
Modeling Symmetric Macromolecular Structures in
Rosetta3
Frank DiMaio1*, Andrew Leaver-Fay2, Phil Bradley3, David Baker1, Ingemar André4

1 Department of Biochemistry, University of Washington, Seattle, Washington, United States of America, 2 Department of Biochemistry, University of North Carolina,

Chapel Hill, North Carolina, United States of America, 3 Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 4 Department of

Biochemistry and Structural Biology, Centre for Molecular Protein Science, Chemical Centre, Lund University, Lund, Sweden

Abstract

Symmetric protein assemblies play important roles in many biochemical processes. However, the large size of such systems
is challenging for traditional structure modeling methods. This paper describes the implementation of a general framework
for modeling arbitrary symmetric systems in Rosetta3. We describe the various types of symmetries relevant to the study of
protein structure that may be modeled using Rosetta’s symmetric framework. We then describe how this symmetric
framework is efficiently implemented within Rosetta, which restricts the conformational search space by sampling only
symmetric degrees of freedom, and explicitly simulates only a subset of the interacting monomers. Finally, we describe
structure prediction and design applications that utilize the Rosetta3 symmetric modeling capabilities, and provide a guide
to running simulations on symmetric systems.

Citation: DiMaio F, Leaver-Fay A, Bradley P, Baker D, André I (2011) Modeling Symmetric Macromolecular Structures in Rosetta3. PLoS ONE 6(6): e20450.
doi:10.1371/journal.pone.0020450

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received February 25, 2011; Accepted April 20, 2011; Published June 22, 2011

Copyright: � 2011 DiMaio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: FD and DB acknowledge the NIH (P41RR002250, R01GM092802) and HHMI. IA was supported by the Knut and Alice Wallenberg Foundation and the
Crafoord foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dimaio@u.washington.edu

Introduction

Homomeric protein assemblies are ubiquitous in nature,

playing many key roles in biochemical processes. These

assemblies are built up by the repetition of a single structural

unit, the most common example being homodimers with two

protein subunits. Homomeric assemblies often play a morpho-

logical role by forming channels, containers and molecular rulers.

Almost all homomeric assemblies have a symmetrical arrange-

ment of their subunits in three-dimensional space. Symmetry is a

central concept in understanding the structural organization of

many protein complexes and is fundamental to the field of

crystallography.

Due to the biological importance of symmetrical protein

assemblies, the need arises to structurally model symmetrical

protein systems. Symmetry imposes fundamental constraints on

the organization of these protein assemblies, which enables the

computational treatment of very large systems. In this work, we

describe a general framework for modeling arbitrary complex

symmetries in Rosetta3. First, we give a short background to the

different types of symmetries that are relevant to the study of

protein structures and crystallography. Then we describe how this

symmetry machinery is implemented within Rosetta: we restrict

the conformational search space by sampling only symmetric

degrees of freedom, and systems are limited by only explicitly

simulating a subset of the interacting monomers. Optimizations

that allow efficient scoring and minimization of symmetric systems

are described. We proceed by providing a guide to running

symmetric simulations with Rosetta. We describe several tools by

which one may how one may define a symmetric system, and how

several Rosetta protocols may be run in the context of symmetric

partners. These protocols include docking, ab initio structure

prediction, comparative modeling, and protein design. Finally, we

compare the performance of the symmetry machinery in Rosetta3

with the implementation in Rosetta2 [1] and provide estimates of

how running time scales with number of subunits in the

symmetrical system.

Background
Regular symmetries include point, helical and crystal symme-

tries. Figure 1 illustrates the various symmetry groups, as well as

illustrating the symmetric degrees of freedom needed to define

these systems.

Point Symmetry. There are five basic types of point

symmetry, denoted by Schöenflies symbols C, D, T, O, and I.

The most common type of symmetry is cyclic, or Cn, symmetry.

Here, a symmetric complex is comprised of a set of subunits

arranged in a ring about a single rotation axis (a dimer, or C2, is a

special case of this symmetry). Complexes with high-order cyclic

symmetry are used as ring structures in pores and in chambers.

Dihedral, or Dn, symmetry, is also commonly observed in natural

biological assemblies. In this symmetry, two Cn symmetry groups

form a dimer, with symmetry axis perpendicular to that of the Cn

group. As an example, a clathrin cage (pdb id 1xi4) exhibits D6

symmetry; D symmetry provides additional interface variety that

leads to more stability as well as improved allosteric control. The

higher-order symmetries T, O, and I consist of three-fold

symmetry groups at the vertices of a tetrahedron, octahedron,

and icosahedron, respectively. Icosahedral symmetry is very

commonly observed in viral structures, as it produces roughly

spherical assemblies, suitable for storage and transport.

PLoS ONE | www.plosone.org 1 June 2011 | Volume 6 | Issue 6 | e20450

Tetrahedral and octahedral symmetries are less common, but have

been observed in ferretin structures.

Helical Symmetry. Helical symmetries are produced by

rotation and translation along a single symmetry axis and have

been observed in microtubules, flagella and actin filaments. As

well, amyloid fibers displaying helical symmetry are associated

with a number of diseases, such as Creutzfeldt-Jacob’s disease and

Alzheimer’s disease. In simple helical symmetries, only three

parameters (aside from the orientation of a reference subunit) are

required to uniquely define the symmetric system: an angle of

rotation between subunits, a translation (or ‘‘rise’’), Z, along the

helical axis per subunit, and a distance X from the helical axis to a

reference point on each subunit. In more complex cases each

subunit is replaced with a Cn point group (polar helical symmetry)

or a Dn point group (nonpolar helical symmetry).

Wallpaper and Crystal Symmetry. Wallpaper and crystal

symmetries occur when a subunit forms a repeating two-

dimensional or three-dimensional pattern. There are 17 possible

two-dimensional repeats, and – ignoring cases impossible by

protein’s chirality – 65 possible three-dimensional repeats. These

are referred to as spacegroups. For three-dimensional spacegroups,

in addition to the spacegroup itself, anywhere from six to nine

parameters are needed to describe the symmetric system: one to

six of which describe the size and shape of the repeating unit, and

three to six which describe the rigid-body orientation of a

reference subunit. For two-dimensional spacegroups, one to four

parameters describes the repeating unit, and one to three describes

the rigid-body orientation of a reference subunit. This formation

of three-dimensional crystal repeats is key to solving structures

through X-ray crystallography.

The presence of symmetry leads to large reduction in the

number of parameters required to describe the relative orientation

of protein subunits in coordinate space. For an asymmetric system

the number of degrees-of-freedom required to specify an oligomer

is 66(number of subunits -1), while a symmetrical system can

typically be described with 3 to 6 degrees-of-freedom.

Methods

All modeling tasks in Rosetta consist of two general compo-

nents: conformational sampling and energy evaluation. Both of these

components may take advantage of symmetry. Thus, the

implementation of the symmetry machinery in Rosetta has been

driven by two guiding principles: first, to reduce the conforma-

tional search space by only sampling conformations consistent with

the given symmetry, and second, to perform only the minimal

number of pairwise energy evaluations necessary to capture the

total energy of the symmetric system. To achieve this, a number of

core elements of the Rosetta program have been adapted: (i)

kinematics, which describes how changes in internal degrees of

freedom propagate in the system, (ii) energy evaluation, (iii)

discrete side-chain optimization, and (iv) energy minimization.

