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Abstract

Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such,
a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the
broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to
the overall scale of many ecological and environmental quantities and is an important indicator for understanding several
properties of plant communities, including total standing biomass and resource use. We present a model that predicts local
maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling
laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local
resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height
in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on
these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo,
which is important for understanding the Earth’s radiative budget, a critical component of the climate system. Because our
model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into
more complicated ecological or climate models.
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Introduction

A critical component for understanding the earth system is

determining the interplay between biotic and abiotic factors, such

as the interaction between forest characteristics and local meteo-

rology [1–11]. At present a range of ecological perspectives and

techniques are used for interpreting forest structure and dynamics

at both the local and regional scale. Historical and ongoing

modeling efforts have become increasingly accurate at describing

critical forest features such as standing biomass and dynamic

transpiration rates [4,5,11–20]. Most of these models explicitly

simulate the temporal and/or spatial dynamics of a forest and

typically focus on a detailed description of a variety of coupled

plant processes including transpiration, competition between trees,

seedling dispersal, and mortality.

Another perspective for interpreting ecological features is the

use of allometric relationships as a means to characterize the

general variation of plant traits across many species living in a

variety of environments [21–24]. These scaling relationships show

that, on the average, many of the dominant physiological traits

relevant to forest dynamics and structure are correlated with tree

size following approximate power laws (e.g. [22,25–27]). As such,

size is viewed as the major determinant of variation among trees

setting the baseline from which variation due to local, environ-

mental, historical, geographical, and species related factors are

considered secondary perturbations. Because of the relative sim-

plicity of these relationships many models rely on basic allometries

as part of a more complicated description of plant behavior (e.g.

[12,19]). Furthermore, there are conceptual frameworks from

which these scaling laws, at both the individual and community

level, have been derived (e.g. [21,28–30]). On the other hand there

is ongoing debate over the exact value of the empirical exponents

of each relationship and the range of tree sizes over which they are

valid, and, in general, it is not yet known what sets the dominant

variability of the data around a given scaling law (see [24] for a

review). Thus, it is unclear how useful the basic power-law

relationships are in describing local variation or how applicable

they are to modeling endeavors.
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Here we create a model of plant physiology that focuses almost

entirely on these scaling laws which we connect with an energy

budget approach and couple to environmental resources in order

to calculate an important component of this variation. In parti-

cular, we incorporate the relationships between basal metabolic

rate, water availability, incoming solar energy, heat loss and

ambient temperature. Because the underlying scaling laws repre-

sent the average tendencies across many species we apply a single

tree characterization to a variety of environments. In our frame-

work plant diversity is encapsulated according to the average

trends across many species and the scaling laws allow us to use a

single parameter, tree size, to determine a range of physiological

traits. We show that this model successfully predicts the local and

regional variation of maximum tree heights from a small number

of environmental parameters (Fig. 1). This coupling of various

scaling laws also predicts more complicated relationships for

tree traits such as the sigmoidal decrease in canopy albedo with

increasing height. Our model can be extended to predict the

variation of other plant traits and we show how stomatal density

depends on local mean annual temperature.

Previous modeling approaches
To understand the interplay between forest structure and local

or regional climate it is necessary to both understand the

competitive dynamics of trees within a stand and to couple tree

physiology – at the individual or whole forest scale – to environ-

mental conditions. At the regional scale, a common approach

has been to focus on vegetation types coupled to atmospheric

conditions. These models have successfully captured the geo-

graphic distribution of vegetation types and net primary produc-

tivity as well as environmental processes such as moisture flux and

runoff [7–9,31–35]. For understanding fine-scale forest structure

explicit temporal and spatial modeling and simulation efforts are

becoming increasingly accurate at capturing local forest dynamics.

Several models which aim to capture local phenomena focus on

the small-scale competition of trees represented either as com-

ponents or patches (e.g. the JABOWA model [17,18]) or explicitly

as individually trees (e.g. SORTIE [16,17,19] and TASS [20]).

These models predict the gap structure of the canopy [17–19], the

species composition and diversity of a stand [16,18,19], the

standing biomass [16–20], and the size distribution of trees [20] at

the local scale. In the case of SORTIE, the model tracks individual

trees and simulates the coupled dynamics of canopy spatial

structure, crown competition, light availability, seedling recruit-

ment, growth, and tree mortality [16,19].

