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Abstract

Background: Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD).
Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor that plays key roles in retinal antioxidant and
detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-
like retinal pathology with aging and to explore the underlying mechanisms.

Methods and Findings: Eyes of both wild type and Nrf22/2 mice were examined in vivo by fundus photography and
electroretinography (ERG). Structural changes of the outer retina in aged animals were examined by light and electron
microscopy, and immunofluorescence labeling. Our results showed that Nrf22/2 mice developed age-dependent
degenerative pathology in the retinal pigment epithelium (RPE). Drusen-like deposits, accumulation of lipofuscin,
spontaneous choroidal neovascularization (CNV) and sub-RPE deposition of inflammatory proteins were present in Nrf22/2

mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron
microcopy both within the RPE and in Bruch’s membrane of aged Nrf22/2 mice.

Conclusions: Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related
degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated
autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf22/2 mice can provide a novel
model for mechanistic and translational research on AMD.
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Introduction

AMD is the leading cause of severe visual impairment in elderly

Americans, with an estimated 1.75 million people having

advanced forms of the disease [1,2]. A key pathological feature

of AMD is age-dependent, progressive degeneration of the outer

retina including the RPE, Bruch’s membrane (BrM) and the

underlying choroid [3,4]. The pathogenesis of AMD likely involves

multiple genetic, environmental, and demographic factors.

Although major genetic variations of AMD have been identified

in recent years [5,6], their biological functions remain largely

elusive. Similar to other complex human diseases, the influence

from minor risk alleles and gene-environment interactions with

other risk factors, such as advanced age and oxidative stress, can

be critical in defining the individual course of AMD initiation,

progression and therapeutic responses [7,8].

NRF2 is a master regulator of endogenous antioxidant

protection and is commonly involved in the transcriptional control

of phase II detoxification enzymes [9]. It heterodimerizes with

small Maf proteins and binds to the cis-acting antioxidant response

element (ARE) sequence in the promoter regions of phase II genes

[10]. Instead of relying on any single antioxidant enzyme, NRF2

activation leads to a concerted upregulation of a battery of

protective proteins with coordinated functions at different steps of

the detoxification process. Nrf2 knockout mice have normal

embryonic development and their basal level of antioxidant status

in many tissues is not different from wild type mice [11]. However,

the Nrf22/2 mice have increased sensitivity to a variety of

pharmacological and environmental toxicants [12,13]. NRF2 is

also an important regulator of microglial function [14] and chronic

neuroinflammation [15]. NRF2-deficient mice have been reported

to exhibit more astrogliosis and microgliosis [16].

Several mouse models of AMD have been established by

disrupting the balance between oxidative stress and antioxidant

protection. Mice deficient of key antioxidant enzymes, either

SOD1 or SOD2, developed age-dependent degeneration of the

retina with certain phenotypes resembling AMD [17,18].

Immunizing mice with an oxidation fragment of docosahexaenoic

acid (DHA), carboxyethylpyrrole (CEP), resulted in autoimmune

responses and dry AMD-like lesions in the retina [19]. A recent

study reported that albino rats exposed to intense cyclic light

developed photoreceptor damage and CNV in a relatively short
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time frame [20]. While many of the AMD-like phenotypes can be

recapitulated by these models, their experimental approaches were

mainly to overwhelm the retinal antioxidant system by exceedingly

high levels of oxidant signals. How RPE cells utilize their elaborate

endogenous protective mechanisms to repair and recover from

oxidative injury is often overlooked.

To better understand the endogenous protective mechanisms

that are involved in the different stages of RPE/choroid

degeneration and CNV development, we studied the age-

dependent retinal pathology in Nrf2 knockout mice. Our data

showed that Nrf22/2 mice developed age-dependent degeneration

of the RPE and choriocapillaris, spontaneous CNV and deposits of

inflammatory proteins in the sub-RPE space. Each of these

features is observed in human AMD eyes, suggesting that the

Nrf22/2 mouse can be a useful tool for probing specific aspects of

the disease mechanisms.

