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Abstract

Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is
useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer
proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and
analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular
modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein
structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using
Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a
combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for
the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface),
interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results
from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We
provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests
applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this
method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA.
Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find
sequences that stabilize particular protein conformations or binding interactions over others.
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Introduction

The concept of ‘‘tolerated sequence space’’ – the set of sequences

that a given protein can tolerate while still preserving its function at

a defined level – has enabled considerable advances in understand-

ing protein sequence-structure relationships and engineering new

functions [1]. Knowing which sequences would be tolerated is

important for designing for particular functions or inhibiting others

[2], optimizing protein stability [3], anticipating drug resistance

mutations [4], or characterizing potential evolutionary pathways

[5]. Therefore, as illustrated by these examples, the ability to

computationally estimate the tolerated sequence space of a protein

is of both great scientific interest and practical utility. Even in cases

where it is especially difficult to predict sequences optimized for a

given function (for example the rate of an enzymatic reaction or the

emission spectrum of a fluorescent protein), screening from a pool of

predicted tolerated sequences can increase the likelihood of

diversifying existing or identifying new functions [6].

To experimentally estimate the tolerated sequence space for a

given protein fold, one can either use sequence alignments of

orthologous proteins, or a high throughput technique such as

phage display. The disadvantage of using evolutionary information

is that it represents only a part of the total tolerated sequence

space, and may have confounding constraints that have not yet

been characterized. Moreover, simply replacing amino acids in

one protein with those observed in other members of the protein’s

family often fails to preserve function [7], because residue

interactions in proteins can be exquisitely interdependent. Phage

display has been extensively used to probe the tolerated sequence

space of both protein folds [8–10] and protein-protein interactions

[10–16]. Phage display selects for protein binding, but through the

use of a binding partner that does not interact directly with the

mutated amino acids, binding can be used as a proxy for protein

stability. Phage display methods are limited by the number of

sequences that can be produced and analyzed. For example,

allowing all 20 naturally occurring amino acid types at all positions

in a standard-size protein-protein interface is generally not possible

in a single screen. Therefore, computational methods that can

reduce the enormous number of possible sequences to those that

are more likely to be functional are extremely useful, in particular
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to focus libraries that can then be screened experimentally much

more efficiently.

Here we provide a generalized strategy and a set of protocols for

using flexible backbone protein design to predict the tolerated

sequence space for a given protein fold or interaction, implement-

ed in the Rosetta software suite for molecular modeling. Deve-

loping and, importantly, adequately testing flexible backbone

protein design approaches has been a long-standing problem ( [17]

and references therein). Several approaches to considering

backbone flexibility in computational protein design have been

described. These include sampling small random perturbations of

the y and Q backbone torsion angles [18], taking backbones from

a parametric family of structures [19] or using normal mode

analysis [20], utilizing families of crystal structures [21] or

computationally generating backbone ensembles [22–24], adapt-

ing dead end elimination to incorporate backbone changes

[25,26], and iterating between sequence and structure optimiza-

tion [27–30]. Our protocol utilizes ‘‘backrub’’ conformational

moves in Rosetta [31,32] inspired by observations of conforma-

tional heterogeneity in high-resolution crystal structures [33]. We

and others [34] have previously shown that backrub moves

capture a significant fraction of the conformational variability

explored by proteins to enable sequence changes [24].

We first describe the methodology and simulation protocol in-

depth. Next we report key benchmarking results using phage

display data. These include a new example demonstrating

prediction of the tolerated sequence space of the 6 core and

boundary residues in GB1, as well as the benchmarks of the

generalized protocol for two systems we previously used to test

variants of the computational method: the human growth

hormone-human growth hormone receptor (hGH-hGHR) inter-

face, for which approximately 1000 tolerated sequences have been

determined in six phage display screens [14], and over 8000

sequences from 169 screens of naturally occurring and synthetic

PDZ domain-peptide complexes [35]. The main new aspects here

are the generalized protocol with a consistent set of parameters

tested in several systems, detailed documentation on how to

perform the computations (including all necessary source code and

analysis tools as well as example input and output as part of this

Rosetta collection issue), and the application of this method to the

problem of predicting tolerated sequences for fold stability. We

hope that providing a well-documented consistent protocol that

can be applied to other systems both in a prospective or

retrospective manner will stimulate further studies leading to a

better understanding of transferability issues as well as scoring and

sampling problems. We conclude with a discussion of current

limitations as we see them and potential strategies for overcoming

them, as well as future applications of the methodology described

here.

Methods

Definitions of Sets of Amino Acid Positions
The protocol and methods described here (Figure 1) aim to

identify the amino acid types that can be tolerated at a given set of

positions while still preserving protein fold stability and function

(most commonly represented as binding). There are two general

stages of the protocol: (1) creation of a set of protein backbone

conformations (ensemble generation), and (2) prediction of

sequences consistent with the ensemble conformations. The input

to the protocol is at least one protein structure in PDB format and

a definition of residue positions. There are three sets of sequence

positions that can be defined: The first set of amino acids includes

those that are mutated prior to ensemble generation in stage (1)

and often remain the same for all subsequent simulations. These

positions will be referred to as the ‘‘premutated’’ positions.

Definition of premutated positions is optional. If no positions are

chosen, the input sequence will be used for ensemble generation.

The second, most important set of positions are those that can vary

their amino acid type in stage (2); these have to be defined by the

user and will be referred to as the ‘‘designed’’ positions. For each

designed positions, a set of considered amino acid types can be

defined, as described in the ‘‘Detailed Workflow’’ section below. A

final set of amino acids includes those whose conformations (but

not amino acid types) change during sequence scoring in step (2).