The drawback of these models is that they are computationally

expensive when applied to larger regions. The more recent efforts

of the perfect plasticity approximation (PPA) have used basic

assumptions about the interaction of individual trees to produce

macroscopic equations (analogous to those found in statistical

physics) for features such as the equilibrium size distribution

of trees [14]. This technique captures the average interaction

between competing trees without explicitly modeling each indi-

vidual and thus can be inexpensively applied to larger regions. For

features which represent the average of numerous trees (e.g. total

density and average height) the PPA produces very similar results

Figure 1. Comparisons between observed and predicted maximum tree heights. Maps of the continental United States comparing (A)
observed and (B) predicted maximum heights of trees. (C) Histogram showing the distribution of deviations of the predicted maximum tree heights,
hpred , from their measured values, hobs, expressed in terms of the dimensionless ratio hobs{hpred

� �
=hobs. The median of the entire distribution is {:013

and 20 values less than {3:0 were omitted from the histogram.
doi:10.1371/journal.pone.0020551.g001
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to the models which explicitly track individual trees [14]. The PPA

also compares well with measurements for crown characteristics

such as depth and radius [11] and the temporal dynamics of stand

structure, biomass and successional patterns [15].

The models discussed thus far focus primarily on either the

competition dynamics within a stand or the regional coupling of

environmental conditions to vegetation. The ecosystem demogra-

phy model (ED) connects these two approaches in an effort to

more accurately understand forest dynamics coupled to the

environment at multiple scales [12]. ED relies on plant functional

types as a means for capturing local forest diversity and, similar to

the PPA discussed above, relates an ensemble average to the

complex dynamics of individual trees including the stochastic

processes of mortality and succession. ED then couples this

ensemble approach with numerous environmental processes such

as atmospheric conditions, fire, evapotranspiration, and carbon

sequestration. ED is able to capture important local and regional

phenomena such as carbon flux, standing biomass, the stock of

soil carbon, or the response of productivity to changing climate

[4,5,12,13]. Approaches like this hold much future promise for

understanding both small-scale forest structure and regional

vegetation patterns as they feedback with climate. However, these

models require explicit temporal simulation, and decisions about

how to represent plant diversity and physiology.

Steady-state allometric approach
Distinct from the models discussed above, the framework that

we develop in this paper consists of a steady-state analytic calcu-

lation rather than a temporally and/or spatially explicit simula-

tion. Our framework takes average local meteorology as an input

and numerically calculates maximum tree height as an output. In

comparison with the models discussed above our framework is not

able to characterize detailed local phenomena such as temporal

dynamics or species composition, but it does allow us to under-

stand the average tendencies and constraints facing trees across

different environments and this provides a useful foundation for

incorporating more complicated processes.

We employ a single generalized tree across a range of envi-

ronments without specific knowledge of local plant functional

types commonly used in previous models [7–9,34,35]. In doing so

we sacrifice accuracy at the local scale but gain a simple under-

standing of the average variations across environments. In the

context of resources our framework lends insight into the me-

chanisms underlying deviations from the allometric scaling laws

where, for example, we are able to show how different tree traits

are suited to a given environment and predict the temperature-

based variation of stomatal density (Fig. 5). These variations in

turn modify the size-based scalings for an individual tree species

(see Supplement S1). Ongoing work is beginning to understand

departures from the basic zeroth order allometric scaling laws

[24,27,36,37], however, it should be noted that the zeroth order

theory has yet to be coupled with environments in order to test its

predictive power. Our work provides another means for expan-

ding the basic allometric scaling laws to encompass features that

are relevant to more detailed modeling efforts.