Results

Clinical Examination of Age-Related Phenotype in Nrf22/2

Mice
Drusen are hallmark lesions of AMD [4]. We performed ocular

funduscopic examination of 30 Nrf22/2 mice (2–18 months) and

12 age-matched wild-type mice for drusen-like deposits in the

retina (Table 1). The fundi of wild-type mice were normal at all

age groups examined (Fig. 1A). Nrf22/2 mice showed normal

fundi before 8 months of age (n = 5) and were indistinguishable

from aged-matched wild-type mice (n = 3). Between 8 to 11

months, Nrf22/2 mice (n = 5) started to grow small, dome-shaped

hard drusen with sharp borders and whitish color (Fig. 1C).

Between 11 to 18 months, knockout mice (n = 20) presented more

soft drusen-like deposits with larger size, yellowish color and ill-

defined borders, as well as atrophic lesions of RPE mottling in the

mid-peripheral retina (Fig. 1B and 1D).

The in vivo visual function of wild type and Nrf2 knockout mice

were evaluated by scotopic ERG. At 6 months, no significant

difference was observed between Nrf22/2 and control mice (data

not shown). However, moderate but significant decreases of both

a- and b-wave amplitudes were detected in 12-month-old Nrf22/2

mice (Fig. 1E).

RPE Degeneration and CNV in Nrf22/2 Mice
Histopathologic examination was performed on 20 Nrf2

knockout mice and 15 age-matched wild-type controls (4–17

months) by light microscopy (Table 1). Wild-type mice showed

normal retina at all ages examined (Fig. 2A). In contrast, age-

dependent degenerative changes were observed in the outer retina

of Nrf22/2 mice by end of the first year. On toluidine blue-stained

slides, signs of RPE degeneration, including extensive vacuolation

(Fig. 2B), hyperpigmentation (Fig. 2B–2D), hypopigmentation

(Fig. 2E) and occasional areas with complete loss of RPE (Fig. 2F),

were identified in knockout mice at 12 months of age. Areas of

continuous basal deposition underneath the RPE were evident in

11 of the 12 Nrf22/2 mice examined at advanced age (Fig. 2C

and Table 1), but were rarely detected in age-matched wild-type

controls (n = 1/10, P,0.001, Fisher’s Exact Test). On hematox-

ylin and eosin (H&E)-stained sections, drusen were detected as

deposition of dome-shaped extracellular material between the

BrM and RPE (Fig. 2H). Subretinal cellular infiltrates could be

occasionally seen near the RPE lesions (Fig. 2I).

CNV is a characteristic feature of exudative AMD. Through

histological examination, we observed spontaneous CNV devel-

opment in 3 out of 17 eyes from Nrf22/2 mice between 11 and 17

months (Table 1). At the site of CNV, there was focal RPE

hyperplasia and atrophy of overlying photoreceptors and outer

nuclear layer (Fig. 2J). Subretinal hemorrhage and exudate

(Fig. 2G), which are two reliable ophthalmologic signs of CNV

[21], were also present in eyes with CNV. The percentage of

Nrf22/2 mice developing spontaneous CNV was similar to what

has been reported in aged ApoE knockout mice fed with high fat

diet [22].

When examined by transmission electron microscopy (TEM),

wild-type mice showed normal structure of RPE, BrM and

choriocapillaris with well-developed RPE basal infolding and

endothelial fenestration (Fig. 3A). In Nrf22/2 mice, degenerative

changes of the RPE were apparent at 12 months. The RPE cells

were highly vacuolated with membranous debris (Fig. 3B). Areas

of basal infoldings were replaced by amorphous and homogenous

material deposits (Fig. 3C), which were similar to continuous basal

laminar deposits (BlamD) found in human AMD eyes [23]. Some

deposits included banded structures (Fig. 3D) that resembled the

long-spaced collagen found in BlamD of human AMD [24].