This set will be referred to as the ‘‘repacked’’ positions and is often

a superset of the ‘‘premutated’’ positions. These positions can be

determined by the user or automatically chosen by the protocol.

The predicted tolerated amino acid types at the designed positions

will depend on how many other positions are allowed to vary

simultaneously (for example, allowing residues in a surrounding

shell to be repacked may help to accommodate different amino

acid choices at designed positions). For all of the results reported

here, as well as a in previous study [35], residues chosen for repack

included all those with a C-alpha atom with 10 Å of the C-alpha

atom of a designed position. This is the current default if repacked

positions are chosen automatically by the protocol. Smaller sets of

repacked positions can be used to restrict sequence diversity and

simulate more conservative changes closer to the starting sequence

and conformation, or to reduce the computational time required

for the algorithm.

Phage Display Datasets Used for Testing
Our study uses three datasets where a considerable number of

tolerated sequences (not just a few) in a given system had been

determined experimentally by phage display. The first test dataset

investigated effects of sequence variations on the stability of the B1

domain of protein G (GB1) by using phage display to screen a 20

amino acid library for 6 total residues (3 core and 3 boundary) [9].

The second set, one of the largest phage display studies on protein-

protein interactions, involved the human growth hormone (hGH)

and human growth hormone receptor (hGHR) [14]. Through 6

separate phage display experiments randomizing 5–6 positions

each, 35 amino acid positions on hGH were sampled to determine

tolerated sequence space for hGHR binding. The third set is taken

from a study that has determined the peptide sequence space

tolerated for binding to 82 naturally occurring PDZ domains and

91 PDZ single point mutants [15].

Input Structures
All GB1 simulations were started using PDB code 2QMT [36],

which had a resolution of 1.05 Å, the highest available to date.

The designed sequence positions were allowed to sample any of

the 20 canonical amino acids and included residues 5, 7, 16, 18,

30, and 33. For the 56 residue GB1 domain, the repacked residues

included all but 22–24, 40, 42, and 46–49 (i.e. 47 out of 56

residues). All hGH/hGHR simulations used a 2.6 Å resolution

structure with PDB code 1A22 [37]. PDZ/peptide simulations

used the input structures previously reported [35]. For hGH/

hGHR and PDZ/peptide simulations, the designed sequence

positions were allowed to sample any amino acid but cysteine.

Backrub Ensemble Generation
During the first stage of the prediction protocol, an ensemble of

backbone structures is generated using backrub Monte Carlo

simulations [31,35]. Both the backrub simulations and sequence

sampling were implemented in the Rosetta 3 software suite [38].

The move set consists of 75% backrub backbone moves, 22.5%

Predicting Tolerated Sequences for Proteins
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chi angle moves biased by the amino acid rotamer probabilities

observed in the protein structure databank [39], and 2.5%

uniformly sampled chi angle moves. Moves are accepted or

rejected with the Metropolis criterion [40] using a kT of 0.6. After

10,000 moves are applied, the lowest energy structure from the

simulation is output for the next stage of sequence sampling. For

the results presented here, 200 backbones were generated from

independent backrub Monte Carlo simulations for each starting

structure. The exception was the hGH/hGHR predictions, which

used 100 backbones to match the number of structures used

previously [23]. Using fewer backbones will generally produce

reasonable results, but exhibit stochastic variation. Figure S1

Figure 1. Scheme for predicting the tolerated sequences for a protein fold or interaction. The input is at least one protein structure from
the protein structure databank (2QMT in the example). Rosetta first creates an ensemble of backbone conformations using the backrub method [31],
then predicts sequences consistent with each conformation in the ensemble, scoring each trial sequence–structure combination using the Rosetta
score12, and finally combines the sequences into a predicted sequence profile. This approach ignores potential covariation between side chains. To
speed up calculations, the scoring function is split into one-body terms describing the intrinsic energy of a particular residue conformation, and two-
body terms between residues; these residue-residue interaction terms are assumed to be pairwise additive. One- and two-body terms are pre-
calculated and stored in an interaction graph [42] such that optimization of sequence–structure combinations for entire proteins only takes seconds
using look-up tables of interaction energies. For the interaction graph, vectors of residue self-energies (one body) are stored on the vertices (green
circles) and matrices of residue interaction energies (two body) are stored on the edges (thick black lines). Computed interaction energies within
proteins, between proteins, or between groups of residues can be reweighted to generate custom fitness functions for specific applications. This
flexibility in scoring residue groups allows modeling of separate requirements, such as those to maintain residues required in an interaction interface
with a binding partner. Group and group interaction reweighting is typically only done for protein-protein interactions. (For the monomeric GB1
domain shown here, no reweighting was applied.)
doi:10.1371/journal.pone.0020451.g001
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gives estimates of the variation as a function of the number of

backbones based on a benchmark using 2000 backbones and

approximately 240 million sequence scores. Predicted ranks of

selected amino acid types are generally more robust than

predicted amino acid frequencies. Figure S2 illustrates the

dependence of prediction performance on the number of

backbones. Predictions using less than 20 backbones show

reduced area under ROC curve scores.) If possible, at least 100

backbones are recommended for results more robust to stochastic

variation (Figure S1). For the scoring metrics summarized in

Table 1, the average standard deviation over three runs when

using 100–200 backbones was between 0.4–1.9% of the dynamic

range of each measure.

The conformational variation between different polypeptide

backbones modeled by the backrub method is generally small, and

using larger variation often leads to flat profiles that do not agree

well with experimental data [24]. For all backrub ensembles used

here, the average C-alpha atom RMSD from the starting structure

was 0.4–0.9 Å.

