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Abstract

Background: Accurate estimates of movement behavior and distances travelled by animals are difficult to obtain, especially
for small-bodied insects where transmitter weights have prevented the use of radio-tracking.

Methodology/Principal Findings: Here, we report the first successful use of micro radio telemetry to track flight distances
and space use of bumblebees. Using ground surveys and Cessna overflights in a Central European rural landscape mosaic
we obtained maximum flight distances of 2.5 km, 1.9 km and 1.3 km for Bombus terrestris (workers), Bombus ruderatus
(worker), and Bombus hortorum (young queens), respectively. Bumblebee individuals used large areas (0.25–43.53 ha) within
one or a few days. Habitat analyses of one B. hortorum queen at the landscape scale indicated that gardens within villages
were used more often than expected from habitat availability. Detailed movement trajectories of this individual revealed
that prominent landscape structures (e.g. trees) and flower patches were repeatedly visited. However, we also observed
long (i.e. .45 min) resting periods between flights (B. hortorum) and differences in flower-handling between bumblebees
with and without transmitters (B. terrestris) suggesting that the current weight of transmitters (200 mg) may still impose
significant energetic costs on the insects.

Conclusions/Significance: Spatio-temporal movements of bumblebees can now be tracked with telemetry methods. Our
measured flight distances exceed many previous estimates of bumblebee foraging ranges and suggest that travelling long
distances to food resources may be common. However, even the smallest currently available transmitters still appear to
compromise flower handling performance and cause an increase in resting behavior of bees. Future reductions of
transmitter mass and size could open up new avenues for quantifying landscape-scale space use of insect pollinators and
could provide novel insights into the behavior and requirements of bumblebees during critical life stages, e.g. when
searching for mates, nest locations or hibernation sites.
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Introduction

Quantifying animal space use is fundamental for understanding

population processes and for developing conservation and

agricultural management plans. For instance, movement of

pollinators is crucial for pollen transport in wild and crop plant

populations because many flowering plants rely on animals for

pollination services [1,2]. Bees are the most important taxon

among animal pollinators and provide pollination services for

more than one third of cropspecies worldwide [3]. Especially in

areas with intensive agriculture, several solitary bee species are

highly threatened [4,5] and recently documented declines in bee

diversity [6] illustrate the urgent need to improve our under-

standing of how insect pollinators move on a landscape scale.

Population declines in bumblebee species, a highly important

pollinator group [7,8,9], have been attributed to a reduced

availability of suitable food resources in agricultural landscapes

[10,11], a reduction in nesting and hibernation sites [10,12],

competition from introduced species [13], and potential pathogen

spillover from commercially reared colonies [14]. However, for

most bee species the spatial dynamics of resource use at the

landscape scale remain unknown [15]. A major problem that

prevents understanding the space use of small organisms such as

bees is that adequate long-distance tracking methodologies for

such taxa have not been available (but see [2,16]).

Bumblebees are largely confined to temperate, alpine and arctic

zones of Europe, North America and Asia [17,18]. All 250 species

of bumblebees are relatively large, hairy and facultative endo-

therms. In Europe and North America, bumblebees are among

the most important wild pollinators of crops [8]. Unfortunately,

bumblebee species have declined in recent decades worldwide

[19], mainly driven by land-use changes that cause reductions in

the abundance of food plants [20]. Bumblebees are central place

foragers and perform foraging trips between the central place (i.e.

nest) and foraging patches. Theoretical models of energy

expenditure and foraging behavior predict that flight distances

can extend over several kilometers [21]. However, empirically it

remains difficult to measure flight distances of bees. Previous
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studies have quantified bee movements by using (1) indirect

measures such as foraging trip duration [22,23], homing abilities

[24–26], or modeling of maximum foraging ranges [21], or (2)

direct measures such as mark-reobservation experiments [27–31],

genetic microsatellite approaches [32–34], or harmonic radar

[1,35]. While some of these techniques (e.g. pollen mapping,

mark-recapture, or genetic analyses) tend to measure minimum

(rather than maximum) foraging distances, others (e.g. homing and

feeder training experiments) often overestimate the routine

foraging behavior of bees under natural conditions [36].

Despite being an established tracking technique for birds and

mammals for decades, radio-tracking has only recently been used

with insect pollinators, namely African carpenter bees [2] and

Neotropical euglossine ‘orchid’ bees [16]. Harmonic radar (where

individual bees carry small transponders that re-radiate radar

transmissions) has been applied earlier [1], but the radar’s range is

limited (,600 m) and affected by physical barriers such as hedges.