Ecological relevance of tree height
We demonstrate the utility of our framework by predicting

maximum tree height. We choose to focus on tree height because

size is a natural quantity within the allometric framework and

because height is an important indicator of various consequential

features of a forest, such as its total resource use, biomass

production rates, spatial distribution, and patterns of mortality and

succession [29,38–41]. For example, frequency distributions of

trees follow characteristically similar relationships across forests in

different regions experiencing different resource environments

[29,40,41]. These frequency distributions follow a power-law over

a large range of the data with a drop-off for the tallest trees

[29,40,41]. This implies that the tallest trees can be used to infer

the size structure of forests. Given the significance of maximum

tree height our framework offers future extensions for understand-

ing regional and global energy budgets, water and carbon cycles,

temperature feedbacks, and ecosystem dynamics in response to

changing environmental factors from the perspective of average

physiology. It should be noted that our framework can be used to

predict the variation of other plant features beyond maximum tree

height such as the environmental variation of stomatal density.

Beyond its importance as a predictor of forest demographics,

tree height has been shown to influence competition between

individual trees for access to light [42–45]. However, the advan-

tage of being taller comes with the added costs of growth and

maintenance and this may set up a complicated evolutionary game

between individuals [42,43]. Maximum height has various corre-

lations and related tradeoffs with other important plant traits

[44,45]. These include seed mass, overall growth rate, leaf mass

per area, and wood density, each with environmental consequenc-

es ranging from soil resource use, to biomass production rates, to

competitive dynamics within a community [44,45]. Our frame-

work provides insight into the environmental and physical limi-

tations of these evolutionary dynamics.

In general, tree height is constrained by the interplay between

many competing factors including resource limitations, internal

metabolic constraints, overall growth rate, maturation processes,

the hydrodynamic flow through vascular tubes of the branch

network, its geometry and topology, and biomechanical and

gravitational forces [22,27,28,44–47,47–49]. This complicated

intersection of constraints is not unique to height but is a standard

characteristic of most tree traits. Nevertheless, data on many

properties of trees (Y ) can be encapsulated and summarized in

phenomenological scaling laws which typically approximate a

simple power law form:

Y~Y0Mb ð1Þ

where M is tree mass, Y0 a normalization pre-factor, and b
the scaling exponent. Examples include tree heights (b~:264),

respiration rates (b~:78+:04 or :81+:02), overall growth

rate (b~:66+:01), the frequency distributions of individuals

(b~{:79+:02), and trunk radii (b&3=8) [22,25–27].

These scaling laws represent the average variation of a given

evolved trait across many species. Because trees have simulta-

neously negotiated the limitations imposed by multiple physical

constraints over their complicated evolutionary trajectory, these

scaling laws are likely the manifestation of multiple constraints. For

example the evolved canopy structure must be both mechanically

stable and able to gather sufficient solar resources in order for the

tree to survive and compete. Thus considerations of either or both

of these limitations may anticipate an observed empirical scaling

law. By focusing on empirical scaling laws these constraints,

whether known or unknown, are then implicitly incorporated

into our model without needing to specify which limitations – or

combination of limitations – are the most important. Both

hydraulic (e.g. [46,48]) and mechanical (e.g. [27,47]) limitations

are argued to constrain maximum tree height and our model

incorporates both of these via various scaling laws including the

scaling of basal flow rates and the scaling of the canopy geometry.

Beyond the inherent limitations of hydraulics or mechanics,

ultimately and locally, maximum tree height is governed by the

Predicting Maximum Tree Heights
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availability of resources. By connecting scaling laws to an inter-

action with the local environment we are considering the cons-

traints of both resources and plant structure.

Results

Model framework
We investigate the survival of an idealized tree with features

determined primarily by its size. These features include the num-

ber of leaves, canopy shape and size, and the root mass, all of

which interact with the environment via the tree’s requirements

for light and water (Fig. 3). Trees rely on their phloem and xylem

for the internal distribution of nutrients and water. This circulation

is a process of trees extracting moisture from the soil and making it

available for evaporation, which drives the flow at the leaves.

Accordingly, the rate of fluid flow through the vascular system

has been a long-standing focus of environmental tree physiology

[50,51].

