TLR4+
(toll receptor 4+) lymphocytes attending the 8 to 12 month

transition (Table 2). Since CD86 is a costimulatory molecule that

is induced in activated lymphocytes, these data are consistent with

B-cell activation accompanying the airspace simplification ob-

served in the aging lung. No change in the abundance of total T-

cells, CD4+, or FoxP3+ T regulatory subsets was seen (Figure 5A,B

and Figure S4B). Interestingly, a modest increase in the CD8+
compartment was evident between 2 months and 8 months and

maintained at 12 months (Figure S4A). Despite the lack of a

triggering insult, we examined macrophage influx and activation

in the aging lungs. We found that macrophages were increased in

the 12 month lung compared with the 8 month time point

(Figure 5C). Flow cytometric evaluation showed an increase in

MHCII (major histocompatibility complex class II) expression in

the monocyte compartment at 12 months of age, reflecting an

activated phenotype (Table 2).

Autoimmunity has been proposed as a component of immuno-

senescence, however to date no culprit immunogenic lung proteins

have been identified and the lung pathology accompanying most

rheumatologic illnesses is fibrosis rather than airspace enlarge-

ment. We examined whether selected autoimmune cytokines

(IL17, IL12/IL23heterodimer) were induced in the aging lung

[12,13]. We saw a reduction in lung levels of these cytokines from

8 months to 20 months when compared to 2 month old samples

(Figure 5D). Although these results do not eliminate an

autoimmune contribution to the immunoglobulin deposition and

airspace enlargement, they suggest that the more conventional

cytokines participating in autoimmunity are downregulated.

Taken together, these data show that an induction of B-cell

expansion/activation and immunoglobulin production in the

aging lung accompanies the earliest stage of airspace enlargement.

Figure 2. Increased oxidative stress and cell death evident in
murine mid-life. A. Representative immunohistochemical staining for
nitrotyrosine in mice at 2 months, 8 months, 12 months and 20 months
of age. Robust staining is evident by 8 months of age. Site of staining is
in alveolar epithelial cells (arrowheads). N = 4–6 mice per group. Original
magnification, 206. B. Quantitative immunohistochemistry of nitrotyr-
osine staining shows enhanced staining in the 8 month old lung which
progresses through later time points. N = 6 mice per group. C.
Quantitative immunohistochemistry of TUNEL staining of lungs from
aging mice shows increased cell death at 8 months of age which
persists through later time points. N = 6 mice per group. Reported data
are mean values +/2 SEM from at least five mice for each group.
*p,0.05, **p,0.01.
doi:10.1371/journal.pone.0020712.g002
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Further, the immunoglobulin deposition is associated with an

influx of macrophages.

Matrix deposition and turnover in the aging lung
Our finding of early oxidative stress followed by immune cell

infiltration and immunoglobulin deposition prompted us to

determine whether the enhanced oxidative stress might contribute

to matrix turnover that could trigger an immune response. Recent

reports show that both aging and non-aging related redox changes

can alter matrix homeostasis [14,15]. We first assessed elastin and

collagen content and localization in the aging lung by Movat

staining. Both matrix elements were preserved in localization and

morphology across the aging time frame of 2 months to 20 months

(Figure 6A). Of note, we did see reduced elastin deposition in the

airspace wall at 12 months when compared to 8 months of age.

Increased peribronchiolar collagen deposition in the 12 month

and 20 month old mice was consistent with previous observations

of the aging rodent lung [3]. Although we saw no overt evidence of

elastin fragmentation or discontinuity, usual features of elastase-

associated tissue destruction, in the 12 or 20 month lungs, we

performed zymography to assess lung elastase activity. Zymogra-

phy showed an early increase in MMP9 activation in the 8month

old lung that was maintained at 12 months (Figure 6B). By

contrast, MMP12 expression decreased with age, suggesting that

MMP12, a known contributor to cigarette smoke induced

emphysema in murine models, is not the source of elastin turnover

with murine aging (Figure S5). A progressive reduction in the

number of airway alveolar attachments, a signature of alveolar

wall destruction, was observed from 8–20 months of age

(Figure 6C). These data suggest that early elastase activity is not

only destructive and precedes the onset of airspace enlargement,

but is also a plausible trigger for the immunoglobulin liberation

and macrophage influx that initiates the airspace lesion (schema-

ticized in Figure 7).

Discussion

Airspace enlargement is a well-recognized pathological signa-

ture of respiratory aging [3,16]. Whether this process recapitulates

or incorporates known pathways of organismal aging is unknown.