Here we report the first use of radio-tracking of bumblebees with

the aim to (1) test whether newly developed, miniaturized radio-

tags can be used for studying movement paths of bumblebees, (2)

investigate the effect of radio-tags on the behavior of the

bumblebees, and (3) illustrate potential applications for quantifying

movement behavior and space use of bumblebees at the landscape

scale. More specifically, we compare measured flight distances

with published estimates from alternative techniques and theoret-

ical models and describe the spatio-temporal movements and

habitat use of one Bombus hortorum individual at our study site. Our

results suggest that radio telemetry of bumblebees has the potential

to provide new avenues for studying the flight behavior and

movement paths of this important pollinator taxon, particularly

once technological developments allow further significant reduc-

tions in both transmitter mass and size, and that these smaller and

lighter transmitters are shown to have negligible effects on bee

behavior.

Materials and Methods

Study time and area
The study was conducted between June-29 and July-5 2009 at

the ‘Bee Marie’ conservation meadow in the vicinity of the Max

Planck Institute for Ornithology at Möggingen near Radolfzell,

Lake Constance region, Germany (8u59952E and 47u45955N

latitude). The study area is a rural landscape mosaic composed of

villages, meadows, fields, hedgerows and forest patches. Bumble-

bees were caught and transmitters were attached at the study site

(‘Bee Marie’ conservation meadow).

Study organisms
The study was conducted using workers of Bombus terrestris (subsp.

terrestris) from a commercially purchased nest (NATUPOL,

Sautter& Stepper GmbH) located at the study site, one worker of

B. ruderatus and (presumably young) queens of B. hortorum, both

caught from the wild. Whether these young queens were gynes

(unmated queens) or pre-hibernation mated queens (searching for a

hibernation site) remains unknown.While B. terrestris and B.

hortorumare very common species in Europe that are easily found

in gardens, orchards or parks, B. ruderatus is rather rare and

distributional data are limited due to its resemblance to B.

hortorum[37]. We assessed body size of B. terrestris and B. hortorum

individuals by measuring the distance between the wing bases

(intertegular (IT) span, [38]) on a sample of 5–6 individuals each.

These individuals were either those bumblebees we fitted

transmitters to or bumblebees of comparable size. Due to lack of

specimens we measured the IT span for only one individual of B.

ruderatus. To measure IT we used a dissecting microscope and

calibrated ocular micrometers in the lab. IT span is empirically

related to dry body mass, IT span = 0.77(dry weight)0.405 (R2 = 0.96;

mass in mg and IT in mm, [38]), so that body mass can be estimated

from IT span data. We approximated the live weight of the

bumblebee individuals by using the calculated dry weight and the

live:dry weight ratios as reported in the literature [39].

Transmitter attachment
We fitted transmitters to three (presumably young) Bombus hortorum

queens, to one B. ruderatus worker and to four B. terrestris workers. For

transmitter attachment, bumblebee individuals were put into a glass

tube where one end was closed with gauze and the other end closed

with foam (Figure 1a). The gauze was then partly opened with scissors

so that dorsal parts of the bumblebee body were accessible but the

animal was still fixed in the glass tube (Figure 1a). Collected

individuals were fitted with small (200 mg) radio transmitters

(Advanced Telemetry Systems, Isanti, MN, Series A2405, antenna

length shortened to ca. 3 cm) on the dorsal upper abdomen using

minute amounts of a combination of eyelash adhesive (DUO Lash

Adhesive, American International Industries, Commerce, CA) and

superglue (Instant Krazy Glue, Elmer’s Products, Inc., OH). To keep

transmitter weight to a minimum required the use of a small battery,

limiting the transmitter life to a period of about seven days. We

initially tested attaching the transmitter to the dorsal thorax of

bumblebees, a method we previously found worked successfully with

orchid bees [16]. However, bumblebees with transmitters attached in

this way showed unbalanced flight behavior and we consequently

abandoned this attachment method.

Effects of transmitter attachment
To evaluate the effect of transmitter attachment we report

behavioral observations on the bumblebee species. This includes

observations on (1) the behavioral responses of bumblebee

individuals of all species directly after transmitter attachment, (2)

the movement behavior of tagged B. terrestris individuals at the

purchased nest, and (3) detailed behavior obtained from tracking

one B. hortorum individual queen at the landscape scale (see below

‘Spatio-temporal habitat use’).

Additionally, we quantified the effect of transmitter attachment

on bumblebee flower visitation behavior. We observed individuals

of B. terrestris (with and without transmitters) in a 3625 m patch of

sown phacelia plants (Phaceliatanacetifolia, Boraginaceae) at the

study site and recorded visitation rate (i.e. number of Phacelia

flower heads visited per minute) and time on flowers (foraging time

[in seconds] spent on individual Phacelia flower heads) within time

intervals of 0.5–3 minutes per individual (8 time intervals of B.

terrestris with transmitter, 12 intervals/individuals without, both

time intervals adding up to a total of 21.5 minutes observer time).

We statistically compared both mean visitation rates and mean

time on flowers between groups (i.e. bumblebees with transmitters

vs. without) using one-tailed t-tests on log-transformed data. The

two other species (B. hortorum and B. ruderatus) were not sufficiently

abundant to conduct similar studies.