Our strategy is to compare flow rates that are constrained by

resource supply with the flow rates that are required to sustain a

tree of a given size in the absence of resource limitations. Both of

these types of flow are governed by overall tree height according to

scaling laws which relate various tree features to size. A basic

assumption of our framework is that the essential tree traits

required for building our predictive model scale with tree size

according to approximate power laws (including isometric

relationships). For many traits this is well supported by existing

data. However, it should be noted that these power laws may

break down for small trees where more complicated relationships

hold (e.g. [27]) and some scaling exponents are known to have

different values and confidence levels across different environ-

ments (e.g. [36]). These variations are beyond the scope of our

efforts here. We focus on power laws because we are interested

in the simplest construction of average behavior as a tool for

predicting and understanding variation across species. Thus, we

are testing the predictive power of the zeroth order approximation,

which in this case are the widely used and studied power laws

between body size and various plant traits. Future work should

consider the higher order behavior of more complicated trait

models.

Scaling relationships quantify how the total required flow rate

of water in a tree, Q0, changes with overall body size in order

to support its basal metabolism [28,39,52]. We examine two

principle limitations to the flow rate in trees: available water and

energy (light and heat). Energy from the environment results in an

evaporative flow rate of water through the tree, Qe, which depends on

both body size as well as on meteorological conditions, including

air temperature, pressure, relative humidity, and solar radiation.

This evaporative flow rate, which is the actual flow rate through a

tree, must be met by a sufficient available flow rate of water from

precipitation captured by the root mass, Qp, which is also

dependent on body size. In addition, Qe must be sufficient to

support basal metabolic needs encapsulated by Q0. These

constraints can be summarized as follows:

Q0ƒQeƒQp: ð2Þ

Thus, Q0 and Qp set the boundaries of acceptable flow. Maximum

tree height can then be predicted by finding the largest tree for

which this relationship holds. In other words, our strategy searches

for trees that use energy from the environment to meet their

metabolic needs without exceeding their water resources. Fig. 2A

summarizes our model, highlighting the factors involved in

calculating Q0, Qe, and Qp.

Graphically, Eq. 2 implies that if we plot Q0 hð Þ and Qp hð Þ as

functions of tree height, h, trees can only function in the region

QpwQ0 (the green-colored region of Fig. 2B). If we then plot a

curve specific to a given environment, Qe hð Þ, we can determine

which curve, Qp hð Þ or Q0 hð Þ, is first intersected by Qe hð Þ at lower

h. The value of h at this intersection specifies the height of the

tallest possible tree. If a tree were to grow larger than this in the

given environment, then its evaporative flow rate would exceed the

availability of some resource. In water-rich environments lacking

the appropriate incoming energy, Qe intersects Q0 before it

intersects Qp, and this determines the maximum tree height. On

the other hand, in water-limited environments with ample solar

radiation, the reverse is true.

In order to explicitly calculate maximum tree height, we need to

relate these various flow rates to tree height by invoking scaling

relationships. Reference [28] provides a convenient way to relate

height to several other dimensions of trees.

Basal metabolic requirements of a plant (Q0)
The total basal volume flow rate of internal fluid is well

approximated by

Q0~b1Dg1?b2hg2 ð3Þ

where D is stem diameter, b1 and b2 are normalization constants,

and g1 and g2 are scaling exponents [28,29]. Empirically, best fits

to data give g1~1:8, b1~0:26 liter day{1 cm{g1 with D in cm,

g2&2:7 and b2&9:2|10{7 liter day{1 cm{g2 for h in cm [39]

(see Supplement S1). In order to convert the empirical relationship

in equation 3, which relates Q0 to diameter, to a relationship

concerning height we employ a calculation which relates various

tree dimensions such as height and diameter. For large tree sizes it

has been shown in [27] that h*D2=3 which agrees with our

analysis of g2~g13=2~2:7 (see Supplement S1). We rely on an

analytic calculation to find b2 because the model in [27] includes a

small tree correction to the basic power law which is outside of the

scope of our stated goal. When a direct empirical relationship

between two features, such as Q0 and h, is not known we typically

employ an analytic calculation in order to avoid the propagation of

error resulting from the combination of two or more empirical

relationships. In some situations this is not possible because there

are no known analytic derivations. Our overall framework, which

is simply the connection of specific set of scaling relationships, does

not depend critically on these analytic calculations. For future

efforts one can employ our framework and replace any given

empirical or analytic scaling relationship with alternative data or

calculations. All that is actually required are the phenomenological

scaling relationships themselves which are, or can be, constructed

from data (all parameter symbols, definitions, and values can be

found in Table S1).

