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Abstract

Staphylococcus aureus ribonuclease III belongs to the enzyme family known to degrade double-stranded RNAs. It has
previously been reported that RNase III cannot influence cell growth but regulates virulence gene expression in S. aureus.
Here we constructed an RNase III inactivation mutant (Drnc) from S. aureus 8325-4. It was found that the extracellular
proteins of Drnc were decreased. Furthermore, we explored how RNase III regulated the production of the extracellular
proteins in S. aureus. We found during the lag phase of the bacterial growth cycle RNase III could influence the extracellular
protein secretion via regulating the expression of secY2, one component of accessory secretory (sec) pathway. After S.
aureus cells grew to exponential phase, RNase III can regulate the expression of extracellular proteins by affecting the level
of RNAIII. Further investigation showed that the mRNA stability of secY2 and RNAIII was affected by RNase III. Our results
suggest that RNase III could regulate the pathogenicity of S. aureus by influencing the level of extracellular proteins via two
different ways respectively at different growth phases.

Citation: Liu Y, Dong J, Wu N, Gao Y, Zhang X, et al. (2011) The Production of Extracellular Proteins Is Regulated by Ribonuclease III via Two Different Pathways in
Staphylococcus aureus. PLoS ONE 6(5): e20554. doi:10.1371/journal.pone.0020554

Editor: J. Ross Fitzgerald, University of Edinburgh, United Kingdom

Received December 6, 2010; Accepted May 5, 2011; Published May 31, 2011

Copyright: � 2011 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from China National Key Programs on Basic Research (2005CB724600, http://www.973.gov.cn/English/Index.aspx),
the National Natural Science Foundation of China (30700007, 30870093, http://www.nsfc.gov.cn/) and the National High-Tech Research and Development
Program (2006AA02Z132, 2006AA02Z323, http://www.most.gov.cn/eng/index.htm). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yanggg@hotmail.com

. These authors contributed equally to this work.

Introduction

Ribonuclease III (RNase III) is a double-stranded endoribonu-

clease, which has been classified into three main groups on the basis

of their domain organization [1]. Bacterial RNase III belongs to

Group I family, which contains only one characteristic ribonuclease

domain and one dsRNA-binding domain (dsRBD) [1,2].

RNase III has been thought to be important in Escherichia coli (E.

coli) because it is involved in the process of both 16s and 23s

rRNAs from a 30s precursor [3]. Further, it is found that RNase

III has an additional function to degrade mRNA with the

mediation of trans-acting antisense RNA in E. coli [4,5]. Although

Staphylococcus aureus (S. aureus) RNase III seems to play a minor role

in the formation of 30S rRNA [6], it is reported that RNase III

can induce mRNA degradation mediated by RNAIII, which is an

important regulator of the quorum sensing system (agr) [7,8]. It is

reported that RNAIII generally acts by an antisense base pairing

mechanism [7,8], and regulates many target genes via its control of

a repressor protein gene called rot, a member of the sarA family of

transcriptional regulators [8,9,10]. RNase III can degrade the

target mRNAs of RNAIII but not hydrolyze RNAIII [7,8]. It

suggests that RNase III should be essential for virulence gene

regulation in S. aureus. But the biological function of RNase III of

S. aureus is still unclear.

The secreted proteins play an important role for the pathogenicity of

S. aureus [11]. The majority of exported proteins are transported from

the cytoplasm via the general secretory (sec) pathway(including secA/Y/

E/G) in gram positive bacteria [12]. In addition, S. aureus contains an

accessory Sec pathway involving the SecA2 and SecY2 proteins

[12,13,14]. In contrast to the general sec pathway, SecY2 and SecA2

are not involved in the viability of S. aureus[12,14]. In some pathogenic

gram-positive bacteria, SecY2 is required for the transport of certain

proteins related to virulence[12,15,16,17]. However, SecY2-related

secretomes have yet to be studied extensively [14].

We hereby tried to investigate the biological function of RNase III

in S. aureus by constructing an RNase III inactivation mutant (Drnc).

Compared with its parent strain, both the extracellular proteins and

the pathogenicity of Drnc were reduced. In this report, we show that

RNase III could influence the production of extracellular proteins of

S. aureus by separately regulating the expression level of secY2 and

RNAIII via respective mechanisms at the different phases.

Results

Inactivation of RNase III did not influence the growth of
S. aureus

We constructed an RNase III inactivation strain (Drnc) in 8325-4

with allelic homologous recombination. Then the mutant was
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verified by RT-PCR (figure 1A) using the primers (rncV1 and

rncV2) as listed in the Table 1. To further observe the phenotype

of Drnc, the growth curves of Drnc and its parent strain were

measured. The result showed that there were no obvious

differences observed between the wild type and mutation strains

(figure 1B). In previous reports, RNase III could degrade the target

mRNAs (spa) of RNAIII [7], so we tested the mRNA level of spa by

real-time quantitative PCR. Compared with its parent strain, the

level of spa significantly increased in Drnc (figure 1C).

The extracellular proteins in the supernatant of Drnc
decreased significantly

The extracellular proteins play an important role for the

pathogenicity of S. aureus [11]. We compared the profiles of the

extracellular proteins from the same number of cells between Drnc

and its parent strain at the different growth phases. According to

the growth curve, S. aureus cultured for 1.5 h, 6 h and 12 h is at the

lag phase, exponential phase and stationary phase respectively.