Compared to age matched wild-type controls, the BrM was

significantly thickened in Nrf22/2 mice at 12 months of age

(Fig. 3A and 3B). The mean thickness of BrM was 0.95560.065

and 0.56960.075 mm in knockout and wild-type mice (mean6

SEM), respectively (Fig. 3F) (P,0.01, unpaired t-test, n = 4 for

each strain). The thickening was generally in a diffuse pattern with

disrupted collagen fibers observed in the inner collagenous and

elastin layer of the BrM (Fig. 3B), which is also characteristic of

AMD [24]. In some areas, we observed extensive thickening of the

Table 1. Summary of Funduscopic, Histological findings in Nrf22/2 mice (incidences/eyes examined).

Nrf22/2 mice RPE Pathology Sub-RPE Deposit Other

Histology Age
(months)

No. of
Animals

Hypo-
pigmentation

Hyper-
pigmentation

Vacuole Drusen Diffused
Elevation

Subretinal
Cells

CNV

1–7 8 1/11 1/11 0/11 0/11 0/11 2/11 0/11

11–13 9 5/12 9/12 8/12 2/12 10/12 8/12 1/12

14–17 3 2/5 3/5 5/5 1/5 4/5 3/5 2/5

Fundus
examination

Age
(months)

No. of
Animals

RPE mottling Nodular deposits Patchy deposits

2–7 5 2/9 0/9 0/9

8–11 5 7/10 7/10 1/10

11–18 20 30/35 27/35 20/35

doi:10.1371/journal.pone.0019456.t001

NRF2, Autophagy & AMD
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outer collagenous layer of the BrM, often accompanied with

granular debris both inside the RPE and the BrM (Fig. 3E). In

addition, electron-dense debris was identified accumulating

between the RPE basement membrane and the elastin layer of

BrM, resembling basal linear deposits (BlinD) in human AMD

(Fig. 3E).

As part of the blood-retina barrier [25], the choroidal

endothelial cells in wild-type retina were highly fenestrated and

abutting on the BrM (Fig. 3A). In NRF2-deficient mice, however,

fenestrations were significantly lost with obvious thickening of the

choriocapillary endothelium (Fig. 3B and 3C). In some areas, the

endothelial processes broke through the basement membrane and

protruded into the BrM (Fig. 3B and 3C), which could mark the

initiation of abnormal growth of blood vessels in these areas

[26,27,28]. Taken together, the EM and histopathology data

demonstrated that Nrf22/2 mice developed AMD-like degener-

ation of RPE, BrM and choriocapillaris, as well as spontaneous

CNV at advanced age.

Lipofuscin Accumulation and Sub-RPE Deposition of
Inflammatory Proteins in Nrf2-/- Mice

Age-dependent accumulation of lipofuscin and the resulting

autofluorescence in human eyes are associated with RPE atrophy

and progression to advanced AMD [22,29,30,31,32]. In Nrf22/2

mice, we observed the accumulation of autofluorescent granules in

RPE cells in an age-dependent manner (Fig. 4). Eyes from wild

type mice showed only very dim autofluorescent materials present

underneath the RPE at 12 months. In Nrf22/2 mice at the same

age, however, the RPE autofluorescence was much more

prominent (Fig. 4). Noticeably that although diffusely dispersed

in the RPE layer, lipofuscin-like particles were prone to aggregate

around cells of compromised integrity.

Human drusen have been reported to contain components of

complement system and extracellular matrix [5,33,34]. In NRF2-

deficient mice, we observed age-dependent increase of immuno-

reactivity of C3d, serum amyloid P (SAP), vitronectin, and

immunogloubin (IgG) in the RPE and BrM (Fig. 5A). Staining

of 3-nitrotyrosine, a marker of oxidatively damaged proteins, also

showed age-dependent increase in RPE and sub-RPE space

(Fig. 5B). Nitrosylated proteins were mainly located at the apical

side of the RPE at 12 month; however, they tended to be

redistributed towards the BrM at 14 months (Fig. 5B).

