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Abstract

DNA exchange in bacteria via conjugative plasmids is believed to be among the most important contributing factors to the
rapid evolution- and diversification rates observed in bacterial species. The IncX1 plasmids are particularly interesting in
relation to enteric bacteria, and typically carry genetic loads like antibiotic resistance genes and virulence factors. So far,
however, a ‘‘pure’’ version of these molecular parasites, without genetic loads, has yet to be isolated from the environment.
Here we report the construction of pX1.0, a fully synthesized IncX1 plasmid capable of horizontal transfer between different
enteric bacteria. The designed pX1.0 sequence was derived from the consensus gene content of five IncX1 plasmids and
three other, more divergent, members of the same phylogenetic group. The pX1.0 plasmid was shown to replicate stably in
E. coli with a plasmid DNA per total DNA ratio corresponding to approximately 3–9 plasmids per chromosome depending
on the growth phase of the host. Through conjugation, pX1.0 was able to self-transfer horizontally into an isogenic strain of
E. coli as well as into two additional species belonging to the family Enterobacteriaceae. Our results demonstrate the
immediate applicability of recent advances made within the field of synthetic biology for designing and constructing DNA
systems, previously existing only in silica.

Citation: Hansen LH, Bentzon-Tilia M, Bentzon-Tilia S, Norman A, Rafty L, et al. (2011) Design and Synthesis of a Quintessential Self-Transmissible IncX1 Plasmid,
pX1.0. PLoS ONE 6(5): e19912. doi:10.1371/journal.pone.0019912

Editor: Jonathan H. Badger, J. Craig Venter Institute, United States of America

Received March 1, 2011; Accepted April 6, 2011; Published May 18, 2011

Copyright: � 2011 Hansen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was partly funded by The Danish Research Council for Independent Research | Natural Sciences (FNU). FNU homepage: http://fi.dk, grant
number: 09-065940. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional
external funding received for this study.

Competing Interests: The co-author Louise Rafty is affiliated with DNA 2.0. This does not alter our adherence to all the PLoS ONE policies on sharing data and
materials.

* E-mail: hestbjerg@bio.ku.dk

. These authors contributed equally to this work.

Introduction

The term ‘‘synthetic biology,’’ in its present context, covers the

creation of specific self-replicating DNA sequences that encode

novel functional biological components, or replicas of existing

natural systems, based on extensive preexisting knowledge about

gene conservation, function and synteny.

The ability to utilize this new technique has, in large part, been

facilitated through recent dramatic advances made within the

areas of genome sequencing, and now also genome synthesis [1].

Thus, the ground has been laid for a new era in which the design

and creation of functional, synthetic self-replicating genomes of

increasing size and complexity has been made possible [1–10]. In

no other field than microbiology are these advances so timely or

relevant.

Most bacteria carry extrachromosomal self-replicating elements

that aid in adaptation to local conditions in their environment. In

enteric bacteria, some of the more interesting of these extra-

chromsomal elements belong to the relatively unknown IncX1

group of mostly conjugative plasmids. They propagate almost

solely within the family Enterobacteriaceae, and typically carry genetic

loads promoting antibiotic resistance or virulence mostly in the

form of cell adhesion factors. The IncX1 plasmids have thus far

been reported to confer resistance towards a wide array of

antimicrobial compounds, such as the sulfonamides, the ß-lactams,

the quinoxaline olaquindox, fluoroquinolones, and chloramphen-

icol [11–13].

The ability of IncX1 plasmids to spread infectiously through

bacterial communities puts them, along with bacteriophages and

other viruses, into a broader family of molecular parasites that are

able to spread between host cells horizontally. The gene content of

conjugative plasmids can typically be divided into plasmid-selfish

genes that maintain the integrity and propagation of the plasmids

themselves, and genes that benefit the host cell in adapting to local

conditions (the genetic load). Cryptic plasmids are examples of

extrachromosomal parasitic elements that only encode genes

essential for plasmid replication and stable maintenance, and are

commonly found within the Enterobacteriaceae [14]. Some members

of the IncP family of relatively large plasmids have been shown to

exist without any apparent accessory mobile elements [15–17],

however, the occurrence of ‘‘pure’’ versions of IncX1 plasmids (i.e.

lacking genetic loads) has yet to be elucidated. We therefore

embarked on an attempt to recreate such a minimal incX1

plasmid, employing a bottom-up design strategy that would easily

accommodate future experimental work and manipulations.