The proteins in the supernatant at different time points (1.5 h, 6 h,

and 12 h) were extracted as described in Material and methods

and the profile of the extracellular proteins in the supernatant was

determined by SDS-PAGE. It was surprising that the extracellular

proteins of Drnc decreased significantly compared with its parent

strain at three time points (figure 2). At the same time, we

compared the total proteins of whole-cell between Drnc and its

parent strain. However, we did not find obvious changes in the

total proteins (figure 2).

A lower level of RNAIII in Drnc led to reduction of
extracellular proteins at 6 h and 12 h

As RNAIII is a positive regulator of extracellular virulence [18]

and RNase III can mediate the interaction between RNAIII and

its target mRNAs [7,8], we checked the level of RNAIII in Drnc by

Northern blot. Compared with its parent strain, the expression of

RNAIII in Drnc decreased at 6 h and 12 h (figure 3A). In order to

avoid the unintended mutation in agr system during we

constructed the Drnc, we analyzed the sequence of agrA and agrC

of Drnc. No mutated nucleotide was observed in the genome of

Drnc strain (data not shown).

In the further study, we wondered whether the decrease of the

extracellular proteins was due to the reduction of the RNAIII in

Drnc. The profile of the extracellular proteins of the DRNAIII

(RNAIII deletion mutant) and its parent strain was tested at

different time points. It was found that the extracellular proteins of

DRNAIII decreased when compared with its parent strain at 6 h and

12 h (figure 3B). In the further investigation, the plasmid of pOS1-

RNAIII was constructed and transferred into Drnc to generate the

strain of RNAIIIr, in which the RNAIII level was recovered. It was

found that the extracellular proteins increased after the RNAIII

level was recovered in Drnc at 6 h and 12 h (figure 3C). The RNase

III inactivated mutant was also constructed from DRNAIII, named

as Drnc/RNAIII. The profile of the extracellular proteins from Drnc/

RNAIII was the same as that from DRNAIII (figure 3C). Meanwhile,

the levels of RNAIII and spa mRNA in the different strains were

detected by RT-PCR (figure 3C). This results suggested that the

Figure 1. Detection of RNase III inactive mutant. A: Verification of RNase III inactive mutant by RT-PCR. Total RNA of cells was extract
and used as the template to amplify the rnc gene. In Drnc strain, the rnc mRNA could not be detected like WT and rncR because the kana gene was
inserted into the rnc gene of Drnc genome. 16s rRNA was used as the internal control. WT (wild type, S. aureus 8325-4), Drnc(an RNase III inactivation
mutant from 8325-4) and rncR (the restoration of RNase III activity in Drnc). B: The growth curves of S. aureus strains. There is no significant
difference between WT and Drnc. WT: wild type, S. aureus 8325-4; Drnc: an RNase III inactivation mutant from 8325-4. The experiment has been
repeated for three times. C: qRT-PCR quantification of the expression level of spa. The total RNA of the cells cultured for 6 h was extracted and
the mRNA level of spa was detected by qRT-PCR. In the Drnc strain, the level of spa mRNA was significantly increased compared with WT. WT: wild
type, S. aureus 8325-4; Drnc: an RNase III inactivation mutant from 8325-4; rncR: the restoration of RNase III activity in Drnc. (**: P,0.01).
doi:10.1371/journal.pone.0020554.g001
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lower level of RNAIII in Drnc was responsible for the reduction of

extracellular protein at 6 h and 12 h.

The secretion of the proteins in Drnc was inhibited at
1.5 h

In above result there was no significant difference observed in the

extracellular proteins production between DRNAIII and its parent

strain at 1.5 h (figure 3B). The reason should be that RNAIII was a

cell density-dependent regulator [19] and the level of RNAIII was

too low to regulate its targets at the lag phase. However, the

extracellular proteins in Drnc decreased at 1.5 h (figure 2). It

suggested that the reduction of extracellular proteins in Drnc was not

completely due to the RNAIII level decreasing. And the reduction

of extracellular proteins in Drnc at 1.5 h should have no relation with

RNAIII. To discover other factors involved in this process, we chose

Efb (extracellular fibrinogen binding protein) as the indicator of

extracellular proteins [20,21,22] because the expression of Efb was

not influenced by RNAIII (figure 4A) and the level of Efb in Drnc

supernatant decreased at 1.5 h (figure 4B).Then we analyzed the

mRNA level, translation and secretion of Efb to discover the

mechanism of reducing the extracellular proteins in Drnc at 1.5 h.

Firstly, the mRNA level of the efb gene was determined by qRT-

PCR. It showed that the mRNA level of efb in Drnc did not alter at

1.5 h (figure 4C). Secondly, we constructed the lacZ fusion vectors

to analyze the translation of Efb in Drnc and its parent strains

(figure 4D). The upstream region of efb containing its promoter and

59UTR was fused with lacZ (named as Uefb::lacZ). The constructed

vector was transformed to Drnc and its parent strain respectively.

The results of b-galactosidase activity detection showed that Drnc

did not exhibit significant difference comparing with its parent

strain (figure 4E). This suggested that the inactivation of RNase III

did not influence the transcription and translation of Efb. And

thirdly, we checked if the secretion of Efb was affected in Drnc. The

upstream of efb containing its promoter, 59UTR and the signal

Table 1. Sequences of forward and reverse primers used in this study.