Deregulated Lysosome-Dependent Degradation Pathway
in Nrf22/2 Mice

A major function of the RPE is the constant removal of

photoreceptor outer segments (POS) via phagocytosis. As shown in

Fig. 6, Nrf22/2 mice had accumulation of undigested POS

(Fig. 6A and 6C), indicating degenerated RPE cells became less

efficient in lysosome-mediated organelle turnover. Adult RPE cells

are considered postmitotic and utilizing autophagy, a lysosome-

dependent self-renewal process, to remove damaged macromole-

cules and organelles [35,36]. With aging, Nrf22/2 RPE showed

signs of deregulated autophagy. Intermediate structures of

autophagy, such as autophagosome and autolysosome, were

readily detectable by EM (Fig. 6A, 6D and 6F). Swollen

mitochondria were often found in close proximity to autophagy

vacuoles (Fig. 6A and 6B), which were indicative of awry

Figure 1. Early AMD-like degeneration in Nrf22/2 mice. (A) Normal fundus photograph from a 12-month-old wild-type mouse. (B) Merged
photos from central and peripheral retina from a 12-month-old knockout mouse, showing both dotted and patchy deposits (arrows) and RPE
mottling (arrowheads). (C) Magnified picture showing spots with sharp outline and a large patchy deposit in the mid-peripheral retina (arrow). (D)
Soft drusen-like deposits with larger size and ambiguous border. (E and F) Scotopic ERG recordings at +10 dB (25 cd?s/m2) flash intensity, showing
significantly decreased a- and b-wave amplitudes in Nrf22/2 mice when compared to age-matched wild-type mice (n = 6 per group; *P,0.05,
** P,0.01, Student’s t-test).
doi:10.1371/journal.pone.0019456.g001

NRF2, Autophagy & AMD
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autophagy of mitochondria (mitophagy) [37]. Areas of increased

presence of lipofuscin were also detected (Fig. 6E). Notably the

accumulation of undigested intermediates of phagocytosis and

autophagy were often present near the site of BrM abnormalities.

Electron dense structures, reminiscent of autophagy-related

vacuoles, appeared to have directional movement from the RPE

into the choriocapillaris (Fig. 6A–C). Accordingly, poly-ubiquiti-

nated protein aggregates accumulated underneath the RPE with

aging (Fig. 5C). These data collectively suggest that Nrf22/2 RPE

had defects in lysosome-dependent degradation and were less

efficient in removal of oxidatively damaged protein aggregates and

organelles by autophagy to achieve cellular homeostasis.

Discussion

In the present study we demonstrated that mice deficient in

NRF2 displayed many of the cardinal pathological features of

human AMD, including drusen deposition (Fig. 1), age-related

degeneration of RPE, BrM and choriocapillaris (Fig. 2 and Fig. 3),

increased RPE autofluorescence (Fig. 4) and development of

spontaneous CNV (Fig. 2). Compared to age-matched wild-type

mice, Nrf22/2 mice showed moderate decrease of a- and b-wave

amplitudes on ERG (Fig. 1). Similar findings of decreased rod-

driven ERG response have been reported previously in patients

with AMD [38,39]. The deposition of IgG and components of

complement pathway as well as its regulators (Fig. 5) were similar

to what have been found in human AMD eyes [34,40,41,42]. The

median lifespan of Nrf2 knockout mice was reported to be 106

weeks [43]. Therefore, the retinal phenotype of degeneration

occurred during the last 1/3 of their life span. Because we did not

perform continuous sections of the whole eye specimen, the

incidence of CNV and other focal lesions (Table 1) could have

been underestimated. Taken together, the results from our studies

support the causative role of oxidative stress in the pathogenesis of

AMD and suggest that Nrf22/2 mice represent a new animal

model of AMD.

Oxidative retinal injury and AMD-related pathology have been

demonstrated in SOD1 and SOD2-deficient mice [17,18]. Those

animals developed progressive degeneration of the whole retina.