Kinematics for symmetric systems
The conformation of a macromolecule in Rosetta is represented

by a tree-like structure, with either atom-level (atom trees in Rosetta)

or residue-level (fold trees) connections. For simplicity, we will only

consider the fold tree representation for this document. A fold tree is

a directed acyclic connected graph composed of peptide segments

together with long-range connections [2,3]. Each residue is a vertex

Figure 1. An overview of various types of symmetry present in the PDB, that can be modeled using Rosetta’s symmetric modeling
framework. (top) Point symmetry groups Cn (PDB id 1tg6), Dn (PDB id 1znn), and icosahedral (PDB id 1stm). (bottom) Lattice groups showing
helical (PDB id 3g37) and crystal (PDB id 3m9b) repeats.
doi:10.1371/journal.pone.0020450.g001

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e20450

in this graph, connected with peptide edges to preceding and

following residues. At chain breaks, such as those in a multi-protein

assembly, or artificially introduced during modeling, long-range

connections (jump edges or jumps) specify the relative rigid-body

orientation of non-covalently attached peptide segments. The fold

tree is defined by selecting a root vertex; the conformation of

downstream residues is calculated, extending from the root residue,

by traversing the edges and jumps in the fold tree.

The conformational degrees of freedom (dofs) of a molecular

system are the torsion angles of the backbone and side-chains along

with the rigid-body transformations between peptide segments.

Maintaining perfect symmetry with regards to the internal structure

of protein subunits is straightforward: when a torsion angle is set in

one subunit, it is simultaneously set in all other subunits. For

implementation purposes, we describe the internal degrees of

freedom with respect to a master and one or more slave subunits. Only

in the master subunit may torsion angles (or other internal degrees

of freedom) be set, and when torsions are set in the master subunit

they are immediately propagated to the corresponding degree of

freedom in the slave subunit. The master subunit must be carefully

selected, as it plays a key role in energy calculation: it must be

surrounded by all the interaction partners that need to be present in

order to calculate the total energy of the symmetric system (see more

on this in the section on energy calculations).

Maintaining rigid body symmetry between subunits is more

challenging. The representation effects both energy evaluation and

minimization; this representation must be general enough to

model arbitrary complex symmetries. With Rosetta, we have

opted for a system in which the rigid body configuration of each

subunit is controlled by its own reference frame. These reference

frames are related to one another by symmetry operations defined

by the symmetry group. Analogous to how the identity of the

internal structure between subunits are maintained, a change of

coordinates of one subunit relative to its reference frame is

replicated to all other subunits/coordinate systems, enforcing rigid

body symmetry. The position of a subunit relative to its reference

frame is controlled by jumps. These jumps are described by 6

variables, three rotational and three translational, that describe the

rigid-body transformation between the start and end coordinates

of the jump. These reference frames are implemented in Rosetta

by introducing non-amino acid pseudo residues, called virtual

residues, which can be incorporated into the fold tree in the same

way as an amino-acid residue. Using these virtual residues, the

rigid body positions of subunits are defined by jumps from each

virtual residue to an anchor residue in the protein. When a jump is

set to the protein from a master virtual residue the jump is

replicated to the slave virtual residues, which apply the jump to

their attached anchor residue. This replicates rigid body changes

in the master to all slave subunits.

To maintain the overall symmetry of the system, for many

symmetry groups only a subset of translations/rotations are

allowed to move. The reference frames are set up such that – if

rigid-body movement is restricted – the allowed direction of

movement coincides with one of the principle axes of the virtual

residue (e.g., rotation around the x, y or z axis and translation

along x, y or z). Generally, symmetry restricts the standard 6 dofs

into a smaller allowed set; for example, a C2 symmetric system

may be set up such that only translation along x or rotation about

any axis is permitted.

In many applications (such as ab initio structure prediction) the

absolute coordinates of the symmetric system are irrelevant.

However, in other cases, it may be necessary to maintain a global

reference frame for the entire system. For example, this arises

when modeling membrane proteins (where we care about the

protein’s position relative to a membrane plane) and may also arise

in the context of additional experimental data, such as electron

density or residual dipolar coupling (RDC) data. To handle these

cases, in addition to the ‘‘virtual’’ reference frames that control the

symmetry in the system, an additional virtual residue is added as a

root reference frame, which controls the global coordinates of the

symmetric system.

The setup of virtual residues (which act as reference frames) is

described in a tree-like hierarchy, like that shown in Figure 2(a). In

this case, the virtual residues at the bottom of the tree are

connected by a jump to each subunit; this jump controls the

rotation of each subunit. Another jump connects these virtual

residues to another set of virtual residues, which controls the

separation between subunits. Finally, if a global reference frame is

required, this intermediate layer would then be connected by

jumps to a single root virtual residue. In problems where the

absolute coordinate system is irrelevant, this virtual residue may be

excluded. Figure 2(b-c) show an alternate symmetric system, where

the virtual residues are set up for modeling a structure with

crystallographic symmetry. By assuming fixed unit cell size, we

don’t have to worry about moving the jumps between virtual

residues, greatly simplifying the setup of our system.

Efficient evaluation of symmetric structures with
Rosetta’s full-atom energy function

The framework outlined in the previous section describes how

kinematics are enforced and propagated in symmetric poses. In

this section, we briefly introduce how the energy of structures are

evaluated in Rosetta. We describe several modifications to energy

evaluation that allow for increased efficiency when evaluating

structures known to be symmetric. Since scoring takes the majority

of time in most Rosetta full-atom protocols, these enhancements

result in a significant increase of speed in almost all modeling and

design protocols.

Rosetta’s fullatom energy function is comprised of a linear

combination of terms. For implementation purposes, these energy

terms are divided into four separate classes: one-body energy

terms, distant-dependent two-body energy terms, distance-inde-

pendent two-body energy terms, and whole-structure (or ‘‘many-

body’’) energy terms [4].

When scoring symmetric structures, we quickly notice that a

majority of these interactions are duplicated multiple times

throughout the complex. For example, if we consider the C4

system of Figure 3, with subunits A-B-C-D, we see that the internal

interactions of subunit A are repeated throughout the other three

subunits. The interactions between A and B are repeated four

times throughout the system (B-C, C-D, and D-A are identical);

the interactions between A and C appear twice (B-D is identical).

Thus, ignoring whole-structure energies, we see that in order to

evaluate the energy of a symmetric complex, we only need to

consider the energy of one subunit (the master subunit), plus the

interactions that subunit makes with each of the other subunits.

Revisiting the C4 system in Figure 3, the energy of the complex is

given as:

E~E(A)zE(B)zE(C)zE(D)zE(AB)zE(BC)zE(CD)

zE(DA)zE(AC)zE(BD)

~4:E(A)z4:E(A{B)z2:E(A{C)

Here E(XY) refers to the interaction energy between residues in

subunit X and subunit Y.

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e20450

Furthermore, if we assume that there is a maximum interaction

distance of any two-body energy function, then we only need to

explicitly model subunits whose residues will possibly approach to

within this maximum interaction distance during simulation. For

example, when modeling a large ring, like the C17 structure shown

in Figure 4 (PDB id 3kml) we only need to explicitly model 3

subunits in order to accurately compute the energy of the entire

system, assuming that interactions over distances greater than

10 Å contribute a negligible amount to the total system’s energy.

For an icosahedral virus capsid, generally only 6 of the 60 subunits

need to be explicitly modeled to accurately recapitulate the total

capsid energy. This allows for efficient modeling of extremely large

symmetric assemblies.

Note that if we are calculating agreement with experimental

data that are dependent on the conformation of the entire

complex, such as residual dipolar coupling (RDC) data or small-

angle X-ray scattering (SAXS) data, then all subunits must be

explicitly included in order to correctly evaluate these whole-

structure energies.