Available flow rate due to precipitation (Qp)
Given an incoming rate of precipitation, and ignoring

hydrology (i.e., water due to runoff, pooling, or subterranean flow

and storage), the moisture available to a plant is based on the

capture area and capture efficiency of the root system. The

capture area for precipitation is defined by the lateral extent of

the root system, which can be determined from the geometric

properties of the root architecture. From the data and scaling

relationships given in [22,27,28,53] the radial extent of roots is

approximately given by

Predicting Maximum Tree Heights
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Figure 2. Schematics of the modeling framework. (A) The relationships between the required flow rate, Q0 , the evaporative flow rate, Qe , and
the available flow rate, Qp , and the factors which influence them. (B) Limitation Diagram. Red Curve: the flow rate of available water, which is a
function of precipitation and size, as described in the text. Blue Curve: the required flow rate determined from allometric scaling, which is a function
of size but independent of environmental conditions. Black Curve: the calculated evaporative flow rate, which is dependent on both size and
meteorological conditions. The intersection of the black curve with either of the other two determines the maximum tree height.
doi:10.1371/journal.pone.0020551.g002
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rroot~b
1=4
3 h ð4Þ

with b3~0:42+0:02 (see Supplement S1 for detailed discussion).

In our model, trees have access to the total volume of precipitation

that falls on the area of flat ground directly above the root system,

adjusted by the absorption efficiency of the roots. This can be

expressed as

Qp~cp r2
root pinc, ð5Þ

where pinc (m year{1) is the rate of precipitation, and c is the root

absorption efficiency.

Evaporative flow rate (Qe)
Trees act as passive solar pumps with the rate of water escaping

due to evaporation equal to the internal flow rate. Hence, Qe is

governed by incoming energy. The basic physiological responses

of tree canopies to local meteorology are well-established and are

typically summarized using an energy budget [50,51]. Although an

energy budget formulation, which represents the overall conser-

vation of energy, is conceptually simple, each individual energy

flux requires a careful calculation based on the physics relevant to

the appropriate tree characteristics, such as the density of stomata

on a leaf and the geometry of the canopy. In Supplement S1 we

provide details of these calculations which include considerations

of both the tree size and environmental dependence of evapo-

ration, radiation and conductance in the leaf and canopy micro-

climate. These are all governed by well-known physical laws, such

as the Stefan-Boltzmann law for radiation, whose parameters have

been measured or, in the few cases where they are not known, can

be derived within our framework.

The basic energy budget requires that the total radiation

absorption rate of a canopy, Rabs, is the sum of the rates of emitted

thermal radiation and the sensible and evaporative heat losses:

Rabs~LagzHajzlEaf : ð6Þ

Here, L, H , and lE are energy fluxes (W m{2): L is the emitted

thermal radiation, H the sensible heat loss, and lE the latent heat

loss with l being the latent heat of vaporization for water and E

the evaporative molar flux (mol m{2 s{1) [50,51]. The coeffi-

cients ag, aj , af are effective areas (m2) over which each heat flux

occurrs and are determined by considering how the canopy

architecture affects the degree to which each flux is coupled to the

atmosphere.

In terms of the molar mass, mw (kg mol{1), and density, rw

(kg m{3), of water, the evaporative flow rate is related to E by

Qe~af Emw=rw: ð7Þ

From Eq. 6, we observe that the dependence of E, and therefore

Qe, on tree height arises entirely from Rabs and the effective areas,

af ,g,j , since H , L, and l depend only on meteorological conditions.

Thus, we can write

Qe~f Rabs hð Þ,af ,g,j hð Þ, mf g
� �

, ð8Þ

where mf g represents the set of meteorological variables.