Primer/sequence Oligonucleotide sequence (59 to 39)

Up-rnc F-EcoRI CATCCGGAATTCATGTCTAAACAAAAGAA

Up-rnc R-KpnI AACAAAATGA GGTACCAGGCGTGGTAGATT

Down- rnc F-KpnI AATCTACCAC GCCTGGTACC TCATTTTGTT

Down- rnc R-SalI ACACGCGTCGACTAGGCACTTTCAGCAGC

rs-rncF GACTACGTGAATTCGACCGTTTAGGTGTA

rs-rncR CATGCGTACTGCAGCTATTTAATTTGTTT

rncV1 CATCCGGAATTC TCGAGTTTTA TTAAT

rncV2 TTATAGGCAC TTTCAGCAGC

16s RT primerF GCCTAATACATGCAAGT

16s RT primerR CATGTTATCCGGCATTAG

spa RT primerF AAGAAGATGGTAACGGAGTA

spa RT primerR GTTGTACCGATGAATGGA

RNAIII RTprimerF CCTAGATCAC AGAGATGTGA TGG

RNAIII RTprimerR AATACATAGC ACTGAGTCCA AGG

efb RT primerF AACATTAGCG GCAATAGG

efb RT primerR TTTCGCTGCT GGTTTATT

Uefb-lacZF GATATGCATGAATTCGACAATTTCCAATCT GTCTT

Uefb-lacZR ATCATCGCGGATCCCCTTTCTTTTCTCTTG GCATGTTAAT TATCCTCCAA ATTATT

UefbSP-lacZR CCAAGAGAAAAGAAAGGGGATCCGCGATGAT

doi:10.1371/journal.pone.0020554.t001

Figure 2. Detection of the protein profile from different phases
of WT and Drnc. Equal number of S. aureus cells was harvested at the
indicated time points. The total proteins of whole-cell and supernatant
proteins were extracted. The results showed that the supernatant
proteins of the Drnc were decreased significantly compared with WT,
while the total proteins of whole-cell did not show the same change as
the supernatant proteins. The experiment has been repeated for three
times. 1,4,7: WT, wild type, S. aureus 8325-4; 2,5,8: Drnc; 3,6,9: rncR.
doi:10.1371/journal.pone.0020554.g002
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peptide fused with lacZ was termed as UefbSP::lacZ (figure 4D).

The b-galactosidase activity of cultured medium in the two different

strains was detected. Our results showed that the b-galactosidase

activity of the cultured medium from Drnc was significantly lower

than that from its parent strain (figure 4F). It suggested that the

reduction of extracellular proteins of Drnc at 1.5 h was because the

secretion of extracellular proteins was suppressed.

The decrease of secY2 resulted in the inhibition of
extracellular protein secretion in Drnc at 1.5 h

The general secretory (sec) pathway is the most commonly used

one for bacterial protein transport [12]. In addition, S. aureus

contains an accessory Sec2 pathway involving the SecA2 and

SecY2 proteins [13,14]. However, there were few reports on the

sec pathway of S. aureus [12]. We analyzed the genome of S. aureus

and detected the mRNA level of the genes which were involved in

the general and accessory sec pathway (secA1, secY1, secA2 and

secY2) by qRT-PCR. It was found that only the expression of secY2

decreased significantly in Drnc at 1.5 h (figure 5A). Then the

decline of secY2 mRNA level was confirmed by Northern blot

(figure 5A). In additon, the production of extracellular proteins of

DsecY2 (SecY2 inactivation mutant) was decreased at 1.5 h

compared with its parent strain (figure 5B). In the further study,

we constructed the plasmid of pOS1-secY2 using the promoter of

ssrA, which is a tmRNA in S. aureus. It was found that the level of

ssrA in Drnc was not altered (data not shown). And then the

plasmid was transferred to Drnc to recover the expression level of

secY2. The result showed the extracellular proteins increased after

the expression level of secY2 recovered in Drnc (figure 5B). At the

same time, the level of Efb in the supernatant was correspondingly

restored (figure 5B). In the further investigation, the RNase III

inactivated strain was constructed from the DsecY2 strain, named

as Drnc/secY2, it was found that the profile of extracellular proteins

of the Drnc/secY2 was the same as that of DsecY2 (figure 5B).

The mRNA stability of secY2 and RNAIII was decreased in
Drnc

In order to investigate how RNase III influences the expression

level of secY2 and RNAIII, we tested the RNA stability of secY2

mRNA and RNAIII. The transcriptions of secY2 and RNAIII were

inhibited by addition of rifampicin when the cells had been

cultured at 37uC for 1.5 h or 6 h individually. Then the RNA

stability was tested by Northern blot. It was found that RNA

stability of secY2 mRNA and RNAIII was decreased in Drnc

compared with its parent strain (figure 6).

The Drnc was less pathogenic compared with its parent
strain

In the further investigation, we compared the cytotoxicity

induced by the supernatant between Drnc and its parent strain.