Building a restricted energy graph. One time-consuming

step in scoring a structure is computing the energy graph for the

distant-dependent two body energies. Here, we must compute all

pairs of residues containing atoms within some cutoff distance of

one another. For asymmetric structures, Rosetta represents this

cloud of atoms with an octree. Using an octree, the energy graph

of a protein with N residues is computed in two steps: first the

octree is constructed from the ‘‘atom cloud,’’ then, for each residue

in the protein, the nearby residues are found. With a symmetric

structure, we only need to consider edges in this energy graph with

at least one vertex in the ‘‘master’’ subunit. Assuming we are

explicitly modeling S subunits, then we only need to query the

octree N/S times instead of N times (the time spent constructing

Figure 2. Illustrations of the setup of virtual frames responsible for maintaining rigid body symmetry. Circles represent virtual residues
and arrows beween indicate a jump. (a) The standard setup of virtual residues to generate a C2 symmetric protein complex (see Figure 8a to see a
symmetry definition file that generates this setup). The virtual labeled ROOT is the root of the FoldTree and controls the absolute coordinate system.
The terminal vertices are connected by a jump to an anchor residue in the protein subunits and the reference frames encoded by these two virtual
residues are related to each other by a twofold rotation around an axis. (b) Setup of virtual residues to encode for the I 2 2 2 spacegroup symmetry.
The virtual labeled ROOT is the root of the FoldTree. Jumps from the root virtual to the first layer of virtual residues control the overall placement of
the 10 subunits in 3D space. These jumps can be used to orient the asymmetric unit into experimental electron density. The jumps from the first layer
to the second can be used to move the subunits in the unit cell while maintaining the space group symmetry. The jump from the second layer to the
subunits can be used to rotate the subunits around their center of mass. (c) Placement of virtual residues in three-dimensional space for the I 2 2 2
spacegroup (taken from pdb id 1x6j). The crystal is represented by 10 subunits. Virtual residues are shown as rings (and red spheres) and arrows
illustrate jumps.
doi:10.1371/journal.pone.0020450.g002

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20450

the octree is the same). This speedup is particularly noticeable in

cases where experimental data requires that a large number of

subunits be explicitly modeled.

Implementation of symmetric energy evaluation. The

total energy of a symmetric system is given in terms of interface

energies as a line in the symmetry definition file, for example, the

symmetry definition file for the C4 system in Figure 3 would

contain:

E~4:VRT0z4:(VRT0 : VRT1)z2:(VRT0 : VRT2)

Here, VRT0 is the virtual residue anchoring the master subunit

(‘A’ in Figure 3), and VRT1 and VRT2 anchor neighboring

subunits (‘B’ and ‘C’ in Figure 3, respectively). The section on

symmetry definition files describes this syntax in more detail.

When scoring a symmetric structure, Rosetta attaches a weight

to each interaction edge. For one-body energies and two-body

energies within the master subunit, this weight is simply the weight

on master subunit (‘4’ in the example above). For two body

energies between the master and some other subunit, the weight is

the corresponding weight from the symmetry definition file: in this

case, ‘4’ for interactions with the slave subunit controlled by virtual

residue VRT1, and ‘2’ for interactions with the slave subunit

controlled by virtual residue VRT0.

Whole structure energies. Whole-structure energies are

slightly trickier to handle within the symmetric framework. In

many cases, it is not clear whether a more suitable interpretation is

to compute the energy over one subunit and scale this energy by

the number of subunits, or to compute these energies over the

whole symmetric complex and leave it unscaled. We have opted

for the latter, with the justification that scoring a complex with

point symmetry should give the same results using symmetric

scoring as asymmetric scoring. However, with lattice symmetry, or

cases where only some subset of the complete system is explicitly

modeled, these whole-structure energies may not make much

sense. Therefore, this behavior may be modified for particular

score functions by making the appropriate corrections in

SymmetricScoreFunction::correct_finalize_score().

Symmetric Packing
Rosetta’s sidechain optimization module, the packer, can also

take advantage of the same efficiencies that make scoring rapid. In

asymmetric sidechain optimization, the packer builds a discrete set

of rotamers [5] at n positions on the structure, and attempts to solve

Figure 3. An example illustrating energy calculation for a C4

symmetric system. Of the six interfaces in the symmetric complex,
only two of these are unique: the energy of interface AB is identical to
that of BC, CD, and DA; the energy of interface AC is identical to that of
BD. The energies internal to one subunit are identical to those in each
of the symmetric copies. Thus, to compute the energy of the entire
system, we only need consider the internal energy of A and the energy
of interfaces AB and AC.
doi:10.1371/journal.pone.0020450.g003

Figure 4. An illustration showing how we may compute energies of large symmetric complexes with only a few subunits explicitly
modeled. In the C17 system shown here (PDB id 3kml), if we assume interactions at a distance of more than 10 Å contribute a negligible amount of
energy, then we only need to model the three colored subunits in Rosetta. The entire system’s energy (and gradients) may be described in terms of
the energy of the master subunit (red) and the interactions between the master and the adjacent slave subunits (orange).
doi:10.1371/journal.pone.0020450.g004

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e20450

argmin
s[S

½
Xn

i~1

E1(si)z
Xn

ivj

E2(si,sj)�

where S = PSi is the Cartesian product of the individual residue

rotamer state spaces; s is a rotamer assignment with si M Si

representing the rotamer assigned to residue i; E1(si)~
e1(si)z

P
j[BG e2(si,bgj) represents the sum of the rotamer internal

energies (e1) and its pairwise interaction energies (e2) with the

background (bg) residues; and, the two-body energy, E2(si,sj), is the

rotamer-pair energy e2(si,sj) between rotamers si and sj. This problem

is NP-Complete [6], so Rosetta uses a stochastic algorithm [7]. The

sidechain placement problem may be readily abstracted to a state

assignment problem where states must be assigned to nodes in a

graph [8]. In this abstraction, node energies replace E1 and edge

energies replace E2. For speed, Rosetta precalculates and stores the

node and edge energies in a sparse interaction graph for rapid

retrieval.

The state assignment problem is also a fine model for the

symmetric packing task, where, assigning rotamer rc
i to a residue i

in the master subunit, c, must correspond to the assignment of the

symmetrically similar rotamers ½r1
i , . . . ,rc{1

i ,rcz1
i , . . . ,rm

i � to the

other m subunits. In this case, a single state si corresponds to a

collection of rotamers ½r1
i , . . . ,rm

i �, implying that the node energy

for state si is given by

E1(si)~wce1(rc
i)z

Xm

k

wk

X
j[BGk

e2(rc
i ,bgc

j)z
Xm

k=c

wke2(rc
i ,rk

i)

where wc is the weight given for the intra-subunit interactions, and

wk is the weight between the master subunit and subunit k. Of

course, if wk = 0, then the energies between rc
i and the

background residues on subunit k need not be evaluated. The

third term in this equation accounts for the two-body energies

between a rotamer and its symmetric copies.

Similarly, the edge energy for states si and sj is given by

E2(si,sj)~
Pm
k

wke2(rc
i ,rk

j)

With these equations for calculating the node and edge energies,

the same interaction-graph data structure and the same discrete-

optimization algorithm used to solve the asymmetric sidechain

placement problem may be used.

Efficient minimization of symmetric systems
In this section, we describe the basic framework we use when

minimizing symmetric systems. We discuss a few implementation

issues, and describe two cases that require special treatment: lattice

symmetries, like that of helical symmetry or 2D or 3D crystal

tilings, and asymmetric whole-structure energies.