Each effective area for heat flux has a linear dependence on the

total one-sided leaf area of the canopy, aL, where aL!h3. The

height dependence of Rabs can be determined by noting that

Rabs~acanPcanRinc, ð9Þ

Figure 3. The size-based resource gathering capabilities of a tree. The above-ground canopy is shown in green and the below-ground root
mass in blue. The essential dimensions of the tree are indicated, where rcan is the radius of the canopy, hcan is the height of the canopy, and rroot is the
radius of the root mass. Each of these features scales with height, h, where rcan!h1:14 [41], hcan!h and rroot!h. The number of leaves scales as h3 [28].
The scaling of the canopy features determines the collection of solar radiation and the heat exchange with the atmosphere, which can be used to
solve for Qe . The rate of moisture absorption, Qp , is related to the scaling of the root system and incoming precipitation. Please see Supplement S1
for a more detailed treatment of these scaling relationships along with derivations for the associated tree physiology.
doi:10.1371/journal.pone.0020551.g003
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where Rinc (W m{2) is the incoming radiation per unit area

(normal to the ground), acan is the absorption coefficient for the

canopy, and Pcan is the projected area of the canopy. Both acan

and Pcan depend on tree height via the shape of the canopy and

the number and distribution of leaves within that canopy. For a

given incoming radiation, Rabs*h3 for large trees, whereas, for

smaller trees, a more complex, but derivable, relation holds (please

note that capital the ‘‘R’’ notation refers to absorbed radiation and

should not be confused with lower-case ‘‘r’’ which refers to root or

canopy radii).

For the average tree whose features are encapsulated in the

scaling relationships, these derivations have predictive power

beyond determining maximum height. For example, our model

predicts the specific form of the decrease in canopy albedo with

increasing tree height in excellent agreement with data, as

illustrated in Fig. 4 (please see Supplement S1 for a derivation).

Albedo plays a critical role in many questions related to the earth

system and our model framework provides a quantitative means

for linking albedo to tree heights and thereby to local resources.

Because evaporation depends on many contributing meteoro-

logical variables (solar radiation, air temperature, relative humi-

dity, and wind-speed) and on multiple tree traits (such as average

leaf size and stomatal density) it is not possible to write a simple

scaling relationship for the evaporative flow rate, Qe(h). In deter-

mining Qe we picked representative values for tree features that

entered into the calculation and used the same values across all

locations. (A detailed treatment of Qe along with the parameter

values used can be found in Supplement S1 in Table S1.)

Predicting maximum tree height and other traits
To determine maximum tree heights across the continental

United States, we combined meteorological data sets (see Supp-

lement S1) to calculate the functions Qe(h) and Qp(h) for the

conditions at each location with Q0(h) determined from Eq. 3. As

discussed above, our predictions for maximum tree height are

found from the first intersection of Qe with either Q0 or Qp. We

find that Qe scales similarly to Q0 (Fig. S1) and that, in practice,

the best predictions are achieved by searching for intersections of

Qe with Qp once the root absorption efficiency, c, has been

established (see Supplement S1).

Because tree height spans nearly two orders of magnitude,

we used the relative error, hobs{hpred

�� ��= hobsj j, to compare our

predictions, hpred , with observations, hobs, of maximum tree height.

As can be seen from the figures, our model gives good agreement

with observed maximum tree heights, suggesting that it does

indeed capture the essential features of environmental constraints

and tree physiology. Fig. 1C shows a histogram of the relative

error prior to taking absolute values ( hobs{hpred

� �
=hobs) making it

possible to determine over- and under-prediction. Error values are

relatively narrowly distributed and the center of the distribution

is close to zero. (Please see Supplement S1 and Fig. S2 for a

discussion of the slight bimodal nature of this distribution.)

We tend to over-predict maximum tree height in wet environ-

ments where there are likely competitive factors limiting tree

height. Under-prediction in our model generally occurs in arid

environments where trees likely have developed specialized traits

which deviate from the average values we used. However, with

different, more realistic trait values, such as lower stomatal density

in arid environments, we find that these trees obey Eq. 2. This is to

be expected as different trait values are better suited to different

environments. We can expand our framework by allowing traits to

vary in order to optimize maximum height while still obeying Eq.

2. For example, holding all other tree parameters constant we can

find the stomatal density which maximizes the upper bound on

tree height in a given environment. We observe in Fig. 5 that the

optimal stomatal density that we calculate decreases with increa-

sing average annual temperature consistent with observations [54].

We also calculated the optimal leaf size in a similar fashion and

found it to decrease with increasing temperature (not shown),

which is also a trend suggested by observations [55]. This type

of analysis, where the model is used as a point of departure for

including sub-dominant effects, including the covariation of other

traits, is an important area of investigation. In Supplement S1 we

conduct a similar analysis to determine the optimal allometric

scaling of two plant features which we initially took to be constant,

the stomatal density and root absorption efficiency. We show that

incorporating these additional scaling relationships into our model

can reduce the error between predictions and observations (Fig.