By default, the starting sequence in the input PDB is used when

the entire protein structure is sampled in the fixed-sequence

backrub Monte Carlo simulations in stage (1). However, there are

several circumstances in which a user may want to change the

sequence of the input structure prior to ensemble generation. For

example, it may be desirable to mutate residues to more closely

represent the experimental system. Also, experimental data may

suggest that another amino acid sequence shows greater function

than the sequence in the starting structure. As shown in a previous

study [35], mutating the starting structure to that sequence prior to

ensemble generation improves prediction performance.

Such mutations can be made manually prior to backrub Monte

Carlo or done automatically as a preprocessing step of the

simulation. If the automatic option is used, the side chain

conformations of the mutated residues and all other residues are

optimized using simulated annealing [41]. If desired, iterative

minimization can be applied by including progressively more

degrees of freedom in three stages (first chi angles only, then chi/

phi/psi angles, finally chi/phi/psi angles and rigid body degrees of

freedom).

Designed Position Sequence Scoring
Before any sequences are scored, a graph of pairwise interaction

energies between all possible conformations of all allowed amino

acids is precomputed [42]. The first step of scoring a given sequence

is to determine the conformations of side chains that minimize the

score of the entire structure. We term this score the ‘‘raw Rosetta

score’’. This is done using Monte Carlo simulated annealing [41].

Once that conformation is identified, the interaction energies

between and within user-defined groups of residues, often individual

protein polypeptide chains, are calculated. The actual total fitness

score of a given sequence is a user-defined linear combination of the

self-energies and interaction energies between these groups of

residues. We term this score the ‘‘reweighted Rosetta fitness score’’.

For the dataset of PDZ domain-peptide complexes, the optimal

weights were found to be 1 for the intermolecular PDZ-peptide

interaction energies, and 0.4 for the intramolecular score [35]. We

used those same weights for the hGH/hGHR interaction energies.

Varying these weights in a grid search showed that these parameters

are transferable to the hGH system, where they produced nearly

optimal fits to the phage display data (Figure S3). For the GB1

protein fold stability dataset, only the intramolecular weight was

applicable, which was kept at 0.4.

The general protocol described here for all three datasets uses the

default ‘‘score12’’ energy function in Rosetta 3, with its implemen-

tation in the 3.2 release. The only modification to the default

score12 energy function was to increase the reference energy of

histidine by 1.2 score units, as was done previously for PDZ/peptide

specificity prediction [35]. Histidine reweighting was found to

improve performance across all three datasets tested here. Other

than histidine reweighting, the previous scoring function used for

PDZ-peptide specificity prediction [35] differed from score12 in a

number of ways: First, the Ramachandran and omega angle energy

terms were turned off. (Because omega angles were never varied

during the simulations, the omega energy term had no effect.)

Second, the short-range backbone-backbone hydrogen bond and

the amino acid probability given phi/psi terms were doubled.

Third, turning off environment dependent hydrogen bonding was

found to improve performance for PDZ-peptide specificity (it is on

per default in standard in Rosetta 3). The first two differences to the

Table 1. Summary of tolerated sequence prediction performance on different datasets using the generalized protocol described
here.

Residue positions Bits of information Fraction Top 5 (%)

Proteins Phage display Predicted AAD (%) AUC Rank Top

GB1 (kT = 0.23) 1 6 1.58 2.66 56.9 5.61 0.74 6.17

GB1 (kT = 0.59) 1 6 1.58 0.89 54.2 4.05 0.71 7.17

hGH/hGHR1 1 16 1.19 3.58 59.3 7.46 0.75 6.00

hGH/hGHR2 1 35 0.89 3.24 41.9 7.48 0.64 7.72

PDZ/Peptide 5 25 3.11 2.82 81.7 4.16 0.87 2.84

PDZ/Peptide3 5 25 3.11 3.06 82.0 3.67 0.88 2.76

116 designed hGH amino acid positions as defined in [23] and shown in Figure 3.
2All designed hGH amino acid positions shown in Figure S4.
3Performance metrics based on position weight matrices from Smith & Kortemme 2010 [35].
Scoring metrics are used as defined previously [35]. Fraction Top 5 gives the average fraction (for every position) of amino acids with phage display frequencies $10% in
the predicted top 5 ranked amino acids. AAD gives the average absolute difference in amino acid frequency between prediction and phage display. AUC gives the area
under receiver operator characteristic curve, with true positives defined as those with phage display frequencies $10%. Rank top gives the average rank of the most
frequently observed amino acid in phage display. The table gives results from one set of predictions as described in Methods. To gauge the variability, we repeated the
predictions three times and calculated the standard deviation of the scoring metrics. The absolute standard deviations and dynamic ranges are 0.4/4.32 (Bits Predicted),
1.9/100 (Fraction Top 5), 0.4/10 (AAD), 0.006/1 (AUC), and 0.2/19 (Rank Top). As a percentage of the dynamic range of a given metric, the average standard deviations
(over the first 5 rows) were: 0.9% (Bits Predicted), 1.9% (Fraction Top 5), 0.4% (AAD), 0.6% (AUC), and 1.1% (Rank Top).
doi:10.1371/journal.pone.0020451.t001
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published method [35] listed above, namely the addition of two

terms and the change of two weights, are part of a ‘‘score12 patch’’

that is standard in Rosetta 3 methods using score12, but was not

used for the PDZ-specificity prediction [35]. A discussion of the

historical reasons for the bifurcation of the ‘‘standard’’ and

‘‘score12’’ weights is included in supporting information (Text S1).

Genetic Algorithm Optimization
Sequence sampling proceeds using a genetic algorithm inde-

pendently on each backbone in the ensemble. The initial po-

pulation is generated by selecting random sequences from the

user-defined set of allowed amino acids at the designed positions.