As with kinematics and scoring, minimization of symmetric

complexes is done with respect to a master subunit. For each

backbone torsion and rigid-body degree of freedom in the master

subunit, we compute the derivative of Rosetta’s all-atom energy

with respect to the corresponding degree of freedom. Figure 5

illustrates our strategy for symmetric minimization. When

minimizing systems with point symmetry within Rosetta (lattice

symmetries are slightly more complicated; see below), as with

scoring, we only consider interactions with the master subunit.

Unlike scoring, derivatives with respect to all interactions – not just

the unique interactions – are computed; these interactions are all

weighted equally. The reason for this difference is straightforward:

using the C4 case in Figure 3 as an example, while two-body

energies across the interface between A and B are identical to

those of D and A, the directions of the gradients are different.

Formally, we compute the partial derivative of the energy E of a

system with point symmetry (where xi is a degree of freedom, Rk is

the transformation from subunit k to the master subunit, xk
i is a

symmetric copy of d.o.f. xi, and xc
i is the master subunit’s copy of

this d.o.f.):

LE

Lxi

~
Xm

k

Rk
LE

Lxk
i

� �
~n

LE

Lxc
i

As with asymmetric minimization, the formulation of Abe et al.

[9] is used to efficiently convert Cartesian derivatives into torsion-

space derivatives. Rigid-body rotation is handled by treating the

rotation as one or three ‘‘pseudo-torsions’’: three in cases where

the orientation is free to move, and one in cases where the

orientation may only spin about a particular axis to maintain the

overall symmetry of the system.

Minimization with lattice symmetry. When minimizing

with respect to lattice symmetry, additional complication arises

when minimizing the degree of freedom corresponding to the rise

between subunits. One issue that arises is that gradients along the

rise of the helix only should be computed in one direction only.

For example, consider a helix containing seven subunits, A-G, as in

Figure 6. If we consider subunit D as the master subunit, then the

derivatives with respect to the helical rise across the interface of D

and C will be canceled by the derivatives across the interface of D

and E (as they will all be the same magnitude but in the opposite

direction).

A second issue has to do with gradients across an interface that

spans multiple copies of the helical rise ‘‘jump.’’ Consider the

interactions of subunits D and E with respect to the degree of

freedom representing the rise of the helix (that is, the vertical

distance between subunits. Increasing the rise by 1 Å has a

corresponding increase of 1 Å in the distance between subunits D

and E. However, if we instead consider subunits D and F, we see

Figure 5. An illustration of our minimization strategy. Since
every subunit is in the same symmetric context, we only need to
consider gradients with respect to the master subunit. Thus, when
computing derivatives with respect to the motion of all symmetric
copies of an atom, we only consider the master subunit (shown in color)
and its interface with all neighboring subunits (shown in grey). In the
local coordinate system of the slave subunits, the corresponding
gradients are identical. In the illustration below, the orange lines
indicate the interface edges along which inter-chain derivatives are
computed.
doi:10.1371/journal.pone.0020450.g005

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 6 June 2011 | Volume 6 | Issue 6 | e20450

that increasing the helical rise by 1 Å causes the distance between

subunits to increase by 2 Å, because the interaction passes through

two ‘‘copies’’ of the jump corresponding to the helical rise. Only

one of these jumps corresponds to a degree of freedom in the

system, so, naively, Rosetta treats these two cases identically.

To account for this, each cloned jump has a weight associated

with it. This weight specifies a scaling factor that is applied to

derivatives coming into the jump, before they get remapped to the

master jump. Thus, the derivatives computed in the interface

between D and F, as they propagate through the jump marked K5,

are scaled by a factor of 2 (corresponding to the number of copies

of the cloned jump between D and F). The gradients computed

between the interface of D and F are then equally divided between

the jumps marked K4 and K5. See Figure 6(b) for the corresponding

weights in our simple helical example (the weights on unmarked

edges are 1). This mapping is specified in the symmetry definition

file; see Supporting Material S1 for an example.

Minimizing asymmetric whole-structure energies. Another

difficult case that arises comes about when a whole-structure

energy is applied asymmetrically, that is, the energies for each

subunit are not equal. This commonly arises with experimental

electron density data, if not symmetrically averaged, but may also

arise with coordinate constraints or other types of experimental

data, where gradients are not identical (save for a symmetric

transformation) in each subunit.

Unfortunately, this case is not directly handled by Rosetta’s

symmetry machinery, as the symmetric modeling is built on the

idea that each energy term only differs by a symmetric

transformation between subunits. However, one may get around

this limitation by making the score function ‘‘symmetry-aware’’.

The basic idea is to map all the derivatives to the master subunit.

For every atom in the symmetric complex, the gradient is

computed. Then, for each atom in each slave subunit, the

symmetric rotation mapping the subunit to the master subunit is

applied to the gradient. These are then added to the correspond-

ing atom in the master subunit’s gradient.

When the symmetry group is a single layer hierarchy, and the

rigid-body orientation of the whole system is not allowed to move,

this works as expected. However, when the symmetry hierarchy is

multi-layer, or the whole system is allowed to move as a rigid body,

then there are problems minimizing along jumps within the

symmetry hierarchy. It is clear to see this when we consider the C2

symmetry shown in Figure 7(a). In this case, the rigid-body

configuration of the entire system is allowed to move. Suppose the

gradient of some atom in subunit 2 points ‘‘down’’. As we map this

to 1, we rotate so that the gradient points up. Indeed, when

minimizing along the jump between 1 and 2, this behavior is

correct: the downward gradient pulls 1 and 2 apart, that is, 2

downward, and 1 upward. However, this same gradient has the

opposite effect when we consider the rigid-body orientation of the

entire system: the downward gradient in 2 should not be rotated

when mapped to 1.

This may be done within Rosetta by storing the unrotated

derivatives for every atom in the symmetric complex. With

backbone and sidechain torsions, the naive strategy – rotating each

subunit to the master one – may be used. Then, at each symmetric

jump, the transformation mapping the parent virtual residue to the

master’s virtual residue at the same level in the hierarchy is

applied. Since the lower levels in the hierarchy have already added

their layer’s rotated gradients, this can be handled by assigning a

‘‘correction gradient’’ to the virtual residues within the upper

levels of the symmetry hierarchy. That is, the virtual residue is

assigned a ‘‘gradient’’ that is the result from subtracting all the

previously rotated gradients and adding the all the newly rotated

gradients of every atom in the subtree beneath it. Figure 7(b)

illustrates this idea graphically.

Finally, notice that we use the term gradient loosely here.

Rosetta’s implementation uses the recurrence of Abe et al. to pass

along two components of the gradient up the fold tree, denoted f1
and f2, which allows for efficient conversion between Cartesian

space and torsion space gradients. In this case, the correction

factors associated with virtual residues are applied directly to these

f1s and f2s, instead of the gradients.

Within Rosetta3, this is currently only implemented for the

symmetry-aware electron density scoring function. The code for

this may be found in src/core/scoring/electron_density/

ElectronDensityEnergy.cc.

Applications of Symmetric Modeling
In this section, we provide a practical guide to modeling

symmetrical structures with Rosetta. We first describe the file

format by which symmetry information is encoded. Then, we

Figure 6. When modeling helical symmetry, special treatment must be given when minimizing the degree of freedom
corresponding to the helical rise. (a) A helical system in Rosetta is configured such that the Ji jumps are all cloned, as are the Ki jumps (the
master subunit, D, is shown in red). When minimizing with respect to the Ki jumps we only need to consider derivatives with respect to one side of the
symmetric interface; gradients with respect to these jumps must be weighted when an interface passes through multiple copies of this jump. (b) The
solution is to store a weight with each cloned jump. These weights correspond to the scaling of downstream movement with respect to movement
of the cloned Ki jump. For example, gradients between D and F pass through two copies of the cloned Ki jump; movement of the Ki jump by a vector
x causes the vector between D and F to move by 2x.
doi:10.1371/journal.pone.0020450.g006

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e20450

introduce four different symmetry-enabled Rosetta applications

(symmetric docking, fold-and-dock, comparative modeling and

fixed backbone design) and describe how they may be configured

to make use of the symmetry machinery. Together with this

manuscript we distribute a set of canonical test cases as Supporting

File S1 for these four applications.