Although molecular parasites have been constructed previously

from smaller synthesized oligonucleotides [5–7,18], pX1.0 is the

first synthetic DNA molecule able to maintain itself in- and spread

to several different species of bacteria. Furthermore, it represents

the first synthetic DNA construct designed in silica as a consensus
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construct derived from several different members of a discrete

phylogenetic group, thus it arguably represents the archetypical

IncX1 backbone.

The design of the 30.2 kilobase (kb) pX1.0 plasmid was initiated

by first selecting the components for a minimal IncX1 sequence.

The core sequence is based on a consensus of gene content derived

from five publicly available IncX1 plasmid sequences, each

consisting of a mostly conserved plasmid backbone, alongside

accessory genetic loads of varying sizes (fig. 1). Apart from the

consensus IncX1 gene content, pOLA52 carries a genetic load of

approximately 22 kb. The load is comprised of the ß-lactamase

gene bla, an operon encoding a multidrux efflux pump, and a mrk

operon encoding type III fimbriae [19]. In addition to the putative

IncX1 backbone, 4 kb of the 33 kb plasmid pSE34 encodes a

series of un-conserved hypothetical proteins. 5 kb of the 35 kb

pOU1114 plasmid, and 5 kb of the 34 kb plasmid p2ESCUM

encodes a series of un-conserved hypothetical proteins as well. The

Salmonella enterica serotype Dublin virulence plasmid pOU1115

consists, apart from the consensus IncX1 gene content, of 46 kb of

additional DNA including loci encoding K88 fimbriae and

proteins involved in proliferation of the bacteria in intestinal and

extraintestinal tissues [20].

Figure 2. Genetic map of pX1.0. The GC-content is depicted in the central part of the map. Open reading frames are shown as colour coded
arrows, indicating their function and transcribed direction. The ORFs are divided into the following modules: gem (gene expression modulation), tra
(conjugal transfer), mob1 (mobilization 1), rep/stb (replication initiation/toxin-antitoxin plasmid addiction), mob2 (mobilization 2), par (plasmid
partitioning) and res (resistance marker). Unique restriction sites are shown at the module junctions. MCS represents the restriction sites PmeI, AbsI,
MreI, KpnI, SwaI, NotI and SgrDI.
doi:10.1371/journal.pone.0019912.g002

Figure 1. Genetic maps of p2ESCUM, pOU1114, pSE34, pOLA52, and pOU1115. The GC-content is depicted in the central part of the maps.
Open reading frames (ORFs) proven to be conserved within the IncX1 plasmids constitute the putative IncX1 backbone and are presented as green
boxes, whereas red boxes represent ORFs comprising the genetic load.
doi:10.1371/journal.pone.0019912.g001
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At the heart of the pX1.0 construct is an archetypical IncX1

replicon which encodes the replication initiation protein p,

initiator of plasmid replication through a Cairns type (H type)

mechanism at three discrete origins of replication (a, ß and c),

along with the Bis protein, required for replication initiation at the

ß-origin. Furthermore, the entire conjugational system associated

with IncX1 plasmids was included, along with two cognate origins

of transfer, to enable horizontal transfer of the construct. The

15.8 kb mob/tra-locus is comprised of 19 ORFs, 16 encoding a

type IV secretion system essential for mate-pair formation, and 3

ORF’s encoding functions concerned with DNA transfer and post-

conjugal replication [19]. To ensure maximum stability, common

plasmid stability determinants associated with IncX1 plasmids,

such as the ParFG active partitioning system related to the

archetypical ParA ATPase/ParB mechanism [21] and the post

segregational StbDE toxin/antitoxin killing system were also

retained in the base sequence.