In addition, a single population member is generated that contains

the sequence from a single simulated annealing call where all

possible amino acids are allowed (i.e. the sequence with the best

raw Rosetta score). The population size for each generation is

2000 sequences and 5 total generations are produced, including

the initial population. This results in slightly less than 10,000

sequences scored for each backbone. If 200 backbones are

generated, this will result in up to 2*106 sequence scores, which

is within an order of magnitude of the theoretical size of the 5 and

6 amino acid libraries (3.2*106 and 6.4*107 sequences, respective-

ly) used for experimental screening in the GB1, hGH/hGHR, and

PDZ systems. In contrast to phage display, however, 4 out of 5

generations of sequences are not selected randomly from all

possible combinations, but are increasingly enriched in later

generations using an applied fitness function. Changing the

number of generations to 30 was previously shown to produce

equivalent results [23].

For the genetic algorithm the reweighted Rosetta fitness score is

used to determine the fitness for each sequence. For every new

generation of the genetic algorithm, the best fitness sequence is

automatically propagated to the next generation. The remaining

sequences are generated by crossover and mutation of parental

sequences from the previous generation. Parental sequences are

selected by tournament selection, in which two random sequences

are chosen, and the sequence with the best fitness is chosen to be a

parent. Half of the new population members are generated by

crossover, in which two parents are chosen and the identity of each

amino acid is randomly selected between the two parental

sequences. Unlike physical DNA crossover, there is no linkage

between sequence positions close to one another. The other half of

the new population members are generated by mutation, in which

a single parent is chosen and each of its amino acids is mutated

with a 50% probability.

While our predictions agree reasonably well with experimental

data, undersampling of sequence space and trapping in local

minima are possible caveats of the applied optimization algo-

rithms. Other sequence optimization methods could be compared

to our results, such as approaches that are guaranteed to find the

global minimum energy sequence [43]. Along these lines, we have

found that predicted sequences using Rosetta Monte Carlo

optimization are similar to results of an approach that finds all

low-energy sequences within a given energy threshold of the global

minimum of the Rosetta scoring function ( [44] & unpublished

results). We therefore believe that inaccuracies in scoring and the

inability to more accurately sample backbone variation upon

sequence changes are more significant contributors to the

remaining discrepancies with experimental data than fixed-

backbone sequence sampling issues.

Sequence Processing
The sequences output by the genetic algorithm are processed

into a single position weight matrix (PWM) by first calculating a

PWM for each individual backbone, and then merging the PWMs

together. Individual backbone PWMs are calculated by Boltzmann

weighting (w = eDG/(kT), w: sequence weight, DG: reweighted

Rosetta fitness score, kT: Boltzmann factor) each of the individual

sequences and calculating residue frequencies. The default

Boltzmann factor used here was 0.228, as determined previously

[35]. The Boltzmann factor can be changed by the user (see

accompanying protocol capture). PWMs are merged together with

the assumption that all backbones are equivalent. The contribu-

tion of individual backbones is not weighted by their total scores

because the total energy of a backbone can be largely determined

by structural features distant from the designed region, which

could add considerable noise. Instead, to generate a merged

PWM, the median frequency for every position/amino acid type

element across all backbones is calculated. Taking the median is

more robust to outliers than taking the mean or weighted mean.

Users can alternatively use any percentile cutoff they wish (in the

accompanying protocol capture postprocessing script), with the

50th percentile being equivalent to the median. While PWM

analysis ignores correlations between sequence positions, a similar

analysis could be done using the Boltzmann weighted sequences to

calculate residue co-occurrence at two or more positions.

Phage Display Data
Raw sequencing data (Andrea G. Cochran, personal commu-

nication) from round three of phage display of the Streptococcus

GB1 domain using the human IgG Fc domain as bait [9] included

185 sequences. Sequences were excluded that contained ambig-

uous reads, early stop codons, and mutations at sites other than

those explicitly varied, leaving 171 total sequences and 167 unique

sequences. For the hGH/hGHR example, phage display frequen-

cies were taken from Figure 2 of the authors’ publication [14].

Erbin PDZ frequencies were used as previously described [35].

Detailed Workflow
The following is a detailed description of the steps that need to be

taken to apply the described method to another system, or

reproduce the results of the analysis done here. The protocol

capture accompanying this manuscript contains all the input files,

command lines, and postprocessing scripts for replicating the

computations, figures, and tables given here. (Dataset S1, with any

future updates available at http://kortemmelab.ucsf.edu/data/)

Select and prepare input structure. The input structure

should be a crystal structure, NMR structure, or high quality

homology model. If multiple structures are available (e.g. an NMR

ensemble), the input structures should be placed into separate PDB

files for input into the backrub application. Input of multiple

structures can be facilitated by the backrub_seqtol.py script if they are

numbered sequentially starting at 1, for instance PDB_01.pdb,

PDB_02.pdb, etc.

Determine which amino acids will be premutated,

designed and repacked and create resfiles. Each of these

sets of residues is described above. If there are no premutated

residues, a backrub resfile is unnecessary. If there are, those should

be placed as PIKAA X (picking the desired amino acid X by one

letter code) in the backrub resfile, with the default behavior for all

other residues specified as NATAA (i.e. sample side chain con-

formations while preserving the native amino acid type).

A resfile is required for the sequence_tolerance application and

should contain the designed and repacked sets of residues.

Designed residues should use either ALLAA (all amino acids) or

PIKAA XYZ… (picking the allowed amino acid residues with one

letter codes X, Y, Z, etc.). Repacked residues should use NATAA

and nonrepacked residues should use NATRO (native rotamer). A

Predicting Tolerated Sequences for Proteins
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convenience script, seqtol_resfile.py, will generate a resfile for an

input structure and a given set of designed residues, automatically

determining the repacked residues having C-alpha atoms within

10 Å of the designed residue C-alpha atoms.