Severe loss of photoreceptor cells occurred before or at the same

time as RPE degeneration and such time course is not typical of

human AMD. In addition to the different phenotype displayed by

Nrf2 and SOD knockout mice, these proteins have distinct

antioxidant functions. While SODs are responsible for the

constitutive removal of reactive intermediates generated from

normal metabolic processes, NRF2 is mostly activated by signaling

mechanisms that change the cellular thiol/disulfide redox status

[9]. Consequently, the pathology of SOD12/2 mice developed at

much earlier time point and progressed as a linear function of age

[18]. In contrast, the degeneration of RPE/BrM/Choroid in

Figure 2. Histopathology of RPE degeneration and CNV in Nrf22/2 mice. (A) Normal retina from a 12-month-old wild-type mouse, on
toluidine blue-stained 1 mm plastic section. (B–F) Representative degenerative pathology in 12 month-old Nrf22/2 mice, including RPE vacuolation (B,
asterisks) and BrM thickening (B, black arrows) hyperpigmentation (B to D, open arrows), hypopigmentation (E, arrowhead), sub-RPE deposits (C and
F, under the dotted line) and loss of RPE cells (F, asterisks). (G–I) H&E stained-paraffin sections, showing (H) dome-shaped drusen deposit, (I) subretinal
cell infiltration, (G) subretinal hemorrhage with melanin containing cells (arrowhead), (J) choroidal neovascularization through compromised BrM into
retina (arrow). (Scale bars: A–I = 10 mm; J = 20 mm)
doi:10.1371/journal.pone.0019456.g002

NRF2, Autophagy & AMD
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NRF2-deficient mice occurred mainly at the last 1/3 of their life

span and appeared to progress exponentially as a function of age,

which is typical for age-related degenerative diseases. In the future,

it will be interesting to learn whether other genetic or

environmental factors can interact with the NRF2 system and

change the disease course in these animals.

Increased presence of autophagic vacuoles is an initial sign of

deregulated autophagy [44]. EM studies of aged RPE in NRF2-

deficient mice showed accumulation of intermediate structures of

autophagy, undigested POS, lipofuscin and abnormal mitochon-

dria in close proximity to autophagosome and vacuoles (Fig. 6).

Autophagy is a conserved lysosomal pathway which is essential for

organelle turnover and removal of aggregated proteins [45].

During autophagy, unwanted proteins and organelles are sorted to

double-membraned autophagosomes (Fig. 6F), which are further

delivered and fused with lysosomes to degrade sequestered cargos

and eventually recycle the generated macromolecules as catabolic

substrates. A unique feature of the RPE cells is the phagocytosis of

POS which generate reactive products such as A2E (N-

retinylidene-N-retinylethanolamine), which is a potent inhibitor

of lysosomal function [46]. Deregulated autophagy has been

associated with various neurodegenerative diseases such as

Alzheimer [47], Huntington’s [48] and Parkinson’s disease [49].

It is likely that autophagy is also a central mechanism protecting

against AMD-related degenerative changes in the RPE.

Similar to the EM observations from Nrf22/2 mice, a previous

report showed that autophagosome-like structures accumulated in

the RPE of human AMD eyes [50]. The accumulation of various

Figure 3. Ultrastructual changes in outer retina of aged Nrf22/2 mice. (A) Electron micrograph of a 12-month-old wild-type mouse.
Endothelial fenestrations of choriocapillaris (CC) were marked by arrowheads. (B) RPE of an Nrf22/2 mouse at 12-months showed large vacuoles (V)
containing membranous debris, undigested POS (arrow) and melanin-containing materials (open arrow). BrM was thickened with disorganized
collagen and elastin fibers (asterisks). (C) Basal infoldings were replaced by continuous basal deposits (open arrow). (D) Higher magnification showing
basal laminar deposits and traverse-banded structure (arrowhead). (E) Extensively thickened outer collagenous layer (OCL) and basal linear deposits
(BlinD). (F) Increased BrM thickness in aged Nrf22/2 mice. Data presented are average of measurements from 6 mice per group (mean 6 SE)
(* P,0.01, Student’s t-test).
doi:10.1371/journal.pone.0019456.g003
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intermediate forms of autophagic vacuoles and multivesicular

bodies could be due to either increased autophagic flux or

decreased final degradation by lysosome. In NRF2-deficient RPE,

the compromised antioxidant system may not be sufficient to

protect the lysosomes from injury caused by POS-derived reactive

intermediates when the animals age. On the other hand, several

recent publications showed that NRF2 can regulate the expression

of p62 [51,52], which is a receptor protein that mediates the cargo

assembly during the initial formation of autophagic vesicles [53].