We sought to delineate the molecular profile of age-related

airspace enlargement by performing a time course transcriptional

survey of the aging DBA/2J lung throughout adult life. We found

a distinct gene induction pattern punctuated by immunoglobulin

production and cell cycle dysregulation which attended the onset

of airspace enlargement. Whereas cell cycle changes have been

linked to organismal aging, we show a novel role of oxidant-

triggered matrix remodeling and dysregulated lymphocyte func-

tion in the aging lung.

Despite the fact that airspace enlargement is a known feature of

the aged lung, whether the lesion develops from injury or simply

reflects reduced matrix abundance in tissue is a subject of debate.

Recent observations, including those reported here, support the

former paradigm. The oxidant injury, elastase activation and cell

death preceding the onset of airspace enlargement in our studies

strongly implicate age-associated tissue stressors. Consistent with

this paradigm, Sato reported that SMP30-deficient mice, a

proposed model for the ‘‘senile lung’’, not only develop accelerated

age-associated airspace enlargement but also display increased

oxidative stress, cell death and susceptibility to cigarette smoke

induced pulmonary emphysema [17].

Several investigators have shown or postulated reduced immune

function in aged persons and in murine models of aging

[18,19,20]. Alterations in immune responses with aging likely

contribute to the increased susceptibility to infectious insults and

malignancy in elderly persons. Unfortunately, no unifying pattern

of changes has been reported in humans or rodent models. Defects

in humoral immunity can accompany aging, manifest in both

reduced specific antibody responses and enhanced nonspecific

antibody production [21,22]. Impaired function of hematopoietic

stem cells in the aging bone marrow seems to result in both

reduced production of naı̈ve B-cells and marked restriction of the

Figure 3. Schematic of selection of K-means cluster profile that temporally approximates airspace enlargement. Nine profiles
generated by random selection for difference from evenly spaced profiles are depicted. The profile whose peak corresponded to the onset of airspace
enlargement is enlarged on the left. Red shows the top 200 genes. Blue shows the remainder of genes within the cluster.
doi:10.1371/journal.pone.0020712.g003

Table 1. Overrepresented pathways within airspace peak.

Pathway Representation (GO) p-value

Humoral Immune Response 961025

Transport 561025

Negative regulation of cell cycle 161024

Response to wounding 161024

doi:10.1371/journal.pone.0020712.t001
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Figure 4. Immunoglobulin deposition in lungs of aging mice. A. ELISA analysis of IgG containing complexes in serum from mice at designated
ages. A trend towards a significant increase is apparent between 8 and 12 months of age. N = 6 mice per group. B. ELISA analysis of lung lysates from
mice at different ages. Data are mean +/2 SEM. A significant increase in immunoglobulin deposition in the lung occurs between 8 and 12 months of
age. N = 4–6 mice per time point. C. Densitometric analysis of immunoglobulin expression in lung lysates from mice at the denoted ages show that
IgM (top panel) and IgG (bottom panel) are induced in the 8 and 12 month old lung, respectively. D. Immunohistochemical staining for IgG in lungs
of representative mice at designated ages. Arrows denote immunoglobulin deposition in airspace wall. Arrowheads denote cell-associated
deposition. N = 6–8 mice per group. A generalized increase in deposition in the airspace compartment occurs in the 12 month old lung. All images are
206, except for insets on right, which are 406. E. Coimmunofluorescent staining for IgG (red) and C3 complement (green) with phase overlay (L)
shows evidence of granular colocalization (white arrowheads) in alveolar epithelial cells along with sites of predominant IgG deposition (black arrow)
and C3 deposition (white arrow). Coimmunofluroescent staining for IgG and C3 complement in 12 month old lung shows strong colocalization in the
perivascular region. V-vessel lumen. 406magnification.
doi:10.1371/journal.pone.0020712.g004
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B-cell immune repertoire in a murine system [23]. Elevated serum

immunoglobulin levels and increased antibody-producing cells in

the spleen and bone marrow have also been reported in aging

mice [24]. We found that the upregulation of immunoglobulin

genes during aging-related airspace enlargement is accompanied

by B-cell expansion, B-cell activation and enhanced synthesis and

deposition of immunoglobulin complexes in the lungs of aging

mice. B-cell activation is a feature of several chronic inflammatory

conditions such as COPD (chronic obstructive pulmonary disease),

rheumatoid arthritis and multiple sclerosis. An increased number

of lymphoid follicles in the airway submucosa has been identified

not only in mice exposed to cigarette smoke, but also in patients

with advanced emphysema [25,26]. Others have invoked a

pathogenic contribution of parenchymal and airway lymphoid

collections, possibly representing an exaggerated immune response

triggered by microbial, matrix or tobacco smoke antigens [26]. A

recent study showed an increase in autoantibodies directed against

both lung epithelial and endothelial determinants in the serum of

patients with COPD [27]. In our aging lung model, there is no

exposure to known airspace insults like microbes or tobacco

smoke; nonetheless, oxidative stress, elastase activation and

epithelial cell death occur. Thus, the trigger for the elaboration

of immunoglobulins in the aging lung may involve oxidative stress

promoted matrix degradation, an established mechanism for

aging-associated tissue remodeling [14,15]. While no significant

matrix turnover is evident by histochemical staining at the 12

month time point, our zymography data suggests that low-level

turnover is present at 8 months and may be sufficient to drive the

initiation of the immune response (Figure 6B).