During the next phase of the design process, emphasis was put

on retaining much of the intrinsic modularity of plasmid genomes

by surrounding each functional backbone module with unique

restriction sites. Restriction sites were carefully chosen based on a

normalized frequency index comparing relative restriction-site

occurrences in the plasmid database and selected bacterial

genomes. Restriction sites chosen to adjoin modules all had

maximum digestion efficiencies in the same buffer. Any chosen

restriction site re-occurring in the coding regions were removed by

silent mutations in accordance with Gene Designer’s E. coli codon-

bias table [22,23], and restriction sites leaving blunt ends were

placed between modules flanked by restriction sites leaving

overhangs. Furthermore, a multiple cloning site (MCS) was

inserted at a neutral position (29.3 kb–30.2 kb) along with a

removable, moderately expressed chloramphenicol acetyltransfer-

ase selection marker (cat) enabling the application of selective

pressure in plasmid transfer- and maintenance experiments. The

potential ease, with which future studies on plasmid host range,

conjugational efficiency, and other properties of pX1.0 can be

carried out, is thus greatly enhanced by the ability to perform

discrete manipulations (i.e. removing or replacing modules) with

simple molecular techniques such as restriction endonuclease- and

ligase reactions. A graphical overview of the entire pX1.0 plasmid

sequence is depicted in figure 2.

The synthesis stage involved dividing the entire pX1.0 sequence

into three cassettes of approximately 10 kb in length that were

then individually synthesized at DNA 2.0, essentially as previously

described [10]. Break points were chosen so that neither the

central replicon, nor the chloramphenicol resistance marker would

be functional prior to a complete assembly of the sequence.

Fragments were verified with double-stranded DNA sequencing

and joined together at designed restriction sites. Fragment

assembly was concluded with a full re-verification (by DNA

sequencing) of the plasmid to confirm that no bases differed from

the original designed sequence. This was done before any

functional experiments were carried out.

During the subsequent verification steps, the construct was

demonstrated to replicate with a copy number comparable to most

other low-copy number plasmids. In exponentially growing

batches of E. coli GeneHogsH, pX1.0 replicated at a ratio

equivalent to 0.6 plasmid copies per fg total DNA as determined

by quantitative PCR (qPCR). During stationary phase the plasmid

were found to replicate at a ratio equivalent to 1.8 plasmids per fg

total DNA. Assuming that the average molar mass of the 4.7 Mb

E. coli chromosome is 650 g mol21, pX1.0 is estimated to replicate

at a copy number of 3–9 copies per E. coli chromosome. The

similar IncX1 plasmid R485 has previously been reported to

replicate at an average copy number of 3–5 plasmid copies per E.

coli cell [24] indicating that the pX1.0 replicon operates at levels

comparable to its natural equivalents.

To verify functionality of the combined 15,827 bp region

containing the tra- and mob modules, conjugation frequencies of

pX1.0 from E. coli GeneHogsH donors into different members of

Enterobacteriaceae family, were determined. Conjugation from E. coli

GeneHogsH into an isogenic strain of E. coli was observed in di-

parental filtermatings at a mean frequency of 5.5?102361.7?1023

(s.d) transconjugants per donor. Compared to the previously

reported conjugation frequency of 9.0?1022 transconjugants per

donor in the plasmid pOLA52 [25], the observed transfer

frequencies of this study suggest that the conjugation apparatus

of pX1.0 functions similar to that of pOLA52. Any decrease in

conjugal transfer frequencies of pX1.0 compared to pOLA52 may

owe to the fact that pOLA52 encodes type III fimbriae,

influencing cell proximity, and consequently the frequency of

plasmid transfer [25]. In a similar fashion, pX1.0 successfully

transferred itself horizontally from E. coli GeneHogsH to Salmonella

typhimurium and Enterobacter aerogenes with mean conjugation

frequencies of 3.7?102462.7?1024 (s.d.) and 4.7?102361.8?1023

(s.d.) transconjugants per donor, respectively.