S5). Understanding the covariation and co-optimization of various

plant scalings is an important area of ongoing [24,36,37] and

future research.

Finally, we explore the effects of environmental shifts on maxi-

mum tree heights while holding plant traits constant. Applying the

simplest case of a uniform change in mean annual temperature

across the United States of +20C we can solve for the maximum

height in that environment. We chose this value because z20C

compares well with the conservative projections for temperature

change over the next 100 years according to the frequently cited

scenarios summarized by the Intergovernmental Panel on Climate

Change (e.g. [56]). We find that for z20C the average maximum

height across the continental U.S. decreases by 11% while for

{20C the average maximum height increases by 13% (Fig. S3).

Discussion

It is noteworthy that our framework, which uses a general

morphology and an average set of tree parameters, can con-

sistently predict maximum tree height over a wide range of

environments and tree species. At the same time, it can be easily

extended to explore the specific resource tradeoffs associated with

each tree trait, and thus predict environment-dependent adapta-

tion. Various plant traits such as stomatal density and leaf size and

shape have been suggested as proxies for reconstructing the

paleoclimate [54,55]. Yet some of these traits depend on multiple

Figure 4. The relationship between tree height and the total
albedo for the canopy of a single tree. The red points are data [67],
and the blue curve is our generalized model for a tree using a soil
reflection coefficient of :27 and a deep canopy reflection coefficient of
:06 [51] (see Supplement S1). We have not included error bars here
because ref. [67] does not provide them for every point.
doi:10.1371/journal.pone.0020551.g004
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climatic factors. For example, stomatal density decreases with both

increasing temperature and atmospheric CO2 concentrations [54].

Accurate reconstruction of either temperature or CO2 concentra-

tions requires disentangling how each factor independently contri-

butes to stomatal density. Our model provides simple mechanisms

for interpreting how single plant traits are suited for different

meteorological conditions and with this we can predict optimal

plant traits for a given environment. Future work that incorporates

the covariation of multiple traits may give insight into both paleo-

records and the observed modern geographic variation of plant

traits.

Equally important for interpreting the paleo-world is the use of

allometry to reconstruct the form of paleoflora where, for example,

fossilized tree trunks have been suggested as a means for recon-

structing tree height [57]. Because our model makes an explicit

and simple connection between local meteorology and tree size

this may open up the possibility of supplementing existing proxies

with trunk diameters in order to reconstruct both paleoclimate and

the structure of local flora.

With respect to present day, our model can be used to anticipate

potential changes in maximum tree height as a result of changes in

meteorology. As maximum height is connected to local demo-

graphics and standing biomass [29,38,39,41] our model may be

extended to comment on how changing climate would affect these

important forest features.

In short, our model has important implications for understand-

ing tree distributions and dynamics in forests from a resource

perspective and presents the possibility for understanding relation-

ships between both paleo and modern climates and dynamic eco-

logy. As such, it has the potential to inform important environ-

mental issues such as migration, climate change, and carbon

sequestration.

Materials and Methods

Scaling laws
For the empirical scaling laws used in this paper we have

presented the error associated with scaling constants and

exponents when the original reference provided this information.

Height and meteorological data
For observed maximum tree heights we used the United States

Forest Service’s Forest Inventory and Analysis (FIA) database,

which records the height and location of individual trees [58,59].

We are interested in predicting the largest tree in an area given

local meteorology. The spatial variation of meteorology can be

significant over relatively short distances. Thus, it is important to

pair tree sites to meteorological stations which are geographically

close to one another. This ensures that the predictions are

capturing the conditions experienced by the observed trees. We

paired trees with meteorological stations from the National

Climatic Data Center (NCDC) [60] for purposes of using station

or station interpolate data. Tree-meteorology pairs were separated

by no more than 100 m of elevation and 4 km of radial distance.

As a result of these stringent criteria we were only able to use a

small subset of trees from the FIA database.