Tracking
After transmitter attachment, the bumblebees were released and

tracked by two people using conventional radio telemetry

techniques [40]. Additionally, we located bumblebees using three

aerial surveys when bumblebees were outside the detection range

of people tracking on the ground. These surveys were conducted

with a Cessna aircraft equipped with external receiver antennas.

Whenever a signal from a transmitter was received, the location

was noted with a Global Position System (GPS). Because of visual

Bumblebee Telemetry

PLoS ONE | www.plosone.org 2 May 2011 | Volume 6 | Issue 5 | e19997



contact, the exact position, the behavior (e.g. foraging vs. moving)

and the flight path of bumblebee individuals could be noted in

most cases when bees were tracked on the ground. In cases of

longer flight movements (e.g. .100 m), the bumblebee was

followed by foot, visual landmarks were noted by the tracking

person, and GPS points of the flight path were taken later.

Tracking of bumblebees took place between 8 am and 8 pm.

Flight distances and home range sizes
For each individual bumblebee we estimated the maximum flight

distance (i.e. the distance between the study site and the most distant

location). We compared this observed maximum flight distance

with the homing distance as predicted by the Greenleaf

et al. (2007) regression model [36]. This model is the only

empirically derived model that predicts flight distances across bee

species and is based on a log-log linear regression model between

body size (i.e. intertegular span, [38]) and foraging distance

according to the function log y = log a+b * log x (where y =

foraging distance, a = constant, b = power parameter, x = body

size of the bee). Following this model, we performed logistic

regressions on the data from both bumblebee species (B. terrestris, B.

hortorum) to generate the predicted distance for return of 10% of

individuals (i.e. the distance Greenleaf et al. [36] defined as the

"maximum homing distance". N.B. despite the wording error in

Greenleaf et al. [36], maximum homing distance is correctly defined

as the "loss of 90% of individuals" (Neal Williamspers. comm.)) and

50% of individuals (i.e. the distance Greenleaf et al. [36] defined as

the "typical homing distance"). ’To apply these calculations, we

measured body size using intertegular span (IT span) for 6 B. terrestris

and 5 B. hortorum individuals (see above ’Study organisms’).

Besides maximum flight distances we further estimated the

home/foraging range size for all individuals with $5 point

locations (see above ‘Tracking’). We used the minimum convex

polygon [MCP] method [41] and estimated MCP home range

sizes in ArcView GIS (see below). The MCP is the most common

method of estimating home range sizes [41] and is constructed by

connecting the outer locations to form a convex polygon, and then

calculating the area of this polygon (see [42] for the specific

formula). We call the bee’s individual movement ranges ‘home

range’ for convenience although the (presumably young) queens of

B. hortorum could be already in a stage where they leave their natal

colony and search for hibernation sites.

Spatio-temporal habitat use
To illustrate an example of how bumblebee telemetry data can

be used to study spatio-temporal habitat use, we took images from

the study area from Google Earth (version 4.3.7284.3916, build

date July 8, 2008, available at www.earth.google.com) and geo-

referenced them using the open source software MapWindow GIS

(version 4.7.4, 10/08/2009, available at www.mapwindow.org/)

and the plugin Shape2Earth (version 1.46, www.shape2earth.

com). These geo-referenced images (in geographic projection)

were then transferred to the Geographic Information System (GIS)

ArcView 3.2 (ESRI, Redlands, CA, USA) for creating a spatial

landcover file in GIS format. Four major landcover types were

distinguished and digitized from the Google Earth images: (1) trees

(including individual trees, hedges and forest patches outside

villages), (2) agricultural fields, (3) meadows, and (4) villages

(including buildings, gardens and roads). Most of the digitized

landcover patches were checked in our field work. For subsequent

GIS analyses, we projected the landcover file with a Transverse

Mercator projection and measured distances (in m) and areas of

home ranges (in ha). To analyze bumblebee habitat use we chose

the best tracked bumblebee individual (young B. hortorum queen,

bee 1, Table 1, observed for .12 hours) and recorded the time it

spent at each location and its behavior (resting (when the

bumblebee was not moving), foraging (when the bumblebee was

observed visiting flowers), or moving (when the bee flew straight

from one point to the other) to quantify its spatio-temporal space

use. We took all its GPS locations around the study site (n = 40,

Figure 1. Miniaturized radio transmitters attached to bumblebees. (a) Transmitter attachment on a Bombus terrestris individual kept in a
glass tube with opened gauze where the transmitter is fixed with superglue. (b) Nectar collecting individual of Bombus terrestris on Phacelia flower
having a transmitter attached. (c) Bombus terrestris individual with attached transmitter, foraging on red clover (Trifoliumpratense).
doi:10.1371/journal.pone.0019997.g001
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excluding the most distant point which was obtained by aircraft

