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Abstract

Investigation of microbial communities, particularly human associated communities, is significantly enhanced by the vast
amounts of sequence data produced by high throughput sequencing technologies. However, these data create high-
dimensional complex data sets that consist of a large proportion of zeros, non-negative skewed counts, and frequently,
limited number of samples. These features distinguish sequence data from other forms of high-dimensional data, and are
not adequately addressed by statistical approaches in common use. Ultimately, medical studies may identify targeted
interventions or treatments, but lack of analytic tools for feature selection and identification of taxa responsible for
differences between groups, is hindering advancement. The objective of this paper is to examine the application of a two-
part statistic to identify taxa that differ between two groups. The advantages of the two-part statistic over common
statistical tests applied to sequence count datasets are discussed. Results from the t-test, the Wilcoxon test, and the two-
part test are compared using sequence counts from microbial ecology studies in cystic fibrosis and from cenote samples.
We show superior performance of the two-part statistic for analysis of sequence data. The improved performance in
microbial ecology studies was independent of study type and sequence technology used.

Citation: Wagner BD, Robertson CE, Harris JK (2011) Application of Two-Part Statistics for Comparison of Sequence Variant Counts. PLoS ONE 6(5): e20296.
doi:10.1371/journal.pone.0020296

Editor: Dongxiao Zhu, University of New Orleans, United States of America

Received January 24, 2011; Accepted April 20, 2011; Published May 23, 2011

Copyright: � 2011 Wagner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the Cystic Fibrosis Foundation, number HARRIS08A0 (http://www.cff.org) and the National Institutes of Health
(NIH), number 1U01HL081335-01 (http://grants.nih.gov/grants/oer.htm). The funders had no role in the study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: brandie.wagner@ucdenver.edu

Introduction

Analysis of sequence variants, particularly the small subunit

ribosomal RNA gene (SSU-rRNA), is widely used to examine

microbial ecology. The concept of the microbiome, the genetic

content of all microbes present in a community, was articulated to

promote the study of microbial ecology of the human body [1].

Sequencing methods are used to generate data in several areas of

human health and across diverse ecological studies. This DNA

based method for bacterial identification has many advantages

over culture-based methods and provides the ability to identify

organisms without a priori knowledge of the community present

[2,3]. Typical data generated from a microbial ecology study

consist of SSU-rRNA gene sequence variant counts. These

variants serve as a proxy for the diversity and relative abundance

of the microbial populations in the community. Sequences are

classified based on relationship to exemplar sequences, which

provides taxonomic information about the organism that contrib-

uted the template DNA [4].

Microbiome studies have been designed to compare bacterial

communities across groups, but the majority of studies have not

focused on methods that formally identify statistically significant

differences between groups. The ultimate goal of microbial

ecology studies is to understand the community constituents that

perform particular functions. The human microbiome project

endeavors to apply this to human associated communities in order

to identify taxa that either adversely affect, or promote, health. A

first step towards this goal will require researchers to extend

beyond the description of which taxa are present and perform

analyses capable of identifying important taxa. This move toward

selection of informative taxa, which vary across disease groups, for

refined study will identify targets for intervention or taxa which are

helpful for prognostic or diagnostic purposes. This same concept of

feature selection is employed in microarray studies and we propose

the application of a similar approach to microbiome data.

As with microarray data, sequence data are high-dimensional

but with added complexity. Instead of the lognormal continuous

values obtained in microarray data, sequence data consist of non-

negative, highly skewed sequence counts with a large number of

zeros. The number of zeros in the dataset is a direct result of the

combination of sequence counts from different communities. The

samples within a group will provide unique taxa, which require

insertion of zeros in all other samples within the other group.

There is a need for methods to compare the sequence counts

between different disease groups which can handle the specific

features of the data. A further constraint is sample size, which is

relatively small in many studies, where the asymptotic assumptions

are not reasonable. Limited samples are often the result of

difficulty obtaining human samples, which constrains the size of

studies due to the expense of patient recruitment and sample

collection. Environmental studies are still largely scaled to clone-

based sequencing limitations. The availability of indexed (bar-
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coded) libraries, sequenced by high throughput technologies,

fundamentally changes the design constraints of sequence-based

microbial ecology studies. Short sequences are a concern in

environmental studies, but access to long read platforms is

increasingly limited due to cost per base.