Symmetry definition files
Everything that Rosetta needs to know about the symmetry of

the system is encoded in the symmetry definition file (SDF), which

is provided as input to any Rosetta protocol run with symmetry.

This file provides: (i) information about how to generate the rigid

body symmetry of the molecular system, (ii) how to calculate the

total energy of the systems from a subset of modeled subunits, (iii)

how to calculate energy gradients, (iv) what the rigid body degrees

of freedom are, (v) how to generate the initial configuration of the

symmetric system, and (vi) how the system may be perturbed while

maintaining symmetry. Given the complexity of the required

information, we provide two scripts to generate SDFs for the most

common symmetries and modeling tasks, which are described in

the next section. However, sometimes a problem requires

customization or even ‘‘handcrafting’’ of SDFs. In this section

we provide a brief description of the key elements of the syntax of

SDFs. A full review can be found in Supporting Material S1.

Overview of the format. Figure 8 shows two SDFs for setting

up the C2 symmetry. One of them is generated by application of the

make_symmdef_file.pl script to the dimeric crystal structure of alcohol

dehydrogenase, while the other is generated by make_symmdef_

file_denovo.py without a structure input. These scripts each serve a

different purpose: make_symmdef_file.pl is used to create symmetry

information by replicating the symmetric transformation (including

the global coordinate frame) from a preexisting symmetric complex,

which may be used in docking perturbation studies or comparative

modeling; while make_symmdef_file_denovo.py is used to ‘‘bootstrap’’

symmetry information in the absence of a preexisting structure, as in

de novo modeling.

One of the key purposes of the SDF is to inform Rosetta how to

evaluate the energy of a structure in a symmetric fashion. In the

SDF for alcohol dehydroganase in Figure 8 the following line

provides a recipe to calculate the energy of the dimer by evaluating

only a subset of the atomic interactions:

E = 2*VRT0_base + 1*(VRT0_base:VRT1_base)

In this example, the subunit that is connected to the virtual

residue VRT0_base is the scoring subunit and the internal energies

in this subunit is multiplied by a factor of 2 to get the total system

energy. Then intermolecular energies from the subunit connected

to VRT1_base is added with a factor of 1.

A second key aspect of the SDF is to provide the coordinates of

the reference frames – that is, the virtual residues – to set up the

rigid body symmetry. There are two ways of specifying these

coordinate frames: explicitly, through specification of their coordi-

nates in Cartesian space together with the unit vectors specifying

the X and Y axis of the reference frame, or implicitly, by application

of a series of rotation and translation operations on a single virtual

residue. In the alcohol dehydrogenase SDF the virtual residues are

explicitly specified:

virtual_coordinates_start

xyz VRT0 0.1035485,-0.2974247,-0.9491134 0.9444017,

0.3287938,0.0000000 3.6626788,5.0513324,-47.0664146

…

virtual_coordinates_stop

Here the virtual residue named VRT0 is specified by three

triplets encoding x and y unit vectors together with the origin.

Alternatively, these virtual coordinates can be encoded implicitly,

by application of rotation and translation operations. In the second

SDF in Figure 8, the virtual coordinates are specified as:

virtual_transforms_start

start -1,0,0 0,1,0 0,0,0

rot Rz 2

virtual_transforms_stop

This specifies that the first virtual residue is encoded by the

triplets defined after the start keyword. A second virtual residue is

generated by application of twofold rotation around the Cartesian

Z axis (rot Rz 2) on the start virtual residue.

A third key aspect of the SDF is specifying what dofs in the

system are allowed to move, what their initial values should be and

how to perturb them. In the SDF for alcohol dehydrogenase, the

line:

Figure 7. An illustration of a problem that arises when whole-structure energies are minimized. (a) A homodimeric system in Rosetta
can allow movement of the rigid-body orientation between subunits (the jumps between V1.X and the subunits) as well as the rigid-body orientation
of the entire system (the jump between V1 and V1.1; V1.1 and V1.2 are connected with a ‘‘fixed jump’’ that maintains the symmetry of the system).
Contributions to the energy gradient from atoms in slave subunits are treated differently in these two jumps. When minimizing the orientation
between subunits, the gradient (hE/hxi) with respect to some atom xi in a slave subunit should be rotated to the master subunit, using the
transformation R2R1. When minimizing this minimizing the orientation of the whole system, this gradient should not be rotated. (b) This can be
handled in Rosetta by applying ‘‘correction factors’’ to the gradients of the virtual residues. To illustrate, when computing the gradients of atoms of
S1, we add the rotated gradients of S2. Then, at virtual V1.1, we subtract the rotated gradients, and add the unrotated gradients.
doi:10.1371/journal.pone.0020450.g007

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 8 June 2011 | Volume 6 | Issue 6 | e20450

set_dof JUMP0_to_com x(21.28) angle_x

specifies that for the jump named JUMP0_to_com, translation

along x and rotation around the x-axis are allowed. The placement

along x is also initialized (to a value of 21.28).

Scripts for making symmetry definitions
Generally, symmetry definition files will not be hand-crafted,

but rather, will be created by a script. There are two such scripts

included with Rosetta3. The first of these, make_symmdef_file.pl,

creates an SDF that recapitulates the symmetry from a PDB file.

The second of these, make_symmdef_file_denovo.py, makes SDFs in a

canonical coordinate frame, for use in symmetric docking or de

novo folding with fold-and-dock.

make_symmdef_file.pl. This script automatically creates

symmetry definition files corresponding to the symmetry in some

template protein structure. If the template is not symmetrical – for

example, if differing crystal contacts between subunits cause some

asymmetry – then it is ‘‘symmetrized’’ by the script. For these

cases, simple heuristics are used to find a symmetric system nearby

the target system. However, if the starting model is very

asymmetric, the symmetrized structure may be very far from the

input. Generally this is undesirable, and suggests modeling the

system asymmetrically.

The script provides at least limited support for most types of point,

helical, and lattice symmetries. However, there are some caveats. The

following symmetry types are currently unsupported by the script:

N Tetrahedral, octahedral and icosahedral point symmetries are

improperly generated.

N Nonpolar helical symmetries (a Dn point group at each helical

translation) are not understood by the script. Apolar helical

symmetries (a Cn point group at each helical translation) are

handled properly.

N 2D lattice (or wallpaper) symmetry is not created by the script.

N 3D lattice (or crystal) symmetries are available, but assume a

fixed unit cell size. Systems produced in this manner allow

rigid-body movement of a subunit in the asymmetric unit, but

do not allow the cell dimensions to change during simulation.

The script runs in one of three modes, depending on the

symmetry type: noncrystallographic (point) symmetries, crystallo-

graphic symmetry, and helical symmetry. The mode of the script is

specified with the flag

-m {NCS|CRYST|HELIX}

If this flag is not given, -m NCS is assumed.

There are several options common to each mode:

-p ,string.

input PDB file

-r ,real.

the max Ca-Ca distance between two interacting chains

When the system is constructed, a master chain is first selected

(how this is specified is mode-specific). The resulting SDF specifies

a system where the only subunits that are explicitly modeled are

those with some Ca within the specified interaction distance of the

master subunit.