Determine whether to minimize after premutation and

create movemap file. If premutated residues are specified using

the backrub resfile, an optional stage of minimization is

recommended and can be enabled after the premutation step but

before the backrub Monte Carlo simulation. To do so, a movemap

file (specified using the -backrub:minimize_movemap option) must be

created which specifies the sidechain, backbone, and rigid body

degrees of freedom to minimize. This was done, for example, in the

case of the Erbin mutant V83K to minimize all side chains and the

most N-terminal backbone dihedral angles of the peptide. If

backbone dihedral angles or rigid body degrees of freedom are

minimized, care should be taken with the fold tree; information on

the fold tree is given in the Rosetta 3.2 manual and Leaver-Fay et al

[38].

Determine whether to sample phi/psi angles directly and

create movemap file. While not used for any results published

here or elsewhere to date, it is possible to have the backrub Monte

Carlo procedure also make small direct perturbations to phi/psi

angles of the protein. To do so, a movemap file (described in the

Rosetta 3.2 manual) must be provided using the -in:file:movemap

option. In addition, the -sm_prob option, which gives the

probability of making a ‘‘small’’ combined phi/psi move [45],

must be given a positive value. The fold-tree warning above about

minimizing backbone degrees of freedom applies to backbone

perturbations as well.

Create backrub ensemble. The backrub application can be

run once and produce many different backbones, each starting

from the original specified structure. As an alternative, the backrub

application can be run separately each time a new ensemble

member is required. The backrub_seqtol.py script does this and

renames the resulting structures as if they came from a single

execution of the backrub application. On a heterogeneous cluster,

Figure 2. Prediction of tolerated sequences for GB1 fold stability. Frequently observed amino acids in phage display are enriched in the GB1
prediction. A. The structure (PDB code 1FCC) of Streptococcal GB1 (blue) is shown bound to the Fc domain of human IgG (green). The core and
peripheral residues that were randomized in phage display are shown with sticks and transparent spheres. The side chain atoms (starting at C-beta)
of these amino acids are at least 7 Å away from any atom of the Fc domain, making residues selected at these positions unlikely to interact directly
with the Fc domain. B. Amino acids are ranked individually for each sequence position by computationally predicted frequency (using the Boltzmann
factor kT = 0.23, as described in the main text). Wild type residues, which were used in protein ensemble generation, are shown in red. The dashed
line indicates a typical cutoff of picking the top 5 amino acid choices at each position. C. Sequence logos (LOLA, University of Toronto) are shown for
predictions with two different Boltzmann factors. The relative degree of specificity (in terms of bits of information, y-axis) shows good
correspondence between prediction and phage display. Increasing the Boltzmann factor lowers the overall specificity and brings the absolute
frequencies closer to phage display.
doi:10.1371/journal.pone.0020451.g002
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this stage took 20 seconds to 10 minutes per backbone for the

results published here.

Determine appropriate fitness function and score a large

number of sequences. The sequence_tolerance application is used

to score a random selection of sequences that are increasingly

enriched in those that conform to the prescribed fitness function,

whose coefficients are specified using the -seq_tol:fitness_master_weights

option, which is fully described in the Rosetta 3.2 manual. The

fitness function individually weights interactions between and within

sets of residues defined by the PDB chain identifier. The sequence

scoring process took 15 minutes to 5 hours per backbone for the

results published here.

Post-process sequence scores. Post processing of the

results is done using an R [46] script in the sequence_tolerance.R

file. The function used, process_specificity(), takes several parameters.

The first parameter, fitness_coef, allows the user to specify a vector

of coefficients for the fitness function used in postprocessing. The

second parameter, temp_or_thresh, allows the user to specify the

Boltzmann factor (temp) or threshold cutoff value above the

minimum fitness (thresh). The third parameter, type, determines

how sequences are weighted and temp_or_thresh is interpreted.

Sequences are either weighted using the Boltzmann equation

("boltzmann"), or a binary threshold cutoff ("cutoff"). The final

parameter, percentile, gives the percentile to use for merging

frequencies from multiple backbones together. The default value,

0.5, corresponds to the median frequency across all backbones.

Good results can still be obtained even if the genetic algorithm

uses weights for tournament selection that are slightly different

from those used for final sequence scoring. For instance, in a

previous PDZ peptide specificity study [35] and the results

reported here, the genetic algorithm used a ratio of 1:2 between

the weights of intramolecular and intermolecular interactions,

while the final sequence scoring was done using a ratio of 1:2.5.

The user thus has the flexibility to make small perturbations to the

weights during post-processing without running the whole

algorithm again.

Caveats and Factors Not Taken into Account
For the case of interface optimization, residue-residue interac-

tions across the interface are upweighted in lieu of explicitly

calculating the scores of the two partners separately and in

complex. This was done in part for computational efficiency and

in part because separate calculation of scores was found to add

noise to interface DDG prediction (unpublished results). If the

designed residues change their conformations in energetically

significant ways when not in complex, the algorithm will neglect

those contributions to binding affinity. Also, the contribution of

conformational entropy changes is not modeled.

Results

In the following, we show example results that assess the

performance of RosettaBackrub sequence tolerance predictions

using three different experimental datasets that determined

tolerated sequences for protein fold stability [9] and protein

binding [23,35] using phage display. Two of these tests were

previously performed with an earlier Rosetta version [23] or

scoring function [35]. Here we evaluate the generality of the

Rosetta 3 standard protocol described in this Rosetta collection on

all three datasets, compare to previous results, present a new test

on a dataset of tolerated sequences for fold stability and provide an

extensive set of customizable simulation and analysis tools in

addition to all source code. Overall, the generalized protocol

captures a significant fraction of the observed sequence space in all

three datasets (Table 1), with values for the area under a ROC

curve between 0.64 and 0.87, and the fraction of sequence space

captured by the top 5 ranked amino acid types between 54 and

82%.