The unique characteristics of sequence count data are not

adequately addressed by standard statistical approaches used to

compare variables across groups such as t-tests and the

nonparametric approaches that compare ranks. To identify taxa

that differ between two groups, we propose the use of a two-part

statistic, as it is capable of handling the complexities in the

distribution of sequence count data. Application of this approach

to other data types, particularly microarray data analysis [5,6], has

previously been described in the literature.

Methods

Motivating examples
Two datasets were used to demonstrate the utility of the two-

part approach. One study involves clinical samples and Sanger

sequence data, and the other, environmental samples and 454

pyrosequence data. These examples were selected to cover the two

primary modes of sequence data acquisition for both clinically

relevant microbiome and environmental ecology examples. The

clinical dataset is from a cystic fibrosis (CF) research study

performed at The Children’s Hospital of Denver. The contrast in

this example is between CF sputum samples obtained during

active disease (acute pulmonary exacerbation, n = 16) and sputum

obtained from healthy controls (n = 10) by induction [7]. Bacteria

were identified by culture-independent methods based on

sequence of the SSU-rRNA. The environmental dataset was

obtained from two cenote sites in Mexico [8,9]. The sites were

sampled extensively, and 49 and 60 amplicon libraries were

contrasted between the two sites.

Ethics Statement
All human specimens were collected under approved protocols

by the Colorado Multiple Institutional Review Board (COMIRB).

Written informed consent and HIPPA Authorization were

obtained from all participants over the age of 17 years or from

parents or legal guardians of participants younger than 18 years.

Assent was obtained from all participants under 18 years.

Sequence Analysis
Sanger Data. Contiguous small subunit ribosomal RNA

sequences from multiple sequencing reactions were assembled

using the program Xplorseq 2.0 [10] and compared to a database of

well-curated sequences of isolates derived from Silva 93 [11] using

BLAST [12] to determine their approximate phylogenetic

relationships. Sequences were aligned using NAST [13] and

parsimony inserted into a database provided by Greengenes [14]

compatible with the ARB software package [15]. Each sequence

was then assigned a taxa name based on the phylogenetic placement

in the Greengenes guide tree. Chimeras were detected from long-

branch lengths within the phylogenetic tree and confirmed by

comparing the best match by BLAST for each end of the sequence.

Sequences that were considered chimeras were excluded.

454 Data. Sequence data was assigned to the appropriate

samples based on the barcode included prior to sequencing with the

software package Bartab [10]. Sequence quality was checked using

ChimeraSlayer [16], correct bacterial rRNA secondary structure

with Infernal [17], and identification as bacterial using the RDP

Classifier [18]. The taxonomy lines generated by the RDP Classifier

were used to construct the sequence count data examined.

Description of data
Within the CF dataset, 175 different species level taxa were

identified. Veillonella dispar, Granulicatella adiacens and Streptococcus

sanguis are used throughout to represent the range of zero count

proportions that characterize the full dataset. The environmental

cenote dataset resulted in sequence counts for 827 genus level taxa.

Desulfobacca, Chlorobium and Dehalogenimonas had similar proportions

of zeros, and were evaluated in depth to highlight the differences

between the three methods. The total number of sequences varies

across samples, and requires normalization. Thus, relative

abundance, the percent of the total number of sequences obtained

for each taxa within a sample, was used in lieu of the raw sequence

counts.

Statistical Analyses
With a large enough sample size, the application of a t-test to

skewed counts where data do not represent a continuum of values

is appropriate. In the case where a sample size is not sufficiently

large for the means to approximate a normal distribution, the

Wilcoxon rank-based approaches are usually recommended.

However, neither of these approaches is suitable where there is

a large proportion of zeros, as it would result in either a deflated

mean, or in the case of a rank based approach, a large number of

ties, which reduces power [19,20]. Neither approach capitalizes on

the presence/absence information contained in the proportion of

zero counts. An alternative is the two-part statistic, successfully

used in similar applications [5,19,21], that is proposed here for

analysis of sequence count data.