For noncrystallographic symmetry mode (-m NCS), several other

options are used to specify the master chains, and the point

symmetry groups to expand.

-a ,char.

the chain ID of the main chain

-i ,char.

the chain IDs of one chain in each symmetric subcomplex

Figure 8. Examples of two symmetry definition files for C2 symmetric systems. (a) Symmetry definition file for alcohol dehydrogenase (pdb
id 1htb) generated by make_symmdef_file.pl. (b) Symmetry definition file generated by make_symmdef_file_denovo.py for denovo structure
prediction.
doi:10.1371/journal.pone.0020450.g008

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 9 June 2011 | Volume 6 | Issue 6 | e20450

Use of the -a option is straightforward, however, the -i option

may be a bit tricky. With the -i flag, a single adjacent neighbor in

each point group must be given, regardless of the number of

subunits in the point group: one would specify ‘-a A -i B’ for both

C2 and C38 symmetry (assuming A and B were adjacent chains).

To generate the SDF for C2 symmetry in Figure 8(a) the following

command can be be employed:

make_symmdef_file.pl -m NCS -p input.pdb -a A -i B .

C2.symm

As another example, with a D4 symmetric system, with chains

A-B-C-D in the upper ring and chains E-F-G-H in the lower ring,

one would specify

make_symmdef_file.pl -m NCS -p D4.pdb -a A -i B E -r 12

. D4.symm

Alternately, one could specify the interacting chains in reverse

order, as ‘-i E B’. This would create a different hierarchical

representation of the same symmetry, and if the input PDB had

some asymmetry, then the corresponding symmetrization would

be slightly different. If the input system is not perfectly symmetric,

it may be worth trying different chain combinations to minimize

the residual error of symmetrizing the system. Finally, if the SDF

wants to allow movement of the rigid-body orientation of the

entire system, then an additional flag may be used:

-e

allow rigid body minimization of complete system

This flag is important when the structure is scored against

experimental data that depends on the rotation or the whole

system, such as electron-density or RDC data.

For crystallographic symmetry mode (-m CRYST), the inputs are

a bit simpler. The ‘CRYST1’ line in the input PDB file is used to

define the symmetric system. Alternately, one may provide values

on the command line instead:

-c ,real.x6

override the unit cell parameters in the PDB file with these

values

-s ,string.

override the spacegroup in the PDB file with these values

The resulting SDF defines a system where a single subunit is

placed in its ‘‘lattice context,’’ where only the symmetric copies

that interact with the master subunit are explicitly represented. As

a sidenote, the energy line in the SDF specifies the energy

calculated by Rosetta as twice the per-subunit energy.

Finally, helical symmetry mode (-m HELIX) provides options for

specifying the master chain, an adjacent lattice chain, and a point-

group chain:

-a ,char.

the chain ID of the main chain

-b ,char.

the chain ID of the next chain along the fiber/helix

-i ,char.

the chain ID of a chain in -a’s point symmetry group

A helical twist can be forced by appending:n to the helical chain.

For example, the following command script forces a helix with 3

subunits per turn:

make_symmdef_file.pl -m HELIX -p fiber2.pdb -a A -b

B:3 . fiber3.symm

The same heuristics used to symmetrize a system are used to

force a different helical twist. Thus, if this value is very different

from the twist provided in the PDB, then the system may move

dramatically.

When run, the SDF that recapitulates the symmetry in the input

PDB is written to stdout. Several PDB files are written as well.

Given the input file input.pdb, the script will write out up to three

files:

input_symm.pdb

the symmetrized version of the input file, showing the complete

point symmetry group.

input_model_AB.pdb

the same as above, but only showing chains that form an

interface with chain A

input_INPUT.pdb

the input PDB to Rosetta’s symmetry modeling, the coordinates

of the master subunit (typically a single chain in the symmetric

complex).

The files input_symm.pdb and input_model_AB.pdb are provided for

two purposes. First, they are a check to verify that the

symmetrization heuristic did not move the system too far from its

start point. Second, they show the difference between the complete

symmetric system, and the parts of the system Rosetta is explicitly

modeling. For mode CRYST, only the input_symm.pdb file is created,

as the input PDB is expected to contain only the asymmetric unit.

When running Rosetta with symmetry, the input structure passed to

Rosetta is the monomer model input_INPUT.pdb (or input.pdb in the

case of CRYST); the symm file written to stdout is also given as an

input with the flag -symmetry_definition.

make_symmdef_file_denovo.py. When the structures of

symmetric protein assemblies are predicted de novo the starting

point is either a protein sequence or the structure of a single

subunit. Therefor the make_symmdef_file.pl script is not a

straighforward tool for generating a SDF. In principle, a protein

complex with identical symmetry can be used as the starting point

to generate a SDF using the make_symmdef_file.pl script. The

resulting SDF has to be modified by hand to remove any

dependence on the rigid body position of the analyzed complex

and to completely randomize the symmetric rigid body space.

Alternatively, the make_symmdef_file_denovo.py script can be used to

generate a SDF. This script takes as an input the symmetry type

being simulated, the number of subunits in the full system and a

specification of whether only a subsystem of the system should be

simulated. Currently the script is limited to Cn and Dn symmetries.

To generate the SDF for C2 symmetry in Figure 8(b) the following

command can be employed:

make_symmdef_file_denovo.py -symm_type cn -nsub 2 .

C2.symm

A SDF for D2 symmetry can be generated with:

make_symmdef_file_denovo.py -symm_type dn -nsub 4 .

D2.symm

By default the script encodes for all subunits to be simulated.

For larger complexes, such as a 38-membered ring, a subunit only

interacts with its direct neighbors in the ring and its not necessary

to simulate all subunits (see Figure 4). For really large systems

neighbor detection, kinematics and system memory will become

major bottlenecks. Thus, it is suggested to limit the simulated

system to a smaller subsystem in these cases. This can be achieved

by adding the flag -subsystem to the command line:

make_symmdef_file_denovo.py -symm_type cn -nsub 38

–subsystem . C24.symm

This generates a SDF that encodes only 3 out of 38 subunits.

Symmetry options that control protocol behavior can also be

defined in the SDF. De novo prediction of protein complexes

typically involves translational moves to bring subunits into

contact. For systems with multiple translational dofs there are

several ways to select the order of the translational moves. These

preferences can be specified by an additional set of flags (-slide_type,

-slide_criteria_type and -slide_criteria_val flags). The meaning of these

flags is described in greater detail in Supporting File S1.

To generate SDFs for symmetries outside Cn and Dn there are

two alternatives. First, SDFs can be written by hand. Second, a

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e20450

protein complex with identical symmetry type can be used as a

starting point. As mentioned, that will require manual editing of

the SDF.

Making a Rosetta protocol aware of symmetry. The

symmetry machinery in Rosetta3 is built to take advantage of the

object-oriented architecture of Rosetta’s core. Polymorphism and

inheritance allows symmetric versions of key components in

Rosetta’s scoring, kinematics, sidechain-optimization, and

minimization machinery to be plugged in in place of their non-

symmetric counterparts, which allows symmetry to be used with

minimal adjustment to the code. When adapting a scientific

protocol to use symmetry, care must be taken that the symmetric

versions of these classes are employed. For most protocols, if

Rosetta is given a symmetry definition file, this is automatic, and

Rosetta will protect you from making the system nonsymmetric,

but care must be taken in protocols where kinematic connectivity

or the coordinates of the protein change, to make sure that the

symmetric complex is perturbed in a reasonable manner.

Typically, changes to the conformation of a protein are

controlled through higher-level objects called movers that

interface with the lower level core functions. There are

symmetrical versions of the most common movers, which

substantially simplify the adaptation process.