and with 1,316 m away from the study site a clear outlier in the

spatial coverage and frequency distribution of distances for this

individual) and intersected the GPS locations with the digitized

GIS landcover types. We then calculated the proportional use of

landcover types based on the observed GPS locations (note that

including the outlier would only negligibly change the observed

proportional habitat use of this individual) and compared it to a

simulated random habitat use. To simulate random habitat use,

we chose a radius of 320 m (which is the distance of the farthest

observation point to the center) around the mean center of the 40

observation points and randomly located the same number of points

(n = 40) within this radius. We performed this procedure one

thousand times and calculated for each of the one thousand

realizations the proportional availability of landcover types by

intersecting the random point locations with the GIS landcover

types. We used a Chi2-test (including the frequencies of all four

landcover types) to test whether observed frequencies of habitat use

of the radio-tracked bumblebee significantly deviate from the mean

simulated random habitat use of landcover types. We then used t-

tests to specifically test which observed proportional uses of

landcover types (trees, fields, meadows, villages) deviate significantly

from random habitat use. T-tests were repeated by weighting the

locations with the time the bumblebee spent at them to see whether

the temporal use of location points influenced the (purely) spatial

habitat analysis. Note that an alternative analysis (Figure S1) using

the study site as the central point of the radius (rather than the mean

center of the 40 observation points) for locating the random points

gave similar results to those presented here. We did not use the nest

as the central point of the radius because the location of the natal

nest was unknown and the young queen might not visit the natal

nest anymore.

Data Analysis
All statistical analyses were done with R (version 2.9.0, R

Development Core Team 2009). For the GIS analyses in ArcView,

we used the extension ‘Nearest features’ (version 3.8b) to measure

the distances between the site of transmitter attachment (i.e. study

site) and the most distant location, the extension ‘Convex hulls

around points’ (version 1.24) to estimate MCP home range sizes,

the extension ‘Weighted Mean of Points’(version 1.2c) to calculate

the mean center of the 40 observation points,and the extension

‘Random Point Generator’ (version 1.3) to generate the sets of

random points for the habitat analysis. All extensions are freely

available from Jenness Enterprises [43].

Results

Study organisms
The mean (6SD) intertegular span of B. terrestris workers was

measured to be 4.9260.25 mm (n = 6), and following the

calculations by Cane [38] the mean dry weight can be estimated

to be ca. 97.5 mg. The mean (6SD) intertegular span of of B.

hortorum queens was 5.8060.49 mm (n = 5) with an estimated mean

dry weight of about 146 mg. The intertegular span of the single B.

ruderatus specimen was 5.63 mm with an estimated dry weight of

about 136 mg. The scarce data on live:dry mass ratios suggest that

the live masses of bumblebees (based on data for males and queens

of B. terrestris) are about two- to threefold higher than their dry

weights[39], even though live mass is highly variable due to e.g.

nectar intake. Given these values, the life weight of B.

terrestrisworkers in this study can be estimated to be 200–

300 mg,the life weight of B. hortorumqueens around 300–450 mg,

and the life weight of B. ruderatus workers around 270–400 mg.

Hence, the transmitter weight is ca. 66–100 % of the life weight of

a B. terrestris worker, ca. 44–66% of the life weight of a B. hortorum

queenand about 50–74% of the life weight of a B. ruderatus worker.

Effects of transmitter attachment
We successfully fitted miniaturized radio transmitters to eight

bumblebee individuals of which four were B. terrestris workers (from

the purchased nest), three B. hortorum queens (from the wild) and one

a B. ruderatus worker (from the wild). The tagged bumblebees usually

took off within 1 minute after fitting the radio transmittersand then

flew to a nearby bush or tree where they spent the next K to 2 hours

cleaning themselves (probably as a consequence of handling and

attaching the transmitter). After the cleaning period, bumblebees

flew larger distances (.100 m) to suitable foraging patches.

Bumblebee individuals of B. terrestris were able to enter the purchased

nest with the transmitters attached and we could see them moving

around within the nest cells.The radio-tracking data of one B.

hortorum individual further indicated that resting periods during flight

movements can be long (.45 min, see below), suggesting that the

transmitter weight may incur significant energetic costs.

Table 1. Results from tracking individual bumblebees fitted with miniaturized radio transmitters.