Two-part statistics
In this approach, the test statistic is the sum of two squared

statistics, one comparing the proportion of zeros and one

comparing the mean or median of the non-zero values. For

application to sequence count data with two independent groups,

we propose the use of a two-proportion Z- test and the Wilcoxon

rank sum test applied to the non-zero counts [19,22]. More

specifically, the two-proportion Z-test is used to compare the

proportion of the non-zero counts and is calculated by the

following equation:

Z~

p1-p2j j{ 1

2n1
z

1

2n2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂pq̂q

1

n1

z
1

n2

� �s ð1Þ

where n1 and n2 are the number of total observations in

group 1 and 2, respectively, the number and proportion of

non-zero counts in each group are denoted by m1, p1 and m2, p2,

and p̂p~
m1zm2

n1zn2
, q̂q~1{p̂p:

For the second part of our statistic, we use the Wilcoxon rank

sum test to compare the medians of the non-zero counts. We use

the Wilcoxon test, rather than a t-test or the Kolmogorov-

Smirnov, because nonparametric tests based on ranks are more

appropriate for skewed data such as sequence counts within small

sample sizes. To calculate the ranks, first the data from the two

groups are combined and the values across both groups are

ranked, the average rank is assigned when there are tied values.

The following test statistic is used to compare the non-zero relative

abundance values across two independent groups [23]:
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Figure 1. Distribution of relative abundance measures for each taxa across both disease groups. This figure displays histograms for the
following three taxa chosen from the CF study to represent the range of proportion of zeros present in the dataset A Veillonella dispar B
Granulicatella adiacens C Streptococcus sanguis.
doi:10.1371/journal.pone.0020296.g001
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Figure 2. Distribution of relative abundance measures for each taxa between cenote sites. Histograms representing the relative
abundance of the three taxa selected to represent the cenote sites A Desulfobacca B Chlorobium C Dehalogenimonas. These taxa were chosen from
the cenote study to represent the differences in the distributions when the performance of the statistical approaches differed.
doi:10.1371/journal.pone.0020296.g002
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where R1 is the sum of the ranks in group 1, ti is the number of

observations with the same value in the i-th tied group, and g is

the number of tied groups. The variables m1 and m2 are

the non-zero counts in each group as in the Z-test described

above.

The normal approximation of this test statistic is appropriate

when both m1 and m2 are greater than 10 and the underlying

distribution is continuous. When there are no ties within the

non-zero counts, the last term in the denominator reduces to

zero.

For the extreme cases where there are no zero counts we set

Z = 0 or when there are only zero counts in one group we set

W = 0. The resulting two-sample test statistic is X2 = Z2+W2

which is asymptotically distributed x2 with 2 degrees of freedom

(df) [22]. This statistic tests the null hypothesis that the proportion

of zero values and the location parameter describing the

distribution of the non-zero values is equal across the groups.

This statistic reaches statistical significance whenever either the

proportion of zeros or the median of non-zero values differs

substantially between groups. If the study design consists of paired

observations, rather than independent groups, a similar approach

using McNemar’s test for paired proportions can be combined

with the Wilcoxon Signed Rank Sum test as previously described

[24].

Results

To compare the two-part statistic with the t-test and the

Wilcoxon rank sum test, three taxa from each motivating dataset

were selected. The selection was performed to demonstrate the

performance of the three methods under different scenarios. In the

CF study, the taxa were selected to represent the range of zero

proportions in the distributions (Figure 1), and the environmental

taxa were selected to investigate the distributional properties of the

data when the results obtained across the three methods differed

(Figure 2).

For the CF study, Veillonella dispar had a small percentage of zero

counts (54%) across the groups, Granulicatella adiacens (62%) was

intermediate and Streptococcus sanguis had a high percentage at 89%.

Veillonella dispar and Granulicatella adiacens are more often present in

healthy samples compared to the acute group but when detected,

the relative abundance in the healthy group is lower than the acute

group (Figure 3a). Streptococcus sanguis is detected in similar

proportions across the two groups, however, when it is detected,

the relative abundance in the healthy group is much larger than

the acute group. The taxa selected from the cenote study,

Desulfobacca, Chlorobium and Dehalogenimonas, had similar percent-

ages of zero counts overall (16% – 28%) and these percentages

were comparable across both cenote sites for Dehalogenimonas and

Desulfobacca (Figure 3b). However, Chlorobium had differing

proportions of zero counts between sites (38% vs 14%). All three

taxa from the cenote study had some difference in the median of

the non-zero counts.