Although we confirmed the similar findings in cultured RPE cells,

no in vivo change of p62 mRNA was found in the RPE of Nrf22/2

mice (data not shown). How NRF2 directly regulates autophagy

Figure 4. Lipofuscin accumulation in Nrf22/2 mice. RPE autofluorescence was measured in WT (A) and Nrf22/2 mice (B) at 12 months. The insert
in (B) is magnified from an area of RPE clumps as marked by the red box. (Scale bar, 100 mm)
doi:10.1371/journal.pone.0019456.g004

Figure 5. Immunofluorescence staining of sections of outer retina from WT and Nrf22/2 mice. Cryosections were prepared from 6, 12 and
14 month-old mice and stained with indicated antibodies. Images were acquired by confocal microscopy using identical setting between WT and
Nrf22/2 mice. (Scale bar, 100 mm)
doi:10.1371/journal.pone.0019456.g005

NRF2, Autophagy & AMD
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pathways in the RPE remains to be characterized by future

studies.

There is a plethora of evidence supporting the hypothesis that

innate immune response plays an active role in AMD pathogenesis

[5,54]. In our model, we observed the sub-RPE deposition of

complement fragment C3d, the end degradation product of C3, as

well as vitronectin and serum amyloid P, which are regulators of

complement pathways. The data suggest that inflammation might

contribute to the phenotype of the Nrf22/2 mice. The deposit of

the immunoreactive proteins in the sub-RPE space may be related

to autophagy. RPE cells with impaired lysosomal function and

autophagic activity may release cellular metabolic waste in

membrane-enclosed vesicular bodies via exocytosis (Fig. 6A to

6C). Deposit of the polyubiquitinated materials in the sub-RPE

space and BrM (Fig. 5) may further lead to drusen formation and

initiate innate immune responses involving complement activa-

tion. Consistently, a recent study by Wang et al. showed positive

staining of exosome markers CD63 and CD81 in human AMD

eyes [50].

Based on our experimental data and literature report, we

propose a model of the roles of autophagy in AMD (Fig. 7). In

normal RPE cells, autophagy is responsible for removing

aggregates of polyubiquitinated proteins that cannot be processed

by proteasomes. Cargos inside autophagosomes will be targeted to

lysosome for degradation and recycled for catabolism. Under

conditions predisposing to age-related RPE degeneration, elevated

cellular stress will cause increased damage to proteins and

organelles and increased burden of autophagy. Reactive metab-

olites such as A2E can inhibit lysosome-mediated turn over and

lead to accumulation of waste materials eventually overwhelming

the capacity of autophagy. Consequently, the undigested proteins

could be exported into extracellular space and BrM via exocytosis,

and promote drusen formation and local inflammation.

NRF2 has many other documented functions. It can regulate

neuroinflammation. MPTP treatment of Nrf22/2 mice caused

more pronounced activation of astrocytes and microglia than the

wild type mice received the same treatment [16]. Cultured Nrf22/2

microglia and astrocytes also showed higher expression of pro-

inflammatory genes, such as IL-6, TNF-a, IL-b and iNOS [16].

However, we did not observe abnormal GFAP staining of Nrf22/2

retina and did not find significant differences in retinal IL-6 and

IL-1b expression (data not shown). NRF2 can regulate mito-

chondrial antioxidant function [55]. Mitochondrial glutathione

content, as well as MnSOD and catalase activities, can be

elevated by sulforaphane treatment [56]. NRF2 can be involved

in redox regulation of mitochondrial permeability transition [55]

and, therefore, can be important in protecting RPE cells from

oxidant-induced apoptosis. NRF2 may also regulate longevity.