The supernatant of the cultured cells at 6 h was collected and

incubated with MDBK cells. And then the cytotoxicity of the

supernatant was tested with flow cytometric analysis. It was found

that the percentage of apoptosis and necrosis induced by the Drnc

Figure 3. RNAIII regulates the levels of extracellular proteins at 6 h and 12 h. A: The expression level of RNAIII was analyzed by
Northern blot. The level of RNAIII in different strains at 6 h and 12 h was detected by Northern blot. 16s rRNA was used as the internal control. WT:
wild type, S. aureus 8325-4; Drnc: an RNase III inactivation mutant from 8325-4; rncR: the restoration of RNase III activity in Drnc. B: Detection of the
extracellular proteins of WT and DRNAIII at the different time points. The extracellular proteins from the equal number of cells were
extracted at the indicated time points. The results of SDS-PAGE showed that the extracellular proteins of DRNAIII were decreased in comparing with
WT at 6 h and 12 h. 1,4,7: wild type; 2,5,8: DRNAIII (RNAIII deletion mutant); 3,6,9: DRNAIIIR (the restoration of RNAIII in DRNAIII). C: Detection of the
extracellular proteins from different strains. The pOS1-RNAIII plasmid was constructed to recover the level of RNAIII in Drnc. At the same time,
the double mutant Drnc/RNAIII was constructed. Then the extracellular proteins were extracted. The results showed that the extracellular proteins
were increased at 6 h and 12 h after the level of RNAIII was recovered in Drnc. The level of RNAIII was measured by RT-PCR. 16s rRNA was used as the
internal control. 1,5: WT, wild type; 2,6: Drnc; 3,7: RNAIIIr(the Drnc strain transferred with the plasmid pOS1-RNAIII); 4,8, Drnc/RNAIII. The experiment
has been repeated for three times.
doi:10.1371/journal.pone.0020554.g003
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supernatant was significantly lower compared with its parent strain

(figure 7A). At the same time, we also detected the cytotoxicity

induced by the heat-stable toxins in the supernatant using MTT

assay. In line with expectations, the heat-stable toxins of Drnc were

decreased (figure 7B). Then the pathogenicity of Drnc was assessed

in a murine peritonitis model. The same numbers of cells of Drnc

and its parent strain were delivered intraperitoneally to mice. As

shown in figure 7C, the survival rate of the mice in the Drnc group

was significantly higher than that of its parent strain group at the

different time points (8 h, 16 h, and 24 h), which was in

accordance with the cell toxicity results. It suggested that the

RNase III played an important role in the pathogenicity of

S. aureus.

Discussion

As we know, the extracellular proteins play an important role in the

infection caused by S. aureus [11]. In our study, we find that the

extracellular proteins in the supernatant of Drnc decreased significantly

at three different growth phases compared with its parent strain.

Most of the extracellular virulence factors in S. aureus is

positively regulated by a regulatory RNA molecule — RNAIII

Figure 4. The secretion of the proteins in Drnc was inhibited at 1.5 h. A: qRT-PCR quantification of the level of efb mRNA. The level of
efb mRNA in the different strains was detected at 6 h. The results showed that the expression of efb was not regulated by RNAIII. WT: wild type;
DRNAIII: RNAIII deletion mutant; DRNAIIIR: the restoration of RNAIII in DRNAIII. B: Detection of the expression of Efb in the extracellular
proteins from the different S. aureus strains by Western blot at 1.5 h. The extracellular proteins from same number of cells were
extracted from different S. aureus strains. The expression of Efb was tested with the specific antibodies of Efb (prepared by ourselves) by
Western blot. The result showed that Efb couldn’t be detected in the supernatant of Drnc. 1: WT, wild type, S. aureus 8325-4; 2: Drnc, an RNase
III inactivation mutant from 8325-4; 3: rncR, the restoration of RNase III activity in Drnc. C: qRT-PCR quantification of the mRNA level of
efb at 1.5 h. The quantity of efb mRNA from different strains was measured by qRT-PCR at 1.5 h. The result showed that the level of efb
mRNA wasn’t changed in Drnc. WT: wild type, S. aureus 8325-4; Drnc: an RNase III inactivation mutant from 8325-4; rncR: the restoration of
RNase III activity in Drnc. D: The schematic diagram of construction of the reporter vectors. Uefb::lacZ: the promoter and 59UTR of efb
were fused with Lacz; UefbSP: the promoter, 59UTR and the signal peptides of efb were fused with LacZ. E: Detection of the b-
galactosidase activity of different strains. The Uefb::lacZ reporter vector was separately transferred into Drnc and its parent strains.
Then the b-galactosidase activity of different strains was measured at 1.5 h and expressed by miller units. There was no significant difference
observed. The results represented a mean of three independent experiments. WT: wild type, S. aureus 8325-4; Drnc: an RNase III inactivation
mutant from 8325-4. F: Detection of the b-galactosidase activity of the cultured medium from different strains.The UefbSP::lacZ
reporter vector was separately transferred into Drnc and its parent strains. Then the b-galactosidase activities of the cultured medium were
measured and expressed by miller units. Comparing with it parent stain, the b-galactosidase activitiy of the cultured medium from the Drnc
was decreased at 1.5 h. The results represented a mean of three independent experiments. WT: wild type, S. aureus 8325-4; Drnc: an RNase III
inactivation mutant from 8325-4. (**: p,0.01).
doi:10.1371/journal.pone.0020554.g004
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Figure 5. The decrease of secY2 resulted in the inhibition of extracellular protein secretion in Drnc at 1.5 h. A: Detection of the
mRNA level of secA1, secY1,secA2 and secY2. The mRNA levels of secA1, secY1,secA2 and secY2 were detected at 1.5 h by qRT-PCR. The results
showed that the level of secY2 was decreased in Drnc. (**: P,0.01). Then the decrease of secY2 mRNA was confirmed by Northern blot. 16s rRNA was
used as the internal control. WT: wild type, S. aureus 8325-4; Drnc: an RNase III inactivation mutant from 8325-4; rncR: the restoration of RNase III
activity in Drnc. B: Detection of the profile of extracellular proteins and the expression of Efb in the different strains. The pOS1-secY2
plasmid was constructed and transferred to Drnc to recover the level of SecY2. At the same time, the double mutant Drnc/secY2 was constructed. And
then the extracellular proteins were extracted. The results showed that the production of the extracellular proteins was significantly increased at 1.5 h
after the recovery of the level of secY2. The mRNA level of secY2 was measured by RT-PCR. 16s rRNA was used as the internal control. At the same
time, the expression of Efb was determined by Western blot. The result showed that Efb was restored after the level of secY2 was recovered in Drnc. 1:
wild type; 2: Drnc; 3: secY2r(the Drnc strain transferred with the plasmid pOS1-secY2); 4, Drnc/secY2; 5. DsecY2.
doi:10.1371/journal.pone.0020554.g005