Figure 3. Displays the two components of the distribution for each taxa. The proportion of zero counts (bars) and the median of the non-
zero counts (points) are displayed for the three taxa across both groups for A the CF dataset and B the cenote dataset.
doi:10.1371/journal.pone.0020296.g003

Table 1. Comparison of results from two group comparison.

T-test
p-value

Wilcoxon
p-value

Two-part
p-value

CF study

Veillonella dispar 0.50* 0.07** 0.02***

Granulicatella adiacens 0.74* 0.04*** 0.05***

Streptococcus sanguis 0.37* 0.96** 0.75***

Cenote study

Desulfobacca ,0.01*** 0.01*** 0.03**

Chlorobium 0.27** 0.44** ,0.01***

Dehalogenimonas ,0.01** 0.22** 0.08***

*Distribution for taxa includes an outlier which results in incorrect inferences.
**Assumptions of the test are not optimal given the distribution of the taxa (i.e.,
skewness, large proportion of zeros or power).
***Most optimal approach, given the distribution of the taxa.
doi:10.1371/journal.pone.0020296.t001
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For the six taxa, a t-test, non-parametric Wilcoxon test and the

two-part test, as described earlier, were used to compare the acute

and healthy groups from the CF study and two sites from the

cenote study (Table 1). For the majority of the examples, there is a

large difference between the results obtained with a t-test and the

two-part or Wilcoxon tests. For the comparisons of Granulicatella

adiacens and Veillonella dispar, the t-test results are non-significant

due to the increase in both the proportion of zeros and the median

of the non-zero counts for the acute group compared to the

healthy group. In this case, these two parameters are inversely

related, thereby canceling each other out when a mean is

calculated. This relationship is easily accommodated by the two-

part test. For Streptococcus sanguis, only one sample in the healthy

group was non-zero. Therefore, the non-significant two-part

statistic is testing the slight difference in the proportions, whereas

the t-test has a smaller p-value because the single non-zero outlier

inflates the mean in the healthy group. For the cenote data, the

Desulfobacca proportion of non-zeros and the non-zero counts were

increased in the first site compared to the second, resulting in

relative agreement across the three methods, although the two-

part test was more conservative. Lastly, Dehalogenimonas was

considered to have a highly significant difference when using the

t-test (due to the non-normal distribution), non-significance using

the Wilcoxon (likely due the high number of tied ranks) and a

marginal significance using the two-part test.

There were a total of 175 species level and 827 genus level taxa

detected in the CF and cenote examples, respectively. To

demonstrate the performance of feature selection, the two-part

statistics were calculated separately on each taxa to compare the

relative abundance between the two groups. A Manhattan plot,

commonly used in genetic studies, was used to display the

magnitude of the p-values for each comparison (Figure 4) with the

taxa ordered by taxonomy line, and color-coded by phylum. This

plot indicates that 12 of the 175 species level taxa, in the CF study,

and 79 of the 827 genus level taxa, from the cenote samples, had

statistically significant differences in relative abundance between

Figure 4. Manhattan plots displaying the results from all two-part tests across all taxa. The y-axis displays the negative log of the p-value,
hence higher values indicate increased statistical significance. Reference lines are included to designate the usual critical values. The Manhattan plot
is ordered by taxonomy line and the colors correspond to different phyla. A There were 12 species level taxa with p-values ,0.05 identified in the CF
study and B 79 genus level taxa were identified in the cenote study.
doi:10.1371/journal.pone.0020296.g004

Two-Part Statistics for Sequence Studies

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e20296



the two groups (p,0.05). This plot can aid in feature selection and

provides information on the number of potentially informative

taxa within each phylum.

Discussion

Here, we describe the distributions of the microbial sequence

counts observed in two studies of the bacterial differences between

two groups of samples. The distributions of the relative abundance

variables are highly skewed, non-negative and have a large

proportion of zeros, for which commonly used statistical

approaches may not be appropriate. Three specific taxa from

each study were presented in detail to demonstrate the

performance of each approach. Based on this analysis, we show

that the application of two-part tests provide more information

about sequence count data compared to t-tests and Wilcoxon tests.