To establish the functionality of the included plasmid

maintenance modules, cells harboring the pX1.0 plasmid were

propagated in LB medium at 37uC for 50 generations without

antibiotic selection. Based on 11 replicas, each representing 96

isolates, the frequency of loss was determined to be 0.004%

generation21, as compared to 0.01% generation21 for the

naturally occurring IncX1 plasmid pOLA52. A two-tailed,

unpaired students t-test showed that the observed difference was

not statistically significant, with a 95% confidence interval

(P = 0.083, n = 11). Despite the finding of plasmid free cells, these

results show stable inheritance without selective pressure and

indicate a parasitic lifestyle of the plasmids.

Incompatibility tests were done as previously described [19],

and confirmed that the pX1.0 plasmid was unable to propagate in

the presence of the IncX1 plasmid, pOLA52. However, 100%

compatibility was observed with the IncX2 plasmid, R6K.

This study presents the first synthetic DNA construct able to

replicate within a living organism as well as spread to several

different species. We believe that pX1.0 represents the minimal

IncX1 backbone, and that this in conjunction with the approach

employed in the design process of pX1.0 facilitates further

experimental work to a degree that substantiates that pX1.0

becomes a reference plasmid for future studies on the biology of

IncX1 plasmids. More importantly, by bringing the hitherto

undiscovered quintessential IncX1 plasmid to life, this study

illustrates the potential of synthetic biology as a means of

reconstructing not only synthetic copies of already existing DNA

systems, but also DNA systems existing only in silica. It is in this

respect it is of utmost importance to emphasize the fact that pX1.0

represents a hypothetical, minimal, non-virulent version of already

known incX1 plasmids.

Materials and Methods

The design of pX1.0
Based on the consensus gene content of IncX1 plasmids pOLA52,

pSE34, pOU1114, pOU1115 and p2ESCUM (GenBank accessions

EU370913, EU219533, DQ115387, DQ115388 and CU928149,

respectively) a scaffold-sequence representing a putative minimal

IncX1 plasmid was designed by removing non-recurring regions of

the pOLA52 sequence. Other, more divergent, members of the IncX

plasmids (pHI4320, R6K, and pBS512_33) were also used as
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universal reference points for gene content in the construction of the

scaffold. A region of the consensus sequence (19.6 kb–20.7 kb)

containing 8 small ORFs were included in the scaffold-sequence

because they were found to be universally conserved among the

reference plasmids, although their functions remain to be elucidated.

Although the active plasmid segregation mechanism (parFGH), and

the plasmid addiction system (stbDE) varied between some of the

reference plasmids, the parFGH and stbDE gene cassettes of pOLA52

were included in the pX1.0 sequence as this required the least

amount of sequence manipulations. The essential IncX1 backbone

was subsequently modified using the Gene Designer (GD) software

from DNA2.0 as follows: All open reading frames (ORFs) and non-

coding regions (promoters, origins of replication, and origins of

transfer) were reconstructed as discrete DNA elements separated by

endonuclease restriction sites. The GD’s E. coli codon-bias table

[22,23] was used to choose optimal codons for expression in E. coli in

any situation that required changes to, or addition of, coding regions

within the sequence. An artificial chloramphenicol resistance operon,

consisting of a lac-promoter, a ribosomal binding region containing a

Shine-Dalgarno sequence followed by a 7 bp spacer, an E. coli

optimized version of the chloramphenicol acetyl transferase gene (cat),

followed by an rrnB terminator, was subsequently included. Finally, a

multiple cloning site region was included as the last element of the

plasmid sequence (see below). A normalized frequency index of all

known restriction sites was made, and 20 restriction sites found to be

rare in both the plasmid database and in selected bacterial genomes,

as well as in non-coding regions of the construct, were selected for

further use in the design process. Restriction sites were added in GD

as DNA sequence elements, separating the construct into a

replication/plasmid addiction module (rep/stb), two mobilization

modules (mob1/2), a conjugation module (tra), the segregation

module (par), the gene expression modulation module (gem), and the

resistance marker module (res). Any restriction sites leading to blunt

ends were situated between modules flanked by restriction sites that

left overhangs. Any of the 20 restriction site sequences existing

naturally in the coding regions were removed by silent mutations.