Figure 6. Stability of RNAs. Half-lives of secY2 mRNA and RNAIII were determined in the presence of rifampicin (500 mg ml-1) in the WT and Drnc
strains. Percentage of RNA was calculated normalizing with 5s rRNA.
doi:10.1371/journal.pone.0020554.g006
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[23,24], which is thought as an antisense RNA regulating many

genes expression (except d-hemolysin encoding). It is demonstrated

that the duplex of mRNA and RNAIII can be degraded by RNase

III in vitro [7,8].

We find that the expression of spa, one target RNA of RNAIII

which can be degraded by RNase III, increased in Drnc. It

indicates that the degradation mediated by RNAIII is altered. In

the further investigation, it shows that the level of RNAIII

decreased in Drnc. These results suggest that the decline of RNAIII

may be the reason for the reduction of extracellular proteins of

Drnc. In our experiments, it is revealed that the extracellular

protein of DRNAIII decreases comparing with its parent strain at

6 h and 12 h. After the level of RNAIII is recovered in Drnc, the

extracellular proteins increased correspondingly. In the meantime,

the reduction of extracellular proteins of Drnc at 1.5 h should not

be due to the decrease of RNAIII because the level of RNAIII is

cell density dependent and too low at 1.5 h. The profiles of

extracellular proteins among Drnc, DRNAIII and Drnc/RNAIII

are similar, but the density of several bands is different. These

results suggest that there should be some other proteins regulated

by RNase III through the RNAIII- independent pathway. Two

previous reports showed that the level of RNAIII was not altered

in the rnc mutant strains from RN6390, which is not consistent

with our results [7,8]. The occurrence of the different results might

be due to the different strains used in the experiments. Our

previous work also has shown that there are some difference

between S. aureus 8325-4 and RN6390, although both of them are

originated from S. aureus 8325 [25,26,27,28].

In the investigation, it is also found that the extracellular protein

Efb decreases at 1.5 h in the supernatant of Drnc. Efb is indentified

as the 15.6-kilodalton extracellular fibrinogen-binding protein

[20,21,22]. Hence, we chose Efb as an indicator for the further

study. Our results show that the transcription and translation of

Efb are not altered in Drnc. However, the results of b-galactosidase

activity assay show that the secretion of b-galactosidase decreases

in Drnc supernatant when lacZ gene is fused with the Efb signal

peptide. These results suggest that the transport of Efb is inhibited

in Drnc.

Figure 7. The Drnc was less pathogenic compared with its parent strain. A: Analysis of apoptosis and necrosis of MDBK cell after
treatment with the supernatant from different strains. Flow cytometric analysis was prepared to observe the apoptosis and necrosis of MDBK
cell after treated with the supernatant of S. aureus. Comparing with its parent stain, the percentage of apoptosis and necrosis induced by the
supernatant of Drnc was significantly decreased. Data were from a representative experiment repeated for three times. (**: p,0.01). B: Analysis of
the production of the heat-stable toxins from different stains. The heat-stable toxins were obtained as the described method and incubated
with MDBK cell. The survival cell number was determined by MTT method. Comparing with its parent strain, the heat-stable toxins of Drnc
supernatant was decreased. Data were from a representative experiment repeated for three times. (**: p,0.01). C: The detection of the
pathogenicity of the different strains with the acute peritonitis animal model. Groups of 10 Balb/c mice were injected intra-abdominally
with 500 ml of Drnc and its parent strain (16108 CFU). The number of the survival mice was recorded at different time points. The survival rate was
calculated. The result showed that the pathogenicity of Drnc was decreased.
doi:10.1371/journal.pone.0020554.g007
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The secretory (sec) pathway, which includes sec1 and sec2 in S.

aureus, is thought to be responsible for secretion of the extracellular

proteins of S. aureus, but there are few published data on the sec

pathway of S. aureus [12]. So we checked the expression of the

components of sec pathway by qRT-PCR. It is found that the level

of secY2 significantly decreases in Drnc. The further investigation

shows that the recovery of secY2 in Drnc can increase the

production of extracellular proteins at 1.5 h. In several pathogenic

gram-positive bacteria, the accessory sec pathway (SecA2 and

SecY2) is required for the transport of certain proteins related to

virulence[12,15,16,17]. In addtion, it has been reported that

SecY2 can interact with the Sec1 channel in S. aureus[13]. Our

results show that Sec2 is the major pathway which is responsible

for the extracellular proteins transport of S. aureus at 1.5 h. It is

interesting that we do not observe significant difference of the

extracellular proteins profile between DsecY2 and wild type at 6 h

and 12 h (data not shown). Our data indicates that SecY2 might

play an important role in protein secretion at lag phase but not at

exponential and stationary phases.