GB1 Fold Stability Tolerated Sequence Space Prediction
The fold stability test used a dataset by Kotz et al who

determined tolerated sequences for three residues in the core (L5,

L7, and F30) of the B1 domain of protein G (GB1) and three

residues bordering the core (T16, T18, and Y33) [9]. The authors

utilized the ability of the GB1 domain to bind to the human IgG

Fc domain for a phage display screen. The side chains of the six

GB1 residues varied in the experiment are at least 7 Å from any

heavy atom on the IgG Fc domain in the cocrystal structure

between the GB1 and IgG Fc domains [47], as shown in Figure 2.

Mutating the GB1 residues should thus primarily affect the

stability of the GB1 domain and report on sequences tolerated for

fold stability, instead of selecting sequences that modify the

interaction directly. After three rounds of GB1 display on phage,

using IgG as bait, the authors obtained 171 full-length GB1

sequences suitable for analysis.

The results of applying the generalized sequence tolerance

prediction protocol described in Methods are shown in Figure 2.

Consistent with previous studies [35], the prediction of sequence

rank is often better than the absolute frequencies. Therefore, we

compared the predicted ranking of the amino acid types at each

position to the experimentally observed frequencies. Averaged

over the six positions, 57% of the frequently observed amino acids

are found in the top five predicted amino acids. This performance

metric, which is helpful for gauging the usefulness of the prediction

for library design or other protein engineering applications, is used

along with other metrics to compare all three datasets in Table 1.

For actual protein engineering applications, it is critical to

correctly identify at least one ‘‘viable’’ (tolerated) amino acid type

at each position. Here, for all six positions, the prediction finds at

least one frequently observed amino acid (greater than 10%

frequency) within the top five ranked amino acids. (This analysis

ignores co-variation between positions, which can be obtained

from analysis of the actual predicted sequences).

In this example test case, the predictions reveal bias towards the

native, input sequence at five positions. Two out of those five

positions, core residues L5 and F30, show the wild type sequence

to be the most frequent in phage display. Two of the border

positions, T16 and T18, are incorrectly biased towards the input

sequence. One of those positions is flat, with no single residue

having greater than 20% frequency, so it is not surprising that the

input bias overwhelms the relatively weak preferences. For residue

Y33, the prediction correctly ranks both frequently observed

amino acids in the top five ranked amino acids and above the

input wild-type tyrosine.

Human Growth Hormone/Human Growth Hormone
Receptor Interaction

The first iteration [23] of a sequence tolerance prediction method

was implemented in Rosetta 2 and applied to the recapitulation of

data from phage display selections of human growth hormone

(hGH), using human growth hormone receptor (hGHR) as bait

[14]. Besides using an entirely different implementation, which

made the present computations approximately 2–20 times faster,

there were several algorithmic differences between the previous

approach and the generalized protocol presented here.

The main difference lies in the way sequences were scored,

filtered and weighted. The earlier protocol used a scoring function

parameterized for protein-protein interfaces. In addition, the score
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of the protein was decomposed into a ‘‘binding’’ score (intermo-

lecular interactions between chains; A-B in Figure 1) and a

‘‘folding’’ score (intramolecular interactions, sum of A and B in

Figure 1). Sequences were allowed to contribute to the calculated

frequencies if their binding and folding scores fell below given

cutoffs determined using the wild-type sequence scores. The

generalized protocol presented here uses the Rosetta 3.2 default

all-atom scoring function, including an increased histidine

reference energy (see Methods), was designed to work without

having a wild-type sequence, and all scores were normalized to the

lowest fitness found for a given backbone. Additionally, instead of

using two separate scores for weighting, a linear combination of

the binding and folding scores was used. Finally, instead of using

hard cutoffs, Boltzmann weighting was used to weight the

contribution of a given sequence to the final position weight

matrix.

The predictions from the generalized protocol were similar to to

the previous method [23] for the 16 residue positions in which a

computationally selected library was described [23] (Figure 3).

Using the residue-specific size of the library as previously defined

(Table 2 in reference [23]), the Rosetta 3 protocol has one fewer

false negative (and by definition of the fixed-size library one fewer

false positive) than the Rosetta 2 protocol. These results thus

highlight the transferability of the parameters and protocol used

here, while providing a more general prediction framework.

PDZ/Peptide Interaction
The third test dataset contains peptide sequences selected by

phage display to bind to PDZ domains [15]. To determine if the

generalized protocol and scripts described here produce similar

results to those previously published on the PDZ-peptide dataset

[35], we performed 5 representative PDZ/peptide interface

specificity predictions. (For details on methodological differences

between the published and current protocols, see the Methods

section.) Computational and experimental sequence logos are

shown in Figure 4. The correspondence to experiment is overall

similar to the previous protocol [35], with the largest difference

observed in the absolute frequency of amino acids, as shown in

Table 1. The primary changes are reductions in the preferences

for R/K at position 24 and T at position 22 for the DLG1-2

PDZ domain, as well as the preference for T at position 22 for the

Erbin PDZ domain. These differences likely come from the

restoration of environment dependent hydrogen bonds in the

current protocol, which weakens hydrogen bonds in solvent

exposed areas.

Sampling Efficiency and Boltzmann Factors
From an algorithmic point of view, one of the primary

differences between the protocols presented here for interface vs.

fold stabilization is whether the fitness function is reweighted

(interfaces) or not reweighted (fold stabilization) after side chain

packing. The first generation of the genetic algorithm consists of

random sequences as well as the sequence with the best raw score

as defined by the non-reweighted fitness function. Because the

reweighting changes the fitness function, this optimized sequence

often does not score as well relative to sequences that evolve in

later generations in the case of interface stabilization. This leads to

a lower overall contribution of the first generation sequences to the

final PWM (Figure 5A). However, the reweighted fitness quickly

improve, leading to a median fifth generation PWM contribution

of 40%.

