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Abstract

Background: The 2007–2009 financial crisis, and its fallout, has strongly emphasized the need to define new ways and
measures to study and assess the stock market dynamics.

Methodology/Principal Findings: The S&P500 dynamics during 4/1999–4/2010 is investigated in terms of the index
cohesive force (ICF - the balance between the stock correlations and the partial correlations after subtraction of the index
contribution), and the Eigenvalue entropy of the stock correlation matrices. We found a rapid market transition at the end of
2001 from a flexible state of low ICF into a stiff (nonflexible) state of high ICF that is prone to market systemic collapses. The
stiff state is also marked by strong effect of the market index on the stock-stock correlations as well as bursts of high stock
correlations reminiscence of epileptic brain activity.

Conclusions/Significance: The market dynamical states, stability and transition between economic states was studies using
new quantitative measures. Doing so shed new light on the origin and nature of the current crisis. The new approach is
likely to be applicable to other classes of complex systems from gene networks to the human brain.

Citation: Kenett DY, Shapira Y, Madi A, Bransburg-Zabary S, Gur-Gershgoren G, et al. (2011) Index Cohesive Force Analysis Reveals That the US Market Became
Prone to Systemic Collapses Since 2002. PLoS ONE 6(4): e19378. doi:10.1371/journal.pone.0019378

Editor: Enrico Scalas, Universita’ del Piemonte Orientale, Italy

Received October 22, 2010; Accepted April 4, 2011; Published April 27, 2011

Copyright: � 2011 Kenett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been supported by the Tauber Family Foundation and the Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: eshelbj@gmail.com

Introduction

The current financial crisis began with the collapse of the

subprime bubble at the end of 2007 [1,2], and then spread to

the global financial markets and economies worldwide. In the past,

and in the aftermath of the crisis, much work has been

devoted to the study and characterization of financial bubbles

[1,3,4,5,6,7,8,9]. In a recent study, Sornette et al. [1] have

presented a general framework in which they propose that the

fundamental cause of the crisis was in fact an accumulation of

several bubbles in the markets, and the interplay between these

bubbles.

The formation of bubbles in the markets is followed by a strong

herding phenomenon amongst traders [9], and the burst of these

bubbles is accompanied by strong synchrony in the markets

reminiscent of epileptic seizures. For example, Lillo et al. [10,11]

have investigated the dynamics of markets following crashes. Such

synchrony in the markets ca be used as a predictive measure for

the formation of bubbles, and more importantly, for the burst of

such bubbles. As such, it is crucial to develop new quantitative

measures to fully capture, characterize and understand the market

dynamical states, stability and transition between economic states.

Currently, in this regard, much work is focused on the analysis of

zero lagged [12] or higher-order lagged correlations [13], a

detrneding approach to the study of cross correlations [14,15,16],

and other measures to study co-movement and synchronization in

stock markets [17,18].

Here, we use a new, physics motivated, analysis framework to

investigate the dynamics of markets, during the past decade. We

show that the fragility of the market could be detected as early as the

beginning of 2002, when the market dynamics went through a rapid

change that was marked by a jump in the index cohesive force (ICF),

and a decline in the correlation Eigenvalue entropy. This transition

in the market dynamical state created a significant change in the

structure of the market, due to an abnormal dominance of the

market index on the stock correlations. The outcome was a rapid

transition into a stiff market state that lacked a sufficient degree of

freedom and internal flexibility of response to extreme changes.

Hence, the index dominance rendered the market prone so systemic

collapses as in the case of the sub-prime crisis.

We investigated the time dynamics of the S&P500 index, and

418 of its constituting stocks (not all 500 stocks were traded for the

entire time period), during the last decade – from April 1999 to

April 2010 (see also Text S1, for full description of the dataset).

The investigations were carried out in terms of the index cohesive

force (ICF) - the balance between the raw stock correlations that

include the index effect and the residual stock correlations (or

partial correlations) after subtraction of the index effect [19,20].

The ICF provides a means to identify structural changes in the

market, which significantly alter the stability of these markets. For
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additional assessments of the results we also inspected the time

evolvement of the correlation entropy - the Eigenvalue entropy

[19,21,22] of the matrices of stock correlations, during the last

decade.

Methods

Raw Stock Correlations
The similarity between stock price changes is commonly

calculated by the Pearson’s correlation coefficient [20]. The raw

stock correlations [20,23] are calculated for time series of the log of

the daily return, given by:

ri(t)~ log Pi(t)½ �{ log Pi(t{1)½ � ð1Þ

Where Pi(t) is the daily adjusted closing price of stock i at day t.

The raw stock correlations are calculated using the Pearson’s

correlation coefficient C(i,j) between every pair of stocks i and j,

where

C(i,j)~
S ri{SriTð Þ: rj{SrjT

� �
T

si
:sj

ð2Þ

ST denotes average, and s are the standard deviations (STD).