We also found that the stability of secY2 mRNA and RNAIII

was decreased in Drnc. It suggests that RNase III is involved in the

RNA degradation of both genes. RNase III is a kind of

ribonuclease, so the decline of the RNA stability in Drnc should

be indirectly regulated by RNase III. We are trying to investigate

the mechanism of this regulation.

In conclusion, our study reveals a novel biological function of

RNase III in S. aureus, which can regulate the production of

extracellular proteins via two molecules respectively at the

different growth phases. At the lag phase, RNase III can positively

regulate the level of secY2 to increase the secretion of the

extracellular proteins. After S. aureus cells grow to a certain

density, RNase III can regulate the expression of extracellular

proteins by affecting the level of RNAIII. Since the extracellular

proteins are essential for the infection caused by S. aureus, RNase

III might be a potential target of anti-Staphylococcus aureus

infection.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the national guidelines for the use of animals

in scientific research ‘‘Regulations for the Administration of Affairs

Concerning Experimental Animals’’. The protocol was also

approved by the Animal Care and Use Committee of Beijing

Institute of Basic Medical Sciences (Permit Number BMS-

091008), and all efforts were made to minimize suffering.

Bacterial strains and growth conditions
The strains used in this study are listed in Table 2. Strains were

grown in 5 ml of brain heart infusion (BHI) or Luria-Bertani(LB)-

medium (BD) at 37uC for 12 h with shaking at 200 rpm in a 25-ml

test tube. Cells from 1 ml of preculture were transferred to 100 ml

of BHI or LB medium in a 500-ml flask and incubated at 37uC on

a rotary shaker at 200 rpm. S. aureus strains were routinely grown

in BHI and E. coli strains were grown in LB medium either without

antibiotics, or with 20 mg ml21 erythromycin, 100 mg ml21

ampicillin and 100 mg ml21 kanamycin respectively.

Construction of insertion mutant of RNase III (Drnc)
The mutant was constructed using the procedures described

previously [29] with some modifications. In order to create an

Table 2. Bacterial strains and plasmids.

Strain or plasmid Comments Source or reference

Strain

S. aureus

8325-4 Wild-type, rsbU- [25]

RN4220 Restriction-negative strain, 8325 derivative [35]

Drnc 8325-4 with a rnaseIII::kan mutation This study

rncR the restoration of RNase III activity in Drnc This study

DRNAIII 8325-4 with a rnaIII::kan mutation This study

DRNAIIIR the restoration of RNAIII activity in DRNAIII This study

DsecY2 8325-4 with a SecY2 inactive mutation This study

Drnc/secY2 a secY2 and RNase III double inactive mutation This study

Drnc/RNAIII a RNAIII and RNase III double inactive mutation This study

E. coli

DH5a A host strain for cloning Transgene

Plasmids

pAUL-A Temperature-sensitive S. aureus suicide vector; Emr [36]

pMD19T E. coli cloning vector, ampr TaKaRa

pOS1 E. coli-S. aureus shuttle vector, Cmr [37]

pOS1-RNAIII pOS1 derivative for expression of RNAIII This study

pOS1-secY2 pOS1 derivative for expression of secY2 This study

pOS1-lacZ pOS1 contains a copy of lacZ encoding b-galactosidase without promoter and 59UTR This study

pOS1-Uefb-lacZ UTR of efb-lacZ fusion(Uefb::lacZ) shuttle vector, a derivative of pOS1 This study

pOS1-UefbSP-lacZ UTR and signal peptide of efb-lacZ fusion(UefbSP::lacZ) shuttle vector, a derivative of pOS1 This study

doi:10.1371/journal.pone.0020554.t002
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insertion mutant of RNase III in S. aureus 8325-4, two regions of

DNA flanking the rnase III gene were amplified by PCR using the

primers (Up-rnc F-EcoRI/Up-rnc R-KpnI, Down- rnc F-KpnI/

Down- rnc R-SalI) with restriction sites as listed in the Table 1. The

upstream fragment (529 bp) was digested with EcoRI and KpnI,

and the downstream fragment (232 bp) was digested with KpnI and

SalI. The two fragments were cloned together into pMD19T

digested with EcoRI and SalI. The resulting construct was digested

with KpnI, and then a 1.6-kb kanamycin cassette which was

amplified from the plasmid of pTZ-TRAP::kan provided by Dr.

Balaban N was inserted. The resulting plasmid was digested with

EcoRI and SalI, and a fragment harboring kanamycin resistance

between the upstream and downstream fragments was ligated into

pAUL-A digested with EcoRI and SalI to create plasmid pAUL-A-

rnc. pAUL-A has a temperature-sensitive origin of replication that

is active in S. aureus at 30uC but not at 42uC. The recombinant

plasmid, initially isolated from E. coli, was introduced into S. aureus

RN4220 by electroporation and colonies resistant to kanamycin

and erythromycin were selected after growth at 30uC. The

resistant clones were subjected to a temperature shift to 42uC to

select for plasmid integration into the chromosome. Bacteria

resistant to kanamycin but sensitive to erythromycin were selected.