By contrast, when optimizing sequences to preserve fold stability,

the raw Rosetta score for optimization of intramolecular side chain

packing and reweighted Rosetta fitness score for Boltzmann

weighting are identical. Using the same Boltzmann factor as for

interface prediction, the first generation overwhelmingly dominates

the contribution to the final PWM (Figure 5B). The primary

contribution of the first generation comes from the sequence that

Figure 3. hGH/hGHR interface tolerance prediction. The generalized Rosetta 3 protocol described here was applied to rank human growth
hormone (hGH) amino acids by computationally predicted frequency. The residue positions shown and their ordering are taken from previously
published results using the Rosetta 2 protocol (Humphris & Kortemme, Table 2 [23]). Wild type residues, which were used in protein ensemble
generation, are shown in red. For each position, an average of 59% of the amino acids observed in phage display ($10% experimental frequency) are
predicted within the top five computationally ranked amino acids (above dashed line). Overall performance was similar to previous results of the
Rosetta 2 protocol. Amino acids (other than wild-type) included in the computationally selected library from the Rosetta 2 protocol are indicated with
a star. If the same number of amino acids at each position is used as defined in the computational library in [23], Table 2, the Rosetta 3 protocol
misses two frequently observed amino acids included by Rosetta 2 (V67 and L176). Conversely, the Rosetta 2 protocol misses three frequently
observed amino acids included by Rosetta 3 (S21, A21, and E22). Both protocols share similar false positive predictions. However, the Rosetta 3
histidine reference energy reweighting (see Methods) eliminates 6 out of 8 histidine false positives (H*).
doi:10.1371/journal.pone.0020451.g003
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showed the best overall side chain packing. It typically takes several

generations for new sequences to be discovered that score close

enough to that sequence to make a significant contribution to the

PWM. This imbalance may be partially an artifact of the Boltzmann

factor that was not previously assessed for prediction of tolerated

sequences for fold stability. The Boltzmann factor increases from

0.23 (taken from the PDZ-peptide study) to 0.59 if it is reoptimized

to produce the highest similarity between the predicted and

experimental PWMs (Figure 5C). Here, the contributions of the

different generations are more balanced. Of note, this change in

Boltzmann factor does not significantly change the sequence ranks

(data not shown), but does make the computational predictions

match the relative flatness of the experimental PWM better. If this

protocol is applied to other monomeric systems where absolute

frequencies matter, the Boltzmann factor of 0.59 may provide a

more useful starting point.

Another algorithmic consideration is the influence of introduc-

ing backbone flexibility into the prediction method. To determine

the effect backbone flexibility had in our simulations, we repeated

the predictions without backrub moves and computed overall

performance (Table S1). The results with the heterogeneous test

set used here mirror the previous finding for PDZ-peptide

interactions [35], namely that backbone flexibility improves

predictions by most metrics. The only place where the fixed

backbone method showed better performance was the Fraction

Top 5 scores for the GB1 dataset. Overall prediction performance

improved with an incerasing number of backbones until con-

vergence was reached at about 20 backbones (Figure S2) for the

three datasets tested here.

A final point of comparison can be made to a naı̈ve model, in

which residues with similar chemical properties to those in the

input structure are given equal weight in a predicted PWM. Using

the unmodified kT of 0.23, the prediction method presented here

also outperforms the naı̈ve model by most performance metrics

(Table S2).

Discussion
One of the key assumptions made in the method described here is

that the backbone structures generated with the input sequence will

adequately sample backbones that will accommodate other amino

acid sequences. While we have shown here and in previous work

that incorporation of backbone flexibility improves prediction of

tolerated sequence space [23,35], side chain order parameters [32],

and residual dipolar couplings [24], this and previous studies

Figure 4. PDZ/peptide interface tolerance predictions. Shown are 5 representative examples of predictions with the generalized protocol,
compared to experimental data from phage display. The Erbin V83K interface prediction involved making the indicated point mutant (V83K) to the
PDZ domain prior to backrub ensemble generation (an example of a ‘‘premutated’’ position).
doi:10.1371/journal.pone.0020451.g004

Figure 5. Sequences from later genetic algorithm generations contribute more in interface design prediction than in protein
stability design prediction. The total Boltzmann weights in the final PWM for the new sequences sampled in each generation were calculated. The
distribution of contributions for each generation across the 200 simulations (one simulation for each backbone in the backrub ensemble) is shown.
Boxes span from the first quartile to the third quartile, with the line indicating the median. Whiskers extend to the most extreme data point within 1.5
times the interquartile range of the box. Circles show data points beyond that limit. A. Because the fitness function used for protein-protein
interfaces (here shown for a complex between the second PDZ domain of DLG1 and peptides) is different from the fitness function used for
optimization of side chain packing, the genetic algorithm is important for enriching the population in sequences predicted to be better binders.
B. For optimization of protein fold stability (designing positions in the GB1 core), the initial full protein design phase is very effective at finding a low
energy sequence, which dominates the contribution to the position weight matrix (PWM) when the same Boltzmann factor (kT = 0.23) is used.
C. When the Boltzmann factor is optimized to minimize the average absolute difference between experiment and computation (kT = 0.59), the
contribution of the later generations increases significantly.
doi:10.1371/journal.pone.0020451.g005
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indicate that there are limitations to that assumption. To adequately

sample both backbone and sequence space, variants of simultaneous

or iterative sampling strategies [27,28] are likely necessary. We have

made initial attempts at adding iteration to this method and others,

but found that the simulations end up trapped in local minima of

sequence space, with the backbones retaining the bias towards the

sequence that they start with. Often, the solution to limited sampling

is to increase the simulation temperature, which can be done when

the backbone is fixed. However, when the backbone is flexible,

increasing the temperature can lead to protein unfolding and

sampling of unproductive regions of sequence space. Application of

constraints, restraints, or other sampling methods may be required

to overcome that problem.