ID Species Daysa(count) Locationsb(count) Home range sizec (ha) Distanced(m)
Typical homing
distancee (m)

Maximum homing
distancee (m)

Bee 1 B. hortorum 4 41 37.69 1,316 6,682 15,824

Bee 2 B. terrestris 4 4 - 2,535 3,975 9,229

Bee 3 B. ruderatus 2 5 43.53 1,943 6,150 14,518

Bee 4 B. hortorum 1 9 0.25 84 6,682 15,824

Bee 5 B. terrestris 1 2 - 17 3,975 9,229

Bee 6 B. terrestris 1 3 - 351 3,975 9,229

Bee 7 B. hortorum 1 11 1.37 397 6,682 15,824

Bee 8 B. terrestris 1 2 - 1,286 3,975 9,229

aNumber of days observed (from day of transmitter attachment to day of last observation).
bNumber of point locations recorded from radio tracking (including site of transmitter attachment).
cHome range size (for individuals with $5 points) using the minimum convex polygon (MCP) method.
dDistance between site of transmitter attachment and most distant location revealed from radio tracking.
ecalculated with model from Greenleaf et al. 2007.
doi:10.1371/journal.pone.0019997.t001
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All individuals were able to feed successfully on flowers when

transmitters were attached (Figure 1). However, transmitter

attachment showed an effect on foraging behavior of B. terrestris

(Figure 2). Bumblebees with transmitters had significantly lower

flower visitation rates (Figure 2a; one-tailed t-test: t = 11.7, df = 213,

p,0.001) and spent significantly more time foraging on individual

flower heads (Figure 2b; one-tailed t-test: t = 11.2, df = 18, p,0.001)

than individuals without transmitters. We were unable to quantify

whether this also means that foraging efficiency (i.e. nectar

consumption per time) is reduced, or whether it simply reflects a

difference in flower handling. Similar observations on the effect of

transmitter attachment could not be carried out for B. hortorumor B.

ruderatus because they were not abundant enough at the study site.

Flight distances and home range sizes
The eight bumblebee individuals were observed between 1–4 days

yielding a total of 77 point locations (2–41 per individual, Table 1).

Seven locations (including all distances .1 km) were obtained during

the three Cessna airplane overflights. The maximum flight distances

(Figure 3a) were on average 9916927 m (mean 6 SD, median

= 842 m). The largest distances that we recorded were 2,535 m,

1,316 m and 1,943 m for B. terrestris, B. hortorum and B. ruderatus,

respectively (Table 1). In comparison, the typical homing distances

predicted by the regression model of Greenleaf et al. [36] using the

measured IT data were 3,975 m for B. terrestris, 6,793 m for B. hortorum

and 6,150 m for B. ruderatus, clearly larger than our empirically

measured flight distances (Table 1). The maximum homing distances

predicted by this model were even larger (9,228 m for B. terrestris,

15,824 m for B. hortorum and 14,518 m for B. ruderatus , Table 1).

Home ranges were estimated and mapped for all bumblebee

individuals with .5 GPS locations (Figure 3b). This was possible

for 4 individuals, three of which were (possibly young) queens ofB.

hortorum and one a B. ruderatus worker. The estimated MCP home

range sizes varied from 0.25–43.53 ha (Table 1) and indicated that

bumblebee individuals can use large areas for foraging, even

within a few days (Figure 3b).

Spatio-temporal habitat use
The illustrative example of a quantitative habitat analysis of one

B. hortorum individual (bee 1, Table 1) showed that the proportional

habitat use of this bumblebee deviated significantly from the mean

simulated random habitat use of landcover types in the study area

(Chi2 = 11.55, df = 3, p,0.01, Figure 4). In particular, agricultural

fields were used less often and villages more often than expected by

random simulation (Figure 4b). Meadows were only used more

often than expected by random simulation when time was

accounted for and trees (including hedges and forest patches)

were used less often except when time was accounted for

(Figure 4b).The observed proportional uses of landcover types

deviated significantly from random habitat use in all cases except

for the observed use of meadows based on spatial locations only

(Table 2).

We were able to directly follow this B. hortorum individual (bee 1,

Table 1) by foot for .12 hours within 2 days with 3 continuous

tracking periods of 165, 370 and 205 minutes, respectively. The

bumblebee spent approximately half of the recorded time (48%)

inside and the other half (52%) outside the village boundaries

(Figure 5). Movements between the village and the surrounding

landscape were frequent and the bumblebee returned several times

to the same localities, either to feed on flower resources or to rest

(e.g. on trees, in the meadow, or on a flower stalk). Interestingly,

.50% of the recorded time was spent resting (Figure 5 inset)

whereas 40% of the time was used for foraging. Only 5% of the

recorded time was spent for flight movements. Two trees and one

flower stalk were used for resting periods of at least 45 min length

(Figure 5) and the bumblebee stayed on the flower stalk overnight

(this overnight stay was not included in our time estimates).