First, instantiation of symmetry at the beginning of a

protocol involves a check for the presence of a symmetry

definition file specified on the command line followed by a call

to a mover that initialize the symmetry information by reading

from a SDF and swapping in symmetrical versions of base

classes for energy evaluation and coordinate storage into the

Pose object (the Pose object represents the complete state of the

molecular system).

if (option[OptionKeys::symmetry::symmetry_defini-

tion].user()) {

moves::MoverOP setup(new moves::symmetry::Setup-

ForSymmetryMover);

setup-.apply(pose);

}

A number of utility classes are available to get access to

symmetry information and to make objects compatible with

symmetry, including core/pose/symmetry/util.cc and

core/conformation/symmetry/util.cc. A typical step in

adapting a protocol for symmetry is to check for the presence of

a symmetrical Pose object and control the instantiation of a mover

based on the result of the query:

moves::MinMoverOP min_mover;

if (pose::symmetry::is_symmetric(pose)) {

min_mover = new moves::symmetry::SymMinMover(...);

} else {

min_mover = new moves::MinMover(...);

}

min_mover-.apply(pose);

Directly setting torsions or jumps in the master subunit (or using

nonsymmetric movers that only do this) is fine: the symmetric

machinery will maintain the symmetry of the overall system. For a

great many protocols, the only changes necessary to enable

symmetry are the two shown above.

Results and Discussion

Finally, a number of protocols have been ported to use

symmetry if a symmetry definition file is provided. In addition to

Rosetta’s relax protocol – for all-atom refinement of symmetric

systems – four commonly used protocols have been heavily tested

for use with symmetric complex modeling.

Symmetric docking
The symmetric assembly protocol aims to predict the structure

of a symmetrical protein assembly based on the structure of a

single subunit [1]. It has been shown to accurately predict the

structure of protein assemblies with cyclical, helical and icosahe-

dral symmetries. In the start of each simulation all simulated

subunits are placed in a configuration that avoids atomic contacts

between subunits and adopts the overall symmetry of the system.

Random starting points are generated by randomization of

rotational degrees of freedom. The simulation proceeds by

translation of the subunits along all their symmetrically allowed

dofs in order to establish atomic contact between subunits (called

slide moves). Depending on the type of symmetry, this may involve

sliding along several directions. For Cn symmetry there is only one

translational dof and hence one slide direction. For Dn symmetry

there are two translational dofs and in order to sample the whole

symmetric configurational space sliding in two directions is

required. The slide procedure for multidimensional slides can be

customized as described in the description of the symmetry format

in Supporting Material S1.

When atomic contacts have been established the protein

complex energy is optimized in a rigid body Monte Carlo search

performed using a low-resolution knowledge-based scoring

function and a simplified representation of the protein. All dofs

described in the SDF are perturbed during the Monte Carlo

procedure. The low-resolution phase is followed by further

refinement in Rosetta’s high-resolution energy function, with an

all-atom representation of the protein assembly. The energy is

optimized using a Monte Carlo minimization procedure, which

consists of several of cycles of rigid body moves followed by

symmetric side-chain optimization and symmetric energy minimi-

zation.

To run the symmetric docking protocol, two pieces of input data

are required: the structure of a protein subunit and a SDF. A

preexisting symmetric protein complex can be refined using the

docking protocol (for perturbation studies, for example), with the

starting input subunit and SDF generated by the make_symmdef_fi-

le.pl. For de novo structure prediction the script make_symmdef_file_-

denovo.py is used instead. For the most common symmetry type, C2,

the following command can be employed to generate the SDF:

make_symmdef_file_denovo.py -symm_type cn -nsub 2 .

C2.symm

The reference frames encoded by this script have their axis

pointing towards the absolute origin (0,0,0) in Cartesian space and

with the translational dof along the Cartesian x-axis. Thus, it is

important that the axis connecting the anchor residues align with

the Cartesian x-axis so that translation along Cartesian x leads to

atomic contact between subunits. The recenter item in the SDF

ensures this.

The default set_dof line in the SDF:

set_dof BASEJUMP x(50) angle_x(0:360) ang-

le_y(0:360) angle_z(0:360)

This line specifies that the two subunits will initially be placed at

(50,0,0) and (-50,0,0). The 100 Å distance is typically large enough

that the subunits start in a non-contacting configuration. The

initial positioning can be changed by manually editing this line of

the SDF.

The last three terms in this line describe the orientation

parameters of the jump:

angle_x(0:360) angle_y(0:360) angle_z(0:360)

In this particular case, the rotational dofs should be completely

randomized. Normally, when a range is given a random value is

found in the range and a rotation of that angle is applied by

rotation around the given axis. However, when all three rotations

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 11 June 2011 | Volume 6 | Issue 6 | e20450

are given the range 0-360 degree, Rosetta ensures that rotational

space is uniformly sampled.

As well, the presence of multiple identical subunits presents

some problems when calculating root-mean-square (rms) deviation

values to a reference structure. For complexes with more than two

subunits, it may be necessary to consider alternate chain orderings

in order to find the lowest rms value. A symmetric rms value can

be determined with Rosetta by addition of a command line flag

(-symmetry:symmetric_rmsd).

A typical prediction case for symmetric docking is distributed in

Supporting File S1. A brief discussion of options is included.

Fold-and-dock
The fold-and-dock protocol simultaneously samples the internal

degrees of freedom of a monomer, and rigid-body degrees of

freedom between (symmetrically disposed) monomers. It is well

suited to predicting the structures of intertwined symmetric

assemblies for which the structure of the monomer is not stable

in isolation, and hence not amenable to a two stage approach in

which monomer predicted structures are first generated in

isolation and then docked together [10]. The fold-and-dock

protocol has been used to accurately predict complexes with Cn

and Dn symmetry for proteins with subunit sizes up to 100 residues

[10]. This size range can be extended for systems with

experimental data from NMR spectroscopy.

Fold-and-dock is a combination of the symmetric assembly

protocol and the Rosetta abinitio structure prediction protocol.

Like symmetric docking, the simulation starts with a randomized

symmetric configuration of subunits with no atomic contacts

between subunits. The protein subunits initially adopt an extended

structure. What follows is a simulated annealing fragment

assembly – of the same kind used for regular monomeric abinitio

structure prediction – performed symmetrically. In addition, two

types of rigid body moves are attempted at random frequency: a

slide move, to translate subunits into atomic contact, and random

perturbation of rigid body dofs specified in the SDF. Fragment

assembly is performed using a simplified representation of the

protein and with a low resolution scoring function. This initial

process is followed by all-atom refinement in Rosetta’s high-

resolution energy function [10]. Fold-and-dock requires three

types of data input: one subunit’s sequence, a simple configuration

file (topology broker file) and an SDF. The SDF is generated as

described in the symmetric docking section.

The models produced by de novo structure prediction are

typically analyzed with similarity clustering. The clustering

application can be modified to calculate a symmetry-aware rms

as described in the symmetric docking section.

A typical prediction case for fold-and-dock is distributed in

Supporting File S1. A brief discussion of options is included.

Symmetric comparative modeling
Another case where symmetric modeling is beneficial arises with

comparative (or template-based) modeling of symmetric structures.

When building a homology model of a symmetric multimer, if a

template contains the same symmetry, it may be reasonable to use

the symmetry of the template when building the threaded model of

the target.

Rosetta’s comparative modeling protocol performs threading of

the target sequence onto the template backbone, followed by

fragment-based rebuilding of gaps in the threaded model, and

finally all-atom optimization of Rosetta’s energy function. By

running the symmetry definition script make_symmdef_file.pl on the

template structure to create an SDF, and giving that symmetry

definition file (along with a monomer of the template) to Rosetta’s

comparative modeling protocol, both fragment-based gap rebuild-

ing and all-atom optimization take into account the symmetric

context of the model. This protocol was used on multiple targets in

the most recent CASP9 [11] experiment.