Restriction enzymes with 100% activity in NEB buffer 4 (BamHI,

AfeI, PacI, ApaI, AscI, AvrII, FseI, SacII, SbfI, SpeI, SphI and PmeI) were

specifically chosen as module-cutters, so that any module/modules

could be excised in a single restriction reaction. The remaining sites

(AbsI, MreI, KpnI, NotI, SgrDI and SwaI) were used either in the MCS

region, or as restriction site sequences used for adapting fragments to

be cloned into the MCS (MauBI and XbaI). The full sequence was

submitted to GenBank where it was given the accession number

HM114226.

Estimation of the pX1.0 copy number
The pX1.0 copy number was estimated by qPCR. Genomic

DNA extractions were made on an overnight (ON) culture of

Invitrogen’s E. coli GeneHogsH harboring the pX1.0 plasmid, and

on a similar culture in exponential growth phase. The concentra-

tion of total DNA in the two samples was measured using

Invitrogen’s QubitTM fluorometer. In order to make a qPCR

standard equally complex to the two samples, chromosomal E. coli

GeneHogsH DNA was added to pX1.0 DNA in the approximate

ratio of five plasmids per chromosome. A serial ten-fold dilution of

the complex standard was used to make the standard curve. A

hundred-fold dilution of sample DNA was used as template in the

sample qPCRs. All reactions were carried out using 1 ml of

template DNA, and 1 ml of each of the two primers, pX1.0Fw: 59-

CCGTAGCTTGCTCATACATC-39, and pX1.0Rev: 59-GTC-

GTGGTATTCACTCCAGA-3, (10 pmol ml21) in Stratagene’s

BrilliantH II SYBRHGreen qPCR master mix. Finally, the number

of plasmids per fg of total DNA in the two samples was calculated

and used to estimate the approximate number of plasmids per

chromosome.

Estimating the conjugational abilities of pX1.0
The ability of pX1.0 to conjugate from E. coli GeneHogsH to

selected enteric bacteria (E. coli GeneHogsH::npt, Salmonella

typhimurium DT27 [26], and Enterobacter aerogenes DSM30053

(Deutsche Sammlung von Mikroorganismen und Zellkulturen

GmbH) was determined by adding 8 ml of donor overnight

culture, and 8 ml of recipient overnight culture onto ADVAN-

TEC�’s mixed cellulose/ester membrane filters placed on LB-

agar plates. Filter matings were carried out for two hours at 37uC,

and the filters were subsequently washed by vortexing the filter in

a 0.9% NaCl solution for 3 minutes. A serial ten-fold dilution was

made on the wash solution, and droplet assays were carried out on

minimal medium containing 0.2% glucose and 5 mg ml21

chloramphenicol for the E. coli GeneHogsH+Salmonella typhimurium

DT27 mating and for the E. coli GeneHogsH+Enterobacter aerogenes

DSM30053 mating. The droplet assay was carried out on LB-agar

supplemented with 50 mg kanamycin and 5 mg chloramphenicol

ml21 for the E. coli GeneHogsH+E. coli GeneHogsH::npt mating.

Donor enumeration was carried out on LB plates containing

5 mg ml21 chloramphenicol. The frequency of conjugation was

estimated as transconjugants donor21. Control filter matings with

only the donor or recipient strains were carried out to verify the

selectivity of the transconjugant plates.

Verification of the pX1.0 maintenance genes
In order to determine the stability of pX1.0, E. coli GeneHogsH cells

harboring either pOLA52 or pX1.0 were propagated for 50

generations by periodic dilutions in tubes containing 5 ml LB-broth.

Subsequently 96 colonies of each were isolated on LB-agar and replica

plated onto LB-agar plates supplemented with either chloramphenicol

or ampicillin, depending on which plasmid was tested. 11 replicas

were done for each plasmid. A two-tailed, unpaired students t-test

were used to determine the significance of the differences in the

frequencies of plasmid loss observed between the two plasmids.

The incompatibility testing was carried out as described earlier

[19].
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