We propose three possible mechanisms connecting the immune

signature with the airspace lesion (summarized in Figure 7). First,

the enhanced elastase activity in the absence of histologic evidence

of tissue damage might generate matrix degradation products that

are immunogenic. This is a proposed but imperfectly supported

mechanism for emphysema [27]. The critical omission in the

theory is the identification of a consistently triggering matrix-

derived antigen. A second possibility is that an alteration in

immunosurveillance at midlife could create a permissive environ-

ment for an immune response to develop to a variety of stimuli.

Since the lung is an organ that is constantly exposed to foreign

antigens, any impairment in immune function can translate into

dysregulated innate and adaptive responses to antigen and lung-

specific pathology. However, immunomodulatory mechanisms

may be sufficiently preserved that the dysregulated response is

eventually arrested. By this view, the ongoing airspace enlarge-

ment, oxidative stress and cell death manifest a tissue-specific

inability to repair/regenerate the airspace compartment and low

grade inflammation as reflected by macrophage infiltration. This

paradigm is quite similar to the progressive airspace and airway

pathology observed after smoking cessation in persons with

COPD/emphysema. A third possible mechanism is that a primary

alteration in oxidant/antioxidant balance, conferred by midlife,

results in the generation of neoantigens secondary to oxidation of

resident proteins in the lung, an organ exquisitely susceptible to

oxidant injury. Such neoantigens could trigger a local immune

response and initiate the sequelae described above. Both of these

Figure 5. Alterations in immune cell compartments in the aging
lung. A. Representative histograms depicting lymphocyte subsets
identified in lungs of mice at indicated ages. An increase in CD19+ cells
occurs at 12 months of age compared with earlier time points (2 and 8
months). N = 4–6 mice per time point. B. Relative proportion of
lymphocyte subsets quantified by flow cytometry in lung mononuclear
cells isolated from mice at designated ages. N = 4–6 mice per time

point. C. Quantitative immunohistochemistry of macrophage abun-
dance in lungs of aging mice. An increase in macrophage infiltration
occurs at 12 months of age compared with 8 months. Data are mean +/
2 SEM. N = 3–6 mice per time point. D. IL12/23 and IL17 ELISA analyses
of lung lysates from mice at designated ages. A reduction of IL17 levels
is evident in the lungs of mice 8 months of age and older compared
with 2 month old mice.
doi:10.1371/journal.pone.0020712.g005
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mechanisms rely on a relatively preserved immunomodulatory

axis. Consequently, an active direction of our lab is the dissection

of these immunomodulatory pathways as they relate to lung aging.

The studies presented here demonstrate two intriguing findings.

First, we show that aging associated airspace enlargement develops

during middle age and that a contemporaneous innate and

adaptive immune signature heralds its onset. This signature

consists of exuberant immunoglobulin production, B-cell activa-

tion, local immunoglobulin deposition and macrophage infiltra-

tion. Second, we demonstrate that early aging-associated oxidative

stress and elastase activation precedes overt inflammation,

immunoglobulin deposition and airspace enlargement. We present

a novel pathogenetic scheme for aging-associated airspace

enlargement with presenescent oxidative stress triggering both

canonical and noncanonical mechanisms of emphysema. These

findings suggest that the crucial point of intervention for aging

Table 2. Flow cytometric analysis of mononculear cell subsets in aging lungs.