Discussion

Our results represent the first successful use of radio-tracking

methodology for studying movement behavior and space use of

bumblebees. Individuals of B. terrestris, B. hortorum and B. ruderatus

flew distances up to 2.5 km and used large areas (0.25–43.53 ha)

in a relatively short time period (1–4 days). The spatio-temporal

Figure 2. Effect of transmitter attachment (yes/no) on foraging
behavior of Bombus terrestris. (a) Visitation rates (number of Phacelia
flower heads visited per minute), and (b) time on flowers (foraging time
spent on individual Phacelia flower heads). *** indicates significant
differences between groups at p,0.001 (see text).
doi:10.1371/journal.pone.0019997.g002
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habitat use at a landscape scale and the detailed movement

trajectories of one B. hortorum queen further showed that this

bumblebee preferentially selected certain habitat types and

repeatedly visited prominent landscape structures (e.g. trees) and

flower patches for resting and foraging, respectively. Such

constancy in route following behavior confirms earlier suggestions

that experienced individuals can return to the same site each day

for weeks, visiting the same clumps of plants in very similar

sequences (e.g. [1,44–47]). However, the low sample size of our

study means we should be cautious in generalizing our findings,

and future studies are needed to substantiate our results.

Effects of transmitter attachment
Although we successfully used radio-tracking methodology to

study patterns of movement and space use in bumblebees, we found

that transmitter attachment caused detectable effects on bumblebee

behavior. Bumblebees rested and cleaned for K to 2 hours after

transmitter attachment, a behavior that is rather unusual for

bumblebees and probably related to the handling and attachment of

the transmitters. Furthermore, the one B. hortorum individual which

we observed for .12 hours showed long (.45 min) resting periods

(e.g. on trees), a result that could be taken to indicate that metabolic

costs are increased when transmitters are attached. However, a

study of male B. terrestris in the lab in completely constant and

predictable climates of test chambers with unlimited food supply

found that only 40% of the daytime was used for flight movements,

and consequently 60% for resting [48]. To what extend bumblebee

queens, males and workers naturally rest during their daily flight

movements in the wild has never been quantified, so we have no

benchmark against which our results can be evaluated.

Figure 3. Flight distances and home ranges of bumblebees. (a) Maximum flight distances (bees 1–8) recorded from radio-tracking. Blue
arrows: Bombus hortorum individuals, green arrow: B. ruderatus, orange arrows: B. terrestris, (for distance estimates see Table 1). Note that bee 4 (B.
hortorum) and bee 5 ( B. terrestris) are not illustrated with arrows due to their short flight distances. (b) Estimated home ranges (minimum convex
polygons[MCP] and observation points) for individuals with $5 point locations(bee 1, 4, 7 B. hortorum, bee 3 B. ruderatus; see Table 1 for estimated
home range sizes). Different colors represent different individuals (bee 1, 3, 4 and 7). The inset shows a more detailed view of the study site where the
observation points of bee 4 (brown) and bee 7 (green) are plotted. Note that four observation points of bee 4 (lying on the MCP line) are covered by
observation points of bee 7.
doi:10.1371/journal.pone.0019997.g003

Table 2. Proportional use of landcovertypes of one bumblebee individual (Bombus hortorum, bee 1, Table 1).

Proportional use of landcover types T-test

Landcover types Observed Simulated (mean ± SD) t df p

Spatial locations only

Trees 0.075 0.201 (60.064) 62.54 999 ,0.001

Fields 0.025 0.076 (60.042) 38.33 999 ,0.001

Meadows 0.325 0.324 (60.073) 20.62 999 0.535

Villages 0.575 0.399 (60.078) 271.12 999 ,0.001

Locations weighted by time

Trees 0.237 0.201 (60.064) 217.45 999 ,0.001

Fields 0.006 0.076 (60.042) 52.88 999 ,0.001

Meadows 0.191 0.324 (60.073) 57.79 999 ,0.001

Villages 0.567 0.399 (60.078) 267.87 999 ,0.001

Comparisons are made between observed bumblebee locations (spatial locations only, locations weighted by the time the bee spent at them) versus simulated random
habitat use. Simulated random habitat proportions (mean6SD) were obtained from one thousand realizations of random points (each withn = 40) (compare Figure 4).
doi:10.1371/journal.pone.0019997.t002
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Our results further demonstrate that the foraging behavior of

bumblebees is influenced by transmitter attachment. Radio-tagged

B. terrestris individuals exhibited significantly lower rates of flower

visitation and spent significantly longer visiting each flower than

bees without transmitters. Whilst we did not measure the foraging

efficiency (nectar consumption per unit time) of tagged bees, it

seems likely that carrying a transmitter of 66–100% of the bee’s

own body mass affects flight performance and hence energy usage.

Further studies could empirically test whether nectar consumption

of bumblebees is affected by carrying transmitters, for example

using calibrated feeder experiments in a laboratory flight room

[49]. We note that our foraging assessment was only possible for B.

terrestris because B. hortorum and B. ruderatus were not abundant

enough at the study site. As transmitter mass is constant (200 mg),

it seems likely that transmitter attachment would have a less

significant effect on the foraging behaviour of bees larger than B.

terrestris workers (i.e. .200–300 mg live weight).

The transmitter weight was estimated to be about 44–100 % of

the body weight of the bumblebees used in this study. Thus,

especially for the smaller workers of B. terrestris it might have

consequences for their metabolism (i.e. increased energetic costs).