A typical prediction case for comparative modeling is

distributed in Supporting File S1.

Symmetric design
The fixed backbone design provides a direct interface to

Rosetta’s sidechain optimization module, the packer. Through the

design application the energy of a protein subunit or complex can

be minimized by optimization of the protein sequence. The

symmetrical version of the packer is invoked by specification of a

SDF file on the command line. The make_symmdef_file.pl script is

typically used to generate a SDF and the monomeric input

structure. Configuration makes use of resfiles, which provides

residue-level control of the packer. For symmetric systems, these

are only specified for one subunit.

A typical prediction case for fixed backbone design is distributed

in Supporting File S1.

Comparison with Rosetta2
We have previously modeled symmetrical protein assemblies

using an implementation in Rosetta2, described in [1]. The

symmetry machinery was used to develop methods for symmetric

docking [1] and simultaneously folding and docking [10]. In both

of these works the result of prediction benchmarks were presented.

To confirm that the new implementation in Rosetta3 performs as

well as Rosetta2 in scientific terms we have repeated predictions

for a majority of the proteins in these two benchmark sets and

shown that similar quality of predictions is reached (data not

shown). In addition, we have recently shown that the structure of

large homomeric protein complexes can be determined by

combining limited NMR data and symmetric modeling (ab initio

structure prediction followed by symmetric docking, or fold-and-

dock) [12], which establishes that symmetrical modeling in

Rosetta3 can be used to generate high-quality structural models.

The object-oriented nature of Rosetta3 enables us to take full

benefit of structural symmetry in protein modeling. Rosetta3 can,

given the right symmetry definition, model all types of symmetries.

In contrast, Rosetta2 only included a few hard-coded symmetry

types and exact values of energy gradients for more complex

symmetries (such as helix symmetry) could not calculated, as it

required of the types of corrections described in the energy

minimization section. The inflexible nature of Rosetta2 code base

prevented the implementation of several features present in

Rosetta3. A major benefit of Rosetta3 over Rosetta2 is that lists

of atom and residue neighbors, used during energy calculation and

energy minimization, is restricted to only those pairs that are

required to evaluate the energy of the whole system. With

Rosetta2 the memory requirements gets prohibitory large for big

systems and a substantial fraction of the running time is spent on

generating updated neighbor list.

We have compared the running time of Rosetta3 with Rosetta2

for several prediction protocols and molecular systems. Such

comparisons put the improvements in practical terms but it cannot

be used to isolate the effects of modifications to the symmetry

machinery. This is because general improvements of Rosetta3

from Rosetta2, together with protocol level developments, will also

impact running times. The comparison here is with standard

parameters in Rosetta2 and 3. A symmetric docking run on a C2

system with 164 residues is 2.3 times faster in Rosetta3 than

Rosetta2. For more computational intense protocols and with

more complex symmetries the improvement is larger. Running

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 12 June 2011 | Volume 6 | Issue 6 | e20450

fold-and-dock on a sequence with 100 residues with D2 symmetry

(4 subunits with in total 400 residues) the run time of Rosetta3 is

around 13 times shorter per model than Rosetta2. For a dimer

with the same number of residues with C2 symmetry the

improvement is 26 times. Rosetta2 scales poorly with the number

of simulated subunits in the system (runs with several hundred

residues is unpractical both due to memory and speed issues) while

Rosetta3 can model quite large protein assemblies without a

dramatic increase running time. We have determined running

time of the fold-and-dock protocol for a system with 100 residues

with Cn symmetric systems ranging from dimers up to 10mers.

The running time increases roughly linearly with 70s per added

subunit and model. When going from a dimer (with 200 residues)

to a 10mer (with 1000 residues) the running time increases around

5 times. For very large systems the energy calculation and

minimization no longer is the bottleneck. Instead updating the

three-dimensional coordinates of all modeled atoms take up a

large fraction of the running time.

The run time of a symmetric modeling run depends on the size

of the system (mostly the subunits size), the number of degrees-of-

freedom in the rigid body sampling and the scientific protocol. As

a reference, generating all-atom model of a D2 symmetric 100-

residue protein using fold-and-dock takes about 8 minutes on

contemporary desktop computer.

Conclusion
We present a general framework for the modeling and design of

symmetric protein assemblies. The current implementation

presents a set of ready-made scientific protocols to facilitate some

common tasks in structural biology: structure prediction of

symmetric protein structure from sequence or subunit structure,

comparative modeling of symmetric proteins or proteins in crystal

lattices and symmetric protein design. The list of symmetry-

enabled protocols can easily be extended by small modifications to

the Rosetta source code. In the same manner, the framework can

be used to model more exotic symmetry types, not currently

covered by the distributed scripts, without any changes to the

source code. Thus, this manuscript describes the extension of the

Rosetta methodology to the exciting universe of symmetric protein

assemblies.

Supporting Information

Material S1 A complete reference guide to Rosetta3 symmetry

definition files.

(DOC)

File S1 An archive containing example flags file and input files

for running four different symmetry protocols in Rosetta3. The

protocols include symmetric docking, symmetric comparative

modeling, fold-and-dock, and symmetric design.

(BZ2)

Author Contributions

Conceived and designed the experiments: FD IA AL PB DB. Wrote the

paper: FD IA AL.

References

1. André I, Bradley P, Wang C, Baker D (2007) Prediction of the structure of

symmetrical protein assemblies. Proc Natl Acad Sci U S A. 104: 17656–17661.

2. Bradley P, Baker D (2006) Improved beta-protein structure prediction by

multilevel optimization of nonlocal strand pairings and local backbone

conformation. Proteins 65: 922–929.

3. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone

flexibility. J Mol Biol 272: 503–519.

4. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. (2011)

ROSETTA3: an object-oriented software suite for the simulation and design of

macromolecules. Methods Enzymol 487: 545–574.

5. Ponder JW, Richards FM (1987) Tertiary templates for proteins: Use of packing

criteria in the enumeration of allowed sequences for different structural classes.

J Mol Biol 193: 775–791.

6. Pierce NA, Winfree E (2002) Protein Design is NP-hard. Protein Eng 15:

779–782.

7. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for
their structures. Proc Natl Acad Sci U S A. 97: 10383–10388.

8. Leaver-Fay, Kuhlman B, Snoeyink J (2005) Rotamer-Pair Energy Calculations

Using a Trie Data Structure. In: Casadio R, Myers G, eds. Algorithms in
Bioinformatics. Berlin: Springer. pp 389–400.

9. Abe H, Braun W, Noguti T, Go N (1984) Rapid calculation of 1st and 2nd
derivatives of conformational energy with respect to dihedral angles for proteins

- General recurrent equations. Computers & Chemistry 8: 239–247.

10. Das R, André I, Shen Y, Wu Y, Lemak A, et al. (2009) Simultaneous prediction
of protein folding and docking at high resolution. Proc Natl Acad Sci U S A.

106: 18978–18983.
11. Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to

assess protein structure prediction methods. Proteins 23: ii–v.
12. Sgourakis NG, Lange OF, DiMaio F, André I, et al. (2011) Determination of the

structures of symmetric protein oligomers from NMR chemical shifts and

residual dipolar couplings. J Am Chem Soc 133: 6288–6298.

Modeling Symmetric Structures in Rosetta3

PLoS ONE | www.plosone.org 13 June 2011 | Volume 6 | Issue 6 | e20450