Long-lived Snell dwarf mice had increased tissue expression of

metallothionein 1, heme oxygenase-1, glutamate cysteine ligase

and thioredoxin reductase, all of which function downstream of

NRF2 [57]. On the other hand, caloric restriction could not

extend the life span of Nrf22/2 mice [43]. Aging is a primary

demographic factor of AMD. All of these NRF2-mediated

Figure 6. Accumulation of intermediate structures of lysosome-dependent degradation pathways in Nrf22/2 mice. At sites of BrM with
abnormalities, RPE cells showed increased presence of autophagosome (A, arrowhead and F) and autolysosome (A, D and F, arrow), swollen
mitochondria fragments next to autophagic vacuoles (A and B), undigested POS (A and C), and lipofuscin (C and E, open arrow, and F).
Heterogeneous electron-dense deposits were detected in BrM as well (asterisks). OCL, Outer collagenous layer; m, mitochondria; V, Vacuole; Scale
bars: 500 nm.
doi:10.1371/journal.pone.0019456.g006

NRF2, Autophagy & AMD
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signaling mechanisms may contribute to the protection by NRF2

on RPE aging and age-related degeneration.

In summary, our study demonstrated that mice deficient in

NRF2 presented retinal pathology of age-related drusen forma-

tion, RPE/BrM degeneration, sub-RPE deposition of inflamma-

tory proteins and spontaneous CNV, all of which are key features

of human AMD. Our model provides a novel platform for future

research on mechanisms of gene/environment interaction in the

etiology of AMD; and can be further optimized for pre-clinical

drug screening of interventional agents against both dry and

exudative AMD.

Materials and Methods

Animals
Protocols for animal breeding, housing and handling were

approved by the Vanderbilt Institutional Animal Care and Use

Committee (IACUC) (Protocol number M/09/159). All proce-

dures were conducted in accordance with the ARVO statement

for the Use of Animals in Ophthalmic and Vision Research. The

Nrf22/2 mice [58] were kindly provided by Dr. J.Y. Chan at

University of California, Irvine. Exons 4 and 5 of the mouse Nfe2l2

gene, which encodes the basic leucin zipper domain that controls

transcriptional activation, was replaced by a LacZ reporter gene

[58]. Homozygous Nrf22/2 mice had hybrid genetic background

of C57BL/SV129. Mouse breeding and genotyping were

performed following published methods [59]. Nrf22/2 mice have

normal embryonic development [58] and normal growth rate at

young age [59], although the average litter size is only about 60%

of wild type breeding mice. Mice were housed at pathogen-free

facilities of Vanderbilt Division of Animal Care facilities, and were

kept on diurnal cycles of 12 h light and 12 h dark with ad libitum

access to food and water.

Fundus Photography
A modified otoscope system was used for mouse funduscopic

examination, according to methods described in the literature

[60,61]. Animals were anesthetized by intraperitoneal injection of

ketamine and xylazine, and pupils were dilated by topical

administration of 1% tropicamide. An endoscope (1218AA; Karl

Storz) attached to an objective lens (Nikkor AF35/f1.8, Nikon) and

a reflex digital camera (D90; Nikon) was used to take digital fundus

photographs of central, nasal and temporal retina.

Electroretinography (ERG)
Scotopic ERG was recorded using an UTAS-E3000 rodent

ERG system (LKC Technologies). Mice were dark-adapted for at

least 12 hours and anesthetized by ketamine/xylazine. Topical

administration of 1% tropicamide and 0.4% oxybuprocaine was

used to dilate the pupils and depress the cornea reflex. ERG

responses were evoked with a three-step protocol (0, +10 and 20

dB light flashes) and recorded with a DTL silver electrode

(Diagnosys). The ERG Data were analyzed with EMWIN 8.1.1

software (LKC Technologies).