% B Lymphocytes 8 month 12 month p-value

CD86+ 12.4 16.0 0.017*

MHC-II+ 80.4 83.5 0.322

TLR2+ 18.8 28.7 0.065

TLR4+ 18.1 33.5 0.010*

% Monocytes 8 month 12 month p-value

CD11b/c+ 3.68 5.79 0.118

CD40+ 31.2 43.5 0.195

CD86+ 28.9 29.7 0.870

MHC-II+ 33.7 49.4 0.048*

TLR2+ 17.0 19.1 0.629

TLR4+ 14.8 28.2 0.168

*p,0.05.
doi:10.1371/journal.pone.0020712.t002

Figure 6. Matrix localization in aging lung. A. Movat’s staining of lungs from mice at designated ages. Left panel shows representative high
power (406) images of lung parenchyma. Right panel shows low power (106) images of bronchioles. Arrowheads denote sites of elastin deposition
(blue-black). Line demarcation indicates areas of enhanced collagen content (yellow). Elastin deposition in the alveolar walls is modestly reduced at
12 months but shows recovered abundance at 20 months. Peribronchiolar collagen deposition is increased in the 12 month and 20 month old lungs.
N = 4–6 mice per time point. B. Zymographic analysis of lungs from mice at the designated ages. Top arrow denotes MMP9 band. Bottom arrow
denotes MMP2 band. N = 4–6 mice per time point. C. Quantitation of alveolar attachments in the lungs of mice at the designated ages show a
progressive reduction in attachments with increasing age. N = 4–6 mice per time point. *p,0.05 compared with 2 months.
doi:10.1371/journal.pone.0020712.g006
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related lung dysfunction may be well before airspace disease is

clinically apparent.

Materials and Methods

Animal Work
Aged male DBA/2 mice (2–20 months of age) were obtained

from the specific pathogen-free Charles River-National Institute of

Aging (NIA) facility. These mice were temporarily housed in a

Johns Hopkins Medical Institution mouse facility accredited by the

American Association of Laboratory Animal Care until time of

euthanization. The animal studies were reviewed and approved by

the institutional animal care and use committee of Johns Hopkins

School of Medicine.

RNA Extraction and Illumina Chip Hybridization
Total RNA was extracted from murine lung using the Trizol

Reagent method (Invitrogen, Carlsbad, California 92008, cat.

no. 15596-026). The six RNA samples from each time point were

pooled into two groups comprised of three murine specimens.

RNA samples were labeled and hybridized to Illumina Sentrix

MouseRef-8 Expression Beadchips (Illumina, San Diego, CA

92121-1975, cat.no. BD-26-201) according to manufacturer’s

protocol.

Data normalization
The microarray data was normalized with Affy, a Bioconductor

package (http://www.bioconductor.org), utilizing the quantile

normalization method to reduce the variation between micro-

arrays that can develop during the processes of sample

preparation, manufacture, fluorescence labeling and hybridization

[28]. Assuming that there is an underlying common distribution of

signal intensities across microarrays, the quantile normalization

method makes the distribution of signal intensities for each

microarray in a set of microarrays the same by forcing the values

of quantiles to be equal. An underlying assumption of the quantile

normalization method is that only a small fraction of genes is

differentially expressed between the sample conditions. When

analyzing the gene expression changes with age within individual

tissue types, normalization was separately made for the data of

each tissue type in order to avoid any ‘‘reduced’’ differences that

could be introduced by normalizing the data across tissue types

together. With the normalized signal data, principal component

analysis (PCA) was performed in R to assess sample variability.

K-Means Clustering
Differentially-expressed genes were categorized using modified

Best K-Means clustering (Spotfire 9.1.1). The number of clusters

was chosen empirically based on visual inspection as differing from

evenly spaced profiles. To reduce the background and ensure the

clustering quality, only genes with detectable hybridization signals

in the arrays from all aging groups were included. Nine profiles

were generated using Spotfire cluster initialization with a data

centroid based sea. One cluster was selected for further analysis

based upon a peak transcriptional induction coincident with the

onset of airspace enlargement. Genes within this cluster were

ranked based on similarity to exemplar and examined by Gene

Ontology Definition for pathway assignment. The top 200 genes,

ranked by similarity to exemplar, are shown in Table S1.

Functional Classification
Differentially expressed genes were classified into functional

categories based on the Gene Ontology (GO) definition using

publicly available web-based tools Onto-express and David (data

base of annotation, visualization, and integrated discovery). For

each level of annotation, the calculated p-value represents the

probability that the specific gene-function was randomly distrib-

uted between groups [29].

Real Time PCR
Total RNA isolated from lung tissues was treated with DNase

and reverse-transcribed using a first-strand DNA sysnthesis kit

from Invitrogen. The PCR was performed on an ABI Fast 7500

System (Applied Biosystems, Foster City, CA). TaqMan probes for

the respective genes were custom-generated by Applied Biosystems

based on the sequences in the Illumina array and used per

manufacturer’s instructions. The expression levels of target genes

were determined in triplicate from the standard curve and

normalized to Gapdh mRNA level.

Western Blot Analysis
Western blot analysis was performed using standard methods.