While the uses of this protocol to date have been limited to

protein-protein interfaces and monomeric protein folds, there

are several other applications that it can also be generalized to.

For instance, this method could be leveraged in prediction of

the amino acid sequences that will bind to a small molecule

substrate, cofactor, or inhibitor, as well as for protein-DNA and

protein-RNA interfaces. Another potential application would be

stabilizing particular conformations of loops or domains. For

that purpose, one could place the backbone into a preferred

conformation at the outset, and then upweight the interaction

energies between the residues that are desired to interact.

While many design problems can be described using a single

state, adaptation of the code described here could be used to

generate a set of sequences that satisfy multiple states or

constraints [48–50].

Supporting Information

Figure S1 Increasing the number of backbones reduces
stochastic variation. 2000 backbones were generated for each

of the prediction simulations used here, resulting in approxi-

mately 240 million sequence scores. The frequencies calculated

from the entire dataset (kT = 0.23) were treated as the ground

truth and used to calculate the root mean squared error (RMSE)

for subsets of the data using 200 (red), 100 (orange), 50 (cyan),

and 20 (purple) backbones each. A. Frequency data were divided

into 20 equally spaced bins and the predicted frequency RMSE

was calculated for each bin. For example, if the method is applied

using 100 backbones, and an amino acid frequency is predicted to

be 0.425, then the estimated error is approximately 0.125 (dashed

lines). B. The data were divided by rank and the predicted rank

RMSE was calculated for each rank. For example, if this method

is applied using 20 backbones, and an amino acid rank is

predicted to be 3, then the estimated error is approximately 1.9

(dashed lines). For 20 backbones, the stochastic contribution to

the root mean squared error (RMSE) of the predicted frequency

can be up to 0.25, which is 25% of the dynamic range. The

predicted ranks are more robust, with an RMSE of up to 2.5, or

12.5% of the dynamic range. 100 and 200 backbones reduce the

stochastic error by approximately 2-fold and 2.5-fold over 20

backbones.

(TIFF)

Figure S2 Dependence of prediction performance on
number of backbones. Distributions of area under ROC curve

(AUC) values are shown for varying numbers of backbones.

Prediction performance plateaus at approximately 20 backbones.

Each boxplot shows the distribution of mean AUC values for 50

sets of independent backbones (mean AUC values were computed

across all datasets, from the equivalent of rows 1, 4, and 5 of

Table 1). Horizontal lines represent the median, the box spans the

interquartile range (IQR), whiskers extend to the furthest data

point up to 1.5 times the IQR from the box, and data points

outside the range are shown with circles. This figure used the same

data that were generated for Figure S1).

(TIFF)

Figure S3 Sequence tolerance prediction for the hGH/
hGHR interface is not highly sensitive to data process-
ing parameters. For the 35 designed positions in the human

growth hormone (hGH)/human growth hormone receptor

(hGHR), position weight matrices (PWM) were generated using

a grid of intramolecular weights and percentile cutoffs. A. At

each grid point, the value of kT was fit such that the average

number of bits of information matched that observed in phage

display (i.e. 0.89 bits, see Table 1). B. In the resulting PWMs,

the average absolute difference (AAD) between phage display

and prediction shows little sensitivity to the processing

parameters. The point with parameters equivalent to those

found in the PDZ/peptide predictions (0.4 intramolecular

weight, 0.5 percentile) is only slightly worse (by 0.04% AAD)

than the lowest (best) AAD sampled on the grid. The other

rank-based metrics also do not change significantly across the

same parameter space and are less sensitive to changes in kT

(data not shown).

(TIFF)

Figure S4 hGH/hGHR interface tolerance prediction
for all residues. Human growth hormone (hGH) amino acids

are ranked by computationally predicted frequency using the

generalized Rosetta 3 protocol described here. Wild type residues,

which were used in protein ensemble generation, are shown in red.

(Representation and color coding is as shown in Figure 3 in the

main text).

(TIFF)

Table S1 Summary of fixed backbone prediction per-
formance. As a fraction of the dynamic range of the

performance metrics, the predicted bits of information, AAD,

AUC, and Rank Top metrics (averaged over all datasets) are better

with backrub sampling (see Table 1) by 9.4%, 9.1%, 1.6%, and

1.1%, respectively. The only performance metric that was better

(by 3.8%) without backrub sampling was Fraction Top 5. This

improvement came primarily from the GB1 dataset. Fraction Top

5 was found to be the most variable performance metric across

replicated predictions (Table 1).

(PDF)

Table S2 Summary of naı̈ve model prediction perfor-
mance. Naı̈ve predictions were constructed by generating

position weight matrices in which the PDB amino acid and amino

acids in its similarity group were given equal weight, and all other

amino acids given zero weight. The similarity groups were as

follows: DENQ, RKH, LIVM, FYW, PAG, ST, and C [23]. All

metrics for the performance of the naı̈ve model (Fraction Top 5,

AAD, AUC and Rank Top) were worse than those shown in

Table 1, with the exception of the hGH/hGHR AAD for the 16-

residue set. In addition to performing better than a naı̈ve model,

the method described in the main text also does better than

random, as evidenced by the area under ROC curves (AUC) being

greater than random (0.5) for all datasets (Table 1).

(PDF)

Text S1 Background on the ‘‘standard’’ and ‘‘score12’’
Rosetta energy function weights

(PDF)

Dataset S1 Protocol Capture

(BZ2)
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