Immunohistochemistry and Fluorescence Microscopy
Mice were terminally anesthetized and subjected to whole body

perfusion with 4% paraformaldehyde in phosphate-buffered saline

(PBS). Whole eyes were enucleated and post-fixed in the same

fixative overnight before embedded in Tissue-TeK Cryomold

Figure 7. Schematic model integrating oxidative stress, autophagy and lysosomal function into the etiology of AMD. RPE cells are
exposed to high levels of cellular stress and, when healthy, damaged proteins and organelles are removed promptly by autophagy. Under disease
conditions, such as decreased antioxidant defense and lysosome inhibition, self-renewal by autophagy becomes less efficient. The resulted cellular
waste products can be exported by exocytosis and contribute to sub-RPE deposit and drusen formation. NRF2 can be involved in regulating both the
antioxidant responses and the autophagic activities.
doi:10.1371/journal.pone.0019456.g007
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(Electron Microscopy Sciences). Sagittal cryosections of 8 mm

thickness were prepared from cornea to optic nerve and stained for

various antigens of interest. To block nonspecific binding, tissue

sections were incubated with normal serum appropriate to the

secondary antibody species diluted in 0.5% Triton X-100/PBS.

They were then incubated with primary antibodies followed by

staining with Alexa FluorH-conjugated secondary antibodies

(Invitrogen). Fluorescence images were acquired by confocal

microscopy (Carl Zeiss). Primary antibodies used for the study

included anti-C3d, Nitrotyrosine, Vitronectin (R & D Systems),

polyubiquitin (FK1, Enzo,) and Serum Amyloid P (Santa Cruz).

Isotope-matched IgG was used as a negative control for each

experiment.

For detection of RPE autofluorescence, freshly-cut frozen

sections were air dried at room temperature for 2 hours before

sealed with Fluoro-gel (Electron Microscopy Sciences). Confocal

images were acquired by an FV 1000 system (Olympus) using

excitation 543 nm and emission 570 nm [46,62]. Images were

taken from both wild type and knockout strains using identical

settings to ensure comparable results.

Histology and Electron Microscopy (EM)
Eyes from wild type and knockout mice at different ages were

enucleated and post-fixed in 4% formaldehyde for 24 h before

embedded in paraffin. Sagittal sections of 5 mm thickness were cut

from cornea to optic nerve and stained with H&E. At least 10

slides from each eye were examined. If lesions were found in the

outer retina, serial sections would be cut through the entire depth

of the lesions.

For EM, mice were perfused with 2.5% glutaraldehyde in

cacodylate buffer (0.1 M, pH 7.4) through left ventricle. Eyes were

enucleated and fixed in the same buffer for 12 h at room

temperature. Samples were then sent to either the Vanderbilt Cell

Imaging Core or the L.F. Montgomery Laboratory of Ophthalmic

Pathology at Emory Eye Center for post-fixation, dehydration and

embedding in epoxy resin. Semi-thin sections (1 mm) through the

optic nerve were prepared, stained with toluidine blue and

examined by light microscopy. Ultrathin sections (0.5 mm) of

selected areas were then prepared and stained with uranyl acetate

and lead citrate for EM (CM-12 TEM; Philips). To measure the

thickness of BrM, at least 10 digital images were captured for each

sample at a magnification of 19,000X. A transparent grid was

superimposed onto the micrograph, with RPE basement mem-

brane aligned with the horizontal line. Five random measurements

(altogether 50 measurements per sample) were made on each

digital image using ImageJ software (http://imagej.nih.gov/ij).

Areas with considerably thickened outer collagenous layer (Fig. 3E)

were excluded. The thickness of BrM was determined by

averaging all measurements of each group.

Statistical Analyses
Data from two groups of animals were presented as means 6

SEM, and Student’s t-test was performed to analyze the difference

of BrM. Fisher’s exact test was employed to analyze the difference

of histological events. Statistically significant was considered as P

values ,0.05.
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