The Wilcoxon and two-part tests produce similar results when

there are smaller proportions of zeros in both groups, but as these

proportions increase, the Wilcoxon test is less powerful due to the

higher number of tied ranks.

In ecological research, count data with a large proportion of

zeros is routinely encountered [25,26,27]. In fact, in this case, the

large proportion of zeros is intrinsic to the creation of the dataset

rather than the data generating process itself. The dataset contains

sequence counts for taxa that were observed in at least one sample,

if a particular taxon was not observed in a sample it is given a zero

value. Therefore, when comparing sequence counts across two

diverse groups with differences in the presence/absence of taxa, a

large numbers of zero counts are expected. For this reason, it is

likely that similar distributions are also encountered in other

related sequencing applications such as allele frequency. More-

over, application of the two-part test proposed here is not

restricted to sequence count data from microbial ecology studies.

The two-part statistic provides an analytic option for sequence

count data due to the unique features observed, mainly, data

which is non-normally distributed, high dimensional and contains

a large proportion of zeros. Further, it performs an explicit test of

both the proportion of samples that contain particular taxa and,

simultaneously, the relative abundance between two groups. This

approach overcomes limitations in other methods like the t- test,

which is affected by outliers, and the Wilcoxon rank sum test that

accommodates non-normality but loses power as the number of

tied ranks, caused by the large number of zero counts, increases.

It has previously been shown that the two-part tests perform

better than the other commonly used tests when the group with

the larger proportion of zeros also has the larger mean, as

demonstrated by the Granulicatella adiacens, Veillonella dispar and

Chlorobium examples. If the opposite holds true then the two-part

tests have somewhat reduced power with respect to the commonly

used methods [19]. However, the application of the two-part test

remains advantageous given the interest in simultaneously

comparing the presence/absence and the mean quantities of taxa.

Lachenbruch [19] provides an empirical simulation study which

investigated and compared the power and type I error rates of the

two-part test with the single degree of freedom tests considered

here.

For large samples, the two parts of the two-part statistic (Z and

W) are independent under the assumptions of independent errors

of both parts of the test [28]. However, for smaller studies, where

the distributional approximations of the two-part test are not

reasonably assumed, extension of this method to a permutation

based test [5] is warranted to more accurately estimate a

corresponding p-value. In any case, the tests can be ranked based

on the chi-squared statistic to similarly perform feature selection in

the event a satisfactory approach to calculating a p-value cannot

be obtained. The issue of multiple comparisons from application of

the two-part test to each individual taxa was not addressed here.

The expansion of the two-part test to a more general permutation

based test will accommodate the permutation-based multiple

comparisons adjustments previously applied to microarray studies.

These approaches have the advantage to account for both the

correlation between taxa and the association induced by the

relative abundance calculation [29,30,31]. Additionally, for more

complex study designs, the authors are developing zero-inflated

models which others have advocated for this type of data [32] and

are useful for generalizations which include ANOVAs, addition of

covariates and repeated measures but which require adaptation

and guidelines for high-dimensional applications.

To date, there is a fundamental lack of development and

investigation of statistical methods appropriate for integrated

sequence and metadata that resulted in an analysis bottleneck and

backlog of potentially informative studies [33,34,35]. There are

several published contentions that human microbiome research

‘‘lacks the range of computational tools necessary to analyze these

sequences in sufficient detail’’ [36]. It is also recognized that

interpretation of the available sequence data will require

integration with relevant environmental, epidemiological and

clinical data [33,36]. The commonly used statistical methods

applied in this area are intended for the calculation of global

ecological parameters and the description of bacterial communi-

ties. These methods are not meant to address more focused

questions related to specific taxa. The departure from more

general inquiries about the overall community differences to

analyses that focus on specific taxa is likely where the greatest

advancement in knowledge of the human microbiome will come

from. This transition is apparent in recent publications [37,38]. To

further proceed in this direction, we have proposed an initial

strategy for comparisons between two groups and have shown it is

appropriate for the specific attributes of microbiome data,

irrespective of sample type, phylogenetic level and sequencing

technology.
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