We considered all meteorology in terms of long-term annual

averages. For precipitation we used the Parameter-elevation

Regression on Independent Slopes Model (PRISM) [61,62]

30-year average (1971–2000) sampled at the location of the

meteorological stations. We constructed mean temperatures for

individual stations using data from the NCDC [60]. We calculated

relative humidity from the PRISM 30-year average [61,62] for

mean dewpoint temperature, minimum temperature and maxi-

mum temperature using a method described in ref. [50]. For wind

speeds we used data from the National Centers for Environmental

Prediction (NCEP) reanalysis [63,64]. Solar radiation data was

obtained from the NREL national grid [65].

Tree traits
Because of our focus on size and its relationship to survival in an

environment we chose a single set of plant traits representative of a

wide variety of tree species from different environments. This

single set of traits was used across all environments to calculate Qe.

For each tree trait we examined the variation across many species,

plant sizes, and environments and picked values that were

representative of that variation. For several traits we checked that

our values compared well to averages from the TRY database [66]

which is a comprehensive collection of 65 trait databases and is

representative of a large number of species and geographical

regions. We picked traits that were appropriate for both angio-

sperms and gymnosperms, as our model does not distinguish

between the two. We checked that the traits we picked gave rise to

related properties, such as LAI, that were similar to observations

for both angiosperms and gymnosperms. The values which we

used can be found in Table S1 along with means from the TRY

database.

Sensitivity analysis
It should be noted that many empirical scaling exponents come

with associated error bounds and that these exponents can vary

across different environments (e.g. [36]). In addition, we have

relied on several analytic derivations to inform some of the scaled

tree physiology. To deal with the potential variation of exponents

we have carried out a basic sensitivity analysis where we perturbed

individual exponents away from the value used for our predictions

and examined the shift in the median relative error between

observations and the new predictions (Fig. S4) (see Supplement S1

for details).

Supporting Information

Figure S1 Comparisons between each of the water
fluxes. Each flux is calculated for an observed tallest tree. In

Figure 5. The change in the stomatal density as a function of
environmental temperature. The values presented are averaged
over both sides of the leaf. The blue points are predictions from our
model for the optimal stomatal density in each environment, holding all
other traits at the average value. The red points are observations from
ref. [54]. The observations fall within the range predicted by the model.
doi:10.1371/journal.pone.0020551.g005
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each of the scatter plots the green curve is the one-to-one

correspondence line. (A) The relationship between the available

flow of water, Qp, and the calculated evaporation, QE . (B) The

relationship between the theoretical basal metabolism, Q0, and

QE . (C) Qp vs. Q0.

(TIF)

Figure S2 The dependence of model error on precipi-
tation estimates. (A) Histogram of the distribution of the

discrepancies between the PRISM and NARR data for rates of

precipitation. (B) Histogram of the distribution of the discrepancies

between predicted and observed tree height. Pairs of trees and

station data have been removed when the error between the

PRISM and NARR databases is more than 1 standard deviation

from the mean resulting in a reduction of the slight bimodality of

the error distribution.

(TIFF)

Figure S3 Predicted maximum tree height and temper-
ature shifts. The resulting percentage change in predicted

maximum tree height given a (A) z20C change, (B) {20C
change, (C) z10% change, and (D) {10% change in mean

annual temperature.

(TIF)

Figure S4 Sensitivity of the model to parameter values.
The change in the median relative error between observations and

predictions,
hobs{hpred

hobs

���
���, as a result of a percentage change in the

given scaling exponent. The zero percentage change represents the

empirical or analytic values used for the predictions in the main

text.

(TIFF)

Figure S5 Optimized scaling and model error. The

change in the model predictions given an optimization in the

scaling of either (B) stomatal density or (C) root absorption

efficiency compared to (A) the original model. The red curve

represents the one-to-one line. The variance of the error
hobs{hpred

hobs

� �
is reduced from .22 in (A) to .10 in (B) and (C). For

all three analyses tree sites have been removed when the error

between the PRISM and NARR precipitation estimates is more

than 1 standard deviation from the mean error similar to the

analysis summarized by Fig. S2. In each histogram error values

less than {3:0 were omitted accounting for 19 values in (A) and 3

values in (B) and (C).

(TIFF)

Supplement S1

(PDF)
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