Although bumblebees are known to be able to carry such heavy

loads (e.g. nectar and pollen loads up to 100 % of their body

weight [44]), the attachment of the radio transmitters could

additionally have additive, long term effects. Carrying a

transmitter produces energetic costs and thus reduces the amount

of pollen and nectar that can be harvested during a foraging bout.

Hence, our results on e.g. maximum flight distances of bumblebees

should be considered as conservative estimates and further studies

on the energetic consequences of carrying transmitters are clearly

needed, especially for small-bodied ectothermic insects.

Flight distances and home range sizes
Although theoretical models [21] predict bumblebee foraging

distances up to several kilometers away from the nest, empirical

information is scarce and most measured foraging distances are

below 1 km [1,36]. These foraging distances are typically only

measured for workers, and studies on flight behavior and space use

of males and queens are largely absent (see below). Generally,

depending on different methods, the observed foraging distances

Figure 4. Habitat use of one bumblebee individual (Bombus hortorum, bee 1, Table 1). (a) Map of major landcover types with observed
bumblebee locations (red points, n = 40) and one realization of random points (blue triangles, n = 40) within a radius of 320 m around the mean
center of the 40 observation points. A total of one thousand realizations of random points (each withn = 40) were used to simulate random habitat
use around the mean center of the 40 observation points. (b) Proportional use of four landcover types in comparison to simulated random habitat
use (1000 simulations). Boxplots indicate simulated random habitat useas measured by intersecting landcover types withone thousandrealizations of
40 random points. Asterisks denote the proportional use of landcover types as observed from radio-tracked bumblebee locations (red points in (a)).
Triangles show the proportional use of landcover types when locations are weighted by the time the bee spent at them. Statistical results of testing
differences between observed and simulated random habitat use are provided in Table 2.
doi:10.1371/journal.pone.0019997.g004
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of workers vary greatly, with rather short observed foraging

distances between 300 to 800 m for some marking-reobservation

experiments[27,28] (exceptions: [15,30,31]), harmonic radar [1],

and genetic analysis studies[32,33], however other approaches

(like homing experiments [25] and mathematical modeling [21])

suggest foraging distances of up to 10 km. Mark-reobservation

experiments [15,30,31] like new mass-marking experiments [15]

with B. terrestris have recently shown that foraging distances of

bumblebees can easily extend beyond 1 km. Kreyer and

colleagues [30] found B. terrestris workers foraging up to 2.2 km

far from their nests, using a mark-recapture method. Our results

from radio-tracking support these findings and suggest that

workers might commonly travel long distances to food resources

even when food is locally abundant.

While most studies on flight distances are carried out on

workers, we found one study investigating dispersal distances of

queens using a genetic micro satellite approach[50]. Lepais et al.

[50] found (B. pascuorum and B. lapidarius) queens to travel distances

of 3–5 km emphasizing the importance of queen dispersal for gene

flow in bumblebee species. Using a similar approach, Kraus et al.

[51] found male B. terrestris to fly distances of 2.6–9.9 km

suggesting that male dispersal also plays a vital role in maintaining

gene flow between populations. We found queens of B. hortorum to

fly up to 1.3 km within a few days but whether these flights are

related to dispersal or foraging remains unclear. The shorter flight

distance that we report (compared to [50]) would not be surprising

if these estimates are foraging rather than dispersal distances. The

dispersal distances reported by Lepais et al. [50] include several

dispersal steps between departure at the old nest and establishment

of a new nest, i.e. the searches for mates, hibernating places and

nest sites, and the foraging range.

Measures of flight distances can thus quantify very different

behaviors of bees. While we measured foraging flights of workers of B.

terrestris and B. ruderatus and maybe a mixture of foraging and dispersal

flights of B. hortorum queens, the flight distances predicted by the model

of Greenleaf et al. [36] (Table 1) refer to the homing behavior of bees.

Homing experiments measure the ability of the bee to find home

rather than daily foraging distances and therefore are not necessarily

representative of routine distances travelled by individual bees [36].

However, in the absence of other empirically derived models for

predicting flight distances of bee species, the formula from Greenleaf

et al. [36] represents the only benchmark against which measured

flight distance can be evaluated across bee species. We suggest that a

promising area for future research could be to develop predictive

models of flight distances separately for castes (workers, males, queens)

and behavioral types (daily foraging, homing, dispersal).