The mutation was confirmed by PCR, and followed by

transduction into strains 8325-4 with phageW11 to create strains

Drnc in which RNase III was inactive (Table 2).

Restoring RNase III Activity
Primers rs-rncF and rs-rncR (listed in Table 1) were designed to

PCR-amplify an 1045 bp fragment encompassing the gene

encoding RNase III, its promoter region and termination site

and SalI/EcoRI sites, using S. aureus 8325-4 chromosomal DNA as

template. The PCR product (‘‘whole rnase III’’) was digested and

cloned into the SalI/EcoRI digested pOS1, which could replicate

in E. coli and in S. aureus at 37uC. The resulting plasmid (pOS1-rs-

rnase III) was used to transform into E. coli DH5a by

electroporation. Cells were selected on LB plates containing

100 mg mL21 ampicillin. The combinant plasmid was isolated

from positive clones and used to transform S. aureus RN4220 cells,

and transformants were selected on tryptic soy agar plates

containing 10 mg ml21 chloromycetin at 37uC. A positive clone

(RN4220 containing pOS1-rs-rnase III) was selected by colony

PCR using primers rs-rncF and rs-rncR. Then the plasmid was

isolated and transformed to Drnc by electroporation. The

transformants were selected on tryptic soy agar plates containing

10 mg ml21 chloromycetin at 37uC for 20 h. The restoring

colonies (rncR) were confirmed by PCR and RT-PCR analysis.

Growth curve assay
To measure growth curves, a colony was picked from a plate of

S. aureus 8325-4 and Drnc and then inoculated in 5 ml of BHI

media at 37uC for 14 h on a rotary shaker at 200 rpm. Cell

densities were measured at OD600nm using BHI media as a blank.

The culture was diluted to achieve an OD600nm of 0.1 in 10 ml.

Then the bacteria were incubated at 37uC at 200 rpm, and cell

densities were determined at OD600nm every hour.

Proteins analysis by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE)

The cell extract was prepared as described [30] with some

modifications as follows. Cells were grown with shaking at 37uC at

200 rpm. Equal numbers of cells were collected at indicated time

and then resuspended in 100 ml Tris-EDTA buffer containing

lysostaphin (100 mg ml21, Sigma-Aldrich). After incubation for

30 min at 37uC, the mixture was sonicated on ice three times for

30 s each. Protein samples (15 ml) were mixed with SDS-PAGE

loading buffer and then subjected to 15% SDS-PAGE. Gels were

stained with Coomassie blue G-250 (Sigma-Aldrich).

Extracellular protein profiles were determined as described

[31,32] with some modifications as follows. Briefly, S. aureus cells

were grown at 37uC and growth culture was centrifuged at 6,000 g

for 10 min at 4uC. The supernatant was collected and filtered

through a 0.22 mm filter to remove residual cells. Culture

supernatant from equal numbers of cells was precipitated by

adjusting filtered supernatants to 10% tricarboxylic acid (TCA)

and incubated at 4uC for 4 h. After centrifugation (12,000 g,

10 min), precipitated proteins were washed twice in ice-cold 96%

ethanol, air dried. The proteins were resolved in an appropriate

volume of a solution containing 7 M urea, 2 M thiourea. The

samples were then subjected to 15% SDS-PAGE and visualized by

Coomassie blue G-250 staining.

Flow cytometric analysis of apoptosis and necrosis of
MDBK cells

The supernatant was collected according to the above method.

For flow cytometric analysis, the MDBK cells were resuspended at

a concentration of 16106 cells ml21 and added to a 12-well plate

(1 ml/well). At 40–50% confluency (24 h post seeding), the

cultivated cells were treated with medium alone or with

supernatant of S. aureus strains for 12 h. Prior to harvesting, the

cells were washed twice with PBS (Phosphate Buffered Saline),

trypsinized, and pelleted. Then cells were resuspended at a

concentration of 16106 cells ml21 in Binding Buffer (0.01 M

HEPES/NaOH, pH 7.4, 14 mM NaCl, 0.25 mM CaCl2). Aliquot

cells (500 ml) were added into FACS tubes and mixed with 25 ng

ml21 FITC-conjugated annexin V and 10 mg ml21 propidium

iodide(PI), incubated for 15 min at room temperature in the dark.

Then the apoptosis and necrosis were analyzed immediately by

flow cytometry. The final data was reported as the mean 6 SD for

each of the three independent experiments.

MTT assay of cellular toxicity
For MTT assay, the supernatant was boiled for 10 min, and

then centrifuged to remove the precipitate. The MDBK cells were

cultured in RPMI-1640 medium (Gibco) with 100 U ml21

penicillin and 100 mg ml21 streptomycin at 37uC with 5% CO2.

Then they were detached using 0.25% trypsin/EDTA and

counted by means of hemocytometer. The cells were resuspended

and a total of 16104 in 0.1 ml culture medium was seeded into

each well of a 96-well plate and cultured for 24 h. At 40–50%

confluency (24 h post seeding), the cultivated cells were treated

with medium alone or with the boiled supernatant of S. aureus

strains. Then, MTT assay was performed 24 h after treatment.

10 ml of MTT (1 mg ml21, Sigma-Aldrich) was added into each

well and the incubation was continued for 4 h at 37uC with 5%

CO2. After 4 h, 100 ml SDS buffer (10%SDS, 0.1 M HCl) was

added to the wells. The absorbance of the wells was determined

using a plate reader at a test wavelength of 595 nm after 8 h. The

cell viability percentage was calculated as: Viability percentage

(%) = (Absorption value of supernatant of treatment group)/

(Absorption value of supernatant of control group) 6100%.