Primary antibodies and dilutions were as follows: IgG1 (goat

polyclonal, Abcam, 1:1000), IgA (goat polyclonal, Abcam 1:1000),

IgM (goat polyclonal, Abcam 1:1000), CTGF (Abcam 1:5000),

psmad2 (Cell Signaling 1:1000), iNOS (Abcam 1:200), beta-actin

(rabbit polyclonal, Abcam, 1:1000), MMP12 (Santa Cruz, 1:250).

Histology, Morphometry and Immunohistochemistry
Histologic, morphometric and immunohistochemical methods

were as described previously [8]. Alveolar attachments were

quantified in a blinded fashion from 206 H&E images and

normalized to airway perimeters. Antibodies were used at the

following concentrations: Nitrotyrosine (mouse monoclonal, Ab-

cam, 1:250), MAC-3 (rat monoclonal, BD Pharmingen, 1:100),

Neutrophil (rat monoclonal, Serotec 1:50), psmad2 (rabbit

polyclonal 1:5000) and SP-D (mouse monoclonal, Santa Cruz,

1:200). Movat’s stain was performed on selected sections utilizing a

standard protocol.

Apoptosis Assays
TUNEL staining was performed using the Calbiochem TdT-

FragEL DNA Fragmentation Detection Kit per standard protocol

Figure 7. Schematic depiction of the ontogeny of injury events
associated with airspace enlargement in the aging murine
lung.
doi:10.1371/journal.pone.0020712.g007
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as published [8]. Caspase 3 activity was measured in whole lung

lysates using the Promega Caspase Glo 3/7 Assay kit.

ELISA assays
Serum samples and lung lysates from mice at designated ages

were subjected to Mouse IgG ELISA analysis per Roche protocol.

IL17 and IL12/23 ELISA assays were performed per Invitrogen

and R&D protocols, respectively.

Isolation of Lung mononuclear cells
Lungs were minced and incubated at 37uC and single cell

suspensions were prepared. Lymphocytes were gated with

characteristic low forward scatter/side scatter, using a FACSAria

instrument and FACSDiva for data acquisition (Becton Dick-

inson), and Flowjo for analysis (Tree Star Inc) as previously

published [30].

Zymography
Lung tissue lysates were prepared in a cold room at 4C. Tissue

was homogenized in 50 mL PBS and centrifuged at 14000 RPM

for 20 min. The supernatant was removed and used as sample

lysates. Fifty mg of lung lysates were loaded on a10% Criterion

Zymography Precast Gel (Biorad) and run at 120 V. Twenty-five

mL of recombinant mouse MMP9 protein (R&D Systems,

Minneapolis, MN) was loaded as a positive control. The gel was

soaked in 16 Renaturing Buffer (Biorad) twice for 30 minutes

each at room temperature and incubated in 16 Development

Buffer (Biorad) overnight at 37C. The gels were stained with

Coomassie Brilliant Blue R-250 Staining Solution (Biorad),

followed by 16Destain Coomassie R-250 Solution (Biorad) until

a clear band appeared against a blue background.

Data Analysis
Results are expressed as means 6 SEM unless otherwise stated.

Screening comparisons across multiple time points were per-

formed by one-way ANOVA. These were followed by pairwise-

comparisons using the two-sample t-tests or Mann-Whitney rank

sum tests. All statistical analyses were performed with Sigmastat

(version 3.5; Systat Software, Chicago, IL). A p,0.05 was

considered significant.

Supporting Information

Figure S1 Strategy for analysis of lung phenotype at
different ages.
(TIF)

Figure S2 Caspase activity in the aging lung. A. Caspase

activity in lung lysates from mice at designated ages. N = 4–6 mice

per time point. *p,0.01.

(TIF)

Figure S3 Immunoglobulin expression in the aging
lung. Western blotting for immunoglobulins in lung lysates from

mice at designated ages. Top-IgM blot, Bottom-IgG blot.

(TIF)

Figure S4 T cell subsets in the aging lung. A. Relative

Proportion of CD4+ and CD8+ cells in CD3+ lymphocyte subset

quantified by flow cytometry in lung mononuclear cells isolated

from mice at designated ages. N = 4–6 mice per time point. B.

Relative proportion of FoxP3+ cells in CD4+ lymphocyte subset

from mice at designated ages. N = 4–6 mice per time point.

Asterisk designates p,0.05 compared with 2 month time point.

(TIF)

Figure S5 MMP12 expression in the aging lung. Densi-

tometric analysis of MMP12 protein expression in lung lysates

from mice at designated ages normalized to actin. N = 4–6 mice.

(TIF)

Table S1 Top 200 genes in airspace peak.
(PDF)

Table S2 Real-time PCR validation of genes in airspace
peak.
(PDF)
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