Figure 5. Detailed movement trajectories of one Bombus hortorum individual (bee 1, see Table 1) followed over a time period of
.12 hours (within 2 days) with 3 continuous tracking periods. Trajectory 1 (yellow line, order from 1a to 1c) is the first tracking period from
1–3:45 pm (165 min), starting from the study site (black square) after transmitter attachment on the first day (June-30). Trajectory 2 (blue line, from 2a
to 2j) is the second tracking period from 8:45 am to 2:55 pm (370 min) on the following day (July-1), and trajectory 3 (red line, from 3a to 3e) is the
third tracking period in the afternoon of the same day from 4:25–7:50 pm (205 min). The inset shows the percentages of total time spend for three
different behavioral categories (resting, foraging, and moving). Note that the bumblebee rested for long time periods (.45 min) on a pear tree
(105+80 min), a walnut tree (95 min), and a flower stalk (60 min + subsequent overnight stay). Flight times between points were rather short (usually
,1 min).
doi:10.1371/journal.pone.0019997.g005
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Non-parasitic bumblebees (like other non-parasitic bee species)

provision their broods by central place foraging, which means they

gather pollen and nectar from flowers in the surrounding area and

bring it back to a central nest. The foraging and home range of

bees is thus a fundamental aspect of their ecology, as it determines

the area of the habitat that an individual or a colony can exploit.

However, home range sizes of bees have rarely been quantified.

For male euglossine bees, which are known to fly very long

distances (up to 24 km, [16,24]), Wikelski et al. [16] estimated

MCP home range sizes of 4–700 ha (mean6SD: 45640 ha) in a

rainforest environment in Panama. The bumblebee species studied

here have smaller home range sizes than the euglossine bees. This

probably reflects the extraordinary ability of male euglossine bees

to fly large distances to find mating partners, orchids and other

food plants which are spatially rare in tropical forests [16]. We are

not aware of any other study that has quantified MCP home range

sizes of bees, but depending on caste (worker, queen, male) and

species (solitary, social), home range size should vary widely.

Bumblebee home range size could be considerably larger than our

estimates both because current radio transmitters only allow for

short observation times due to power constraints, and also because

the relatively large size and mass of current transmitters may limit

their flight potential.

Spatio-temporal habitat use
On a landscape scale, the radio-tracked B. hortorum individual spent

a large proportion of its time in the village, and this was significantly

more time than expected from habitat availability around the study

site. During the time of study, gardens within villages provided a large

diversity and abundance of flower resources while agricultural fields

were largely depleted. At other times of the year, flower resource

availability might change and bumblebee individuals are likely to

track the spatio-temporal dynamics of resource availability [52–54].

Thus, bees could spend more time in agricultural fields during other

times of the year when mass flowering of plants dominates the forage

landscape [15,55]. However, urban areas have the potential to be

important pollinator reservoirs, especially if flower species diversity

and habitat heterogeneity are maintained and enhanced through

sustainable urban planning [56]. Several studies in Europe and

America suggest that urbanized areas in general provide appropriate

and abundant resources that bees need for survival and reproduction

[57–60]. Many ornamental garden flowers bloom for relatively long

periods and urban gardens might thus provide a relatively constant

source of pollen and nectar [60].

During our observations we did not see young queens to visit the

natal nest or actively search for a hibernation site. Thus, these

individuals might have been in an intermediate stage between

helping their natal colony with food provisioning [44] and

searching for potential mates and hibernation sites. If so, the

location of the natal nest could thus have confined the flight range

of the young queen to garden areas. Overall, knowledge about

space use and flight ranges of queens is scarce and the radio-

tracking methodology could greatly help to improve our basic

knowledge of queen behavior.

Outlook
We found bumblebee individuals of B. terrestris, B. hortorum and

B. ruderatus to fly successfully with transmitters of 200 mg which

suggests that space use of large-bodied bumblebees (e.g. large

workers or queens) can be studied with radio-tracking methodol-

ogy. However, compared to the body size of bumblebees (workers

40–600 mg, queens up to 850 mg) current transmitters are still

sufficiently large and heavy (200 mg) that they have been shown to

affect foraging behavior, are likely to affect flight performance

and/ or energetics and so might have fitness consequences for

bumblebees. Future technological advances are likely to reduce

transmitter weights further and hence will open up exciting

avenues for studying flight behavior and movement paths of rather

small-sized insect pollinators. This could have important implica-

tions for conservation and agriculture, especially for assessing

ecosystem consequences of pollinator declines. We also see great

potential for better understanding the basic biology of bees, e.g.

the spatial behavior and requirements of queens, when searching

for males, nest locations or hibernation sites.

Supporting Information

Figure S1 Habitat use of one bumblebee individual
(Bombu shortorum, bee 1, Table 1). (a) Map of major

landcover types with observed bumblebee locations (red points,

n = 40) and one realization of random points (blue triangles, n = 40)

within a radius of 410 m around the study site. A total of one

thousand realizations of random points (each with n = 40) were

used to simulate random habitat use around the study site. (b)

Proportional use of four landcover types in comparison to

simulated random habitat use. Box plots indicate simulated

random habitat useas measured by intersecting landcover types

with the one thousand realizations of 40 random points. Asterisks

denote the proportional use of landcover types as observed from

radio-tracked bumblebee locations (red points in (a)). Triangles

show the proportional use of landcover types when locations are

weighted by the time the bee spent at them.
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