Western blot
The protein samples were subjected to 15% SDS-PAGE and

the proteins were blotted onto Hybond-ECL nitrocellulose

membrane (Amersham Biosciences). The membrane was blocked

in 5% non-fat dry milk at 37uC for 2 h, probed with1:500 diluted
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polyclonal rabbit anti-Efb antibodies (prepared by ourselves) for

1 h at room temperature, and washed twice in PBS with 0.5%

Tween 20 (PBST). Then the membrane was incubated in a

1:5,000 solution of HRP-conjugated goat anti-rabbit secondary

antibody at room temperature for 1 h. After further washing with

PBST, the membrane was assayed by the enhanced chemilumi-

nescence (ECL) western blotting detection system.

Quantitative reverse transcription PCR (qRT-PCR)
Total bacterial RNA was extracted from S. aureus using Trizol

(Invitrogen) as previously described [30]. DNase digestion of 80 ml

of total RNA was performed with 10 U of RNase-free DNase I

(Promega) and 10 ml of the 106reaction buffers in a total reaction

volume of 100 ml for 30 min at 37uC. For cDNA synthesis, 1 mg of

total RNA was mixed with 500 ng of random hexamer (Promega).

Samples were incubated at 65uC for 10 min with 5 ml of 56 first-

strand buffer, 2 ml of 5 mM dNTP, 20 U of RNasin (Takara), 1 ml

of M-MLV reverse transcriptase (Promega) and distilled water to a

total volume of 25 ml. The qRT-PCR reaction mixture contained

12.5 ml of 26SYBR green PCR mix (GenePharma), 0.3 mM of

gene-specific forward and reverse primers, and 1 ml of template,

made up to a final volume of 25 ml with distilled water. The

primers are shown in Table 1. Cycling parameters were set as

follows: initial activation step at 95uC for 10 min, denaturation at

94uC for 30 s, annealing at 58uC for 30 s, and extension at 72uC
for 40 s. Melting curve analysis was performed from 58uC to 95uC
with stepwise fluorescence acquisition at every 1uC s21. Melting

curves observed for each gene were confirmed to correspond to

the correct amplicon size by agarose gel electrophoresis of the

PCR products. The levels of gene expression were calculated by

relative quantification using 16s rRNA as the endogenous

reference gene. All samples were amplified in triplicate and the

data analysis was carried out using the MxPro qRT-PCR system

software (Stratagene).

Construction of lacZ reporter vector
The fragments (promoter-59UTR and promoter-59UTR-signal

peptide of efb) was amplified by PCR from S. aureus 8325-4

chromosomal DNA with primers Uefb-lacZF/Uefb-lacZR and

Uefb-lacZF/UefbSP-lacZR (Table 1). The PCR products were

digested with EcoRI and BamHI, and ligated into EcoRI and

BamHI-digested pOS1-lacZ plasmid DNA, which contains a copy

of lacZ without promoter and 59UTR, resulting in the in-frame

fusion of lacZ to the amplified fragments. The recombinant

plasmids were transformed into DH5a, then electrotransfected to

S. aureus RN4220. The plasmid was isolated from RN4220, then

electrotransfected into S. aureus 8325-4 and Drnc.

b-Galactosidase assay
The cells were prepared for the assay as described before with

some modification [33]. Cells were grown as described above, and

1 ml culture was centrifuged. Briefly, the pellet was washed in

PBS, and then the cells were adjusted to an OD600nm of 1 in a

volume of 500 ml. The cells were sedimented by centrifugation and

the pellet was resuspended in 500 ml lysis buffer (0.01 M potassium

phosphate buffer, pH 7.8, 0.015 M EDTA, 1%Triton X-100)

containing lysostaphin at the final concentration of 20 mg ml21,

and incubated at 37uC for 30 min, with gentle shaking. The

culture was centrifuged at 20,000 g for 30 min. The supernatant

was subjected to galactosidase assays according to the method

described by Miller [34].

Northern Blot and RNA half-life determination
Total RNA was separated by electrophoresis on a 1.2% agarose

gel containing 2.2 M formaldehyde and transfered to nylon

membrane. Hybridizations with the specific a-32P-labeled DNA

probes were carried out to detect the secY2 mRNA or RNAIII. 16s

or 5s rRNA was used as the internal control.

RNA half-lives were determined by treating cells with

rifampicin (final concentration: 500 mg ml21) and isolation of

RNA at 0,30, 60, and 90 min after rifampicin addition. SecY2

mRNA stability was determined in lag phase (cultured for 1.5 h;

OD600 = 0.5) and RNAIII stability was was determined in

stationary phase (cultured for 6 h; OD600 = 10).

Acute murine peritoneal infection model
Groups (n = 10) of 6- to 8-week-old, male Balb/c mice were

injected intra-abdominally with 500 ml of Drnc or its parent strain

(containing 16108 CFU (colony forming units)). The survival

number of mice was recorded at the different time points (8 h,

16 h and 24 h) post challenge. Survival outcomes in Drnc or its

parent strain groups were compared. The experiment was

performed twice.

Statistical analysis
All quantitative data were analyzed using student t-tests.

P,0.05 was considered statistically significant.
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