Residual Correlations
Recently, we have made use of partial correlations to calculate

the residual correlation between stocks, after removing the affect of

the index [20]. Partial correlation is a powerful tool to investigate

how the correlation between two stocks depend on the correlation

of each of the stocks with a third mediating stock or with the index

as is considered here. The residual, or partial, correlation r i,j mjð Þ
between stocks i and j, using the Index (m) as the mediating

variable is defined by [19,20,24]

r i,j mjð Þ~ C i,jð Þ{C i,mð Þ:C j,mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{C2 i,mð Þð Þ: 1{C2 j,mð Þð Þ

p ð3Þ

Note that according to this definition, r i,j mjð Þ, can be viewed as

the residual correlation between stocks i and j, after subtraction of

the contribution of the correlation between each of the stocks with

the Index.

The index cohesive force
Recently, we have shown that the market index has a cohesive

effect on the dynamics of the stock correlations [20]. This refers to

the observed affect the index has on stock correlations, where we

have found that larger changes of the index result in higher stock

correlations, and as such more cohesive [20]. Here we expand this

analysis and introduce a quantitative measure of the index

cohesive force. We define ICF (t) - the index cohesive force

calculated over a time window t, as a measure of the balance

between the raw and residual correlations given by,

ICF (t)~
SC i,jð ÞTt

Sr i,j mjð ÞTt

, ð4Þ

where t the time window, during which the average correlation

and average residual correlation are calculated, denoted by

SC i,jð ÞTt SPC i,j mjð ÞTt

� �
is the average of average correlation

(partial correlation). The size of the time window is selected

following the considerations presented further below and in the

Text S2 (see also Figure S7).

Eigenvalue entropy
To further asses the market stiffness, we computed the

eigenvalue (spectral) entropy of the raw correlation matrices.

Qualitatively, the entropy of a system refers to the changes in the

status quo of the system, and is used as a measure for the order and

information content of the system. The spectral entropy

[19,21,22,25,26], SE, is defined as

SE:{
1

log Nð Þ
XN

i~1

Vi log Vi½ � ð5Þ

where Vi - the normalized eigenvalues li of the diagonalized

matrix (correlation matrix) - are defined as

Vi~
l2

i

PN

i~1

l2
i

ð6Þ

Note that the 1=log (N) normalization was incorporated to ensure

that SE = 1 for the maximum entropy limit of flat spectra (equal

eigenvalues). We associate the market stiffness with one minus the

SE [19,21,22,25,26].

Results

The average raw correlation between stocks has been

investigated in the past [27,28,29,30], with the focus being on

large time windows (200 to 500 days) to reduce the statistical

variations. Here we selected a shorter, 22 trading days (corre-

sponding to one work month), time window. We validated that

while these short time windows retained limited variations (as

shown by the results), they are successful in capturing short time

events in the market dynamics. Such short time localized events

are averaged out and cannot be deciphered when long time

windows are used. In particular, we will show that using these

short time windows enabled us to reveal changes in the index

cohesive force that are very rapid and of high magnitude (see also

Text S2 and Figure S7).

Time dynamics of the raw and residual correlations and
market stiffness

We begin our investigation by studying the dynamics of the

stocks’ raw correlations (Figure 1B) and residual correlations

(Figure 1C), in comparison to the dynamics of the S&P500 index

(Figure 1A). Such analysis reveals a transition in the market, taking

place at the end of 2001. Following the transition, the market

entered into a state dominated by the index as is reflected by the

very small residual correlations in the new dynamical state. This

state is characterized by an abnormal dominance of the market

index, and a state in which the effect other processes such as the

influence of different economic sectors is drastically reduced. We

propose, in light of the recent global financial events, that the

outcome is that the strong index influence rendered the market into

a stiff state that is less adaptable to financial changes and therefore is

more prone to crises. In other words, being a complex system

[20,31], when the average interactions between the market stocks

becomes very large, the market becomes inflexible and more

sensitive to external changes and thus more prone to crises (see Text

S1 and Figures S1, S2, S3, S4, S5 for validation tests of the results,

Index Cohesive Force
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and Text S3 and Figures S8, S9, S10 for error estimation of the

measures used to quantify the dynamics of correlations).

Market seizure-like behavior
The anomalous dominance of the index and the market

dangerous stiffness of this market state since the end of 2001, is

manifested by the emergence of market seizure-like behavior -

bursts of very high stock raw correlations that usually coincide with

local minima in the index (Figure 1B). Performing our analysis

using longer time windows resulted in qualitatively similar results,

in which the transition in the market was still captured, while the

localized bursts of correlation were no longer present.

Dynamics of the index cohesive force
In Figure 2 we present the time evolvement of the ICF, versus

the average stocks-index correlations. In the left panel we use the

same coloring scheme as in Figure 1A. The results well depict the

significant difference between the two market states. In the right

panel of Figure 2, we highlight the time period of 2010, using a

color scheme from light yellow at the beginning of the year to

black at the end of April. Using this color code, we observe that

during early 2010 the market dynamics moved back towards the

stable state, but this trend was reversed at the end of March (see

also Text S1 and Figure S1).

To further assess the current state of the market, we calculated

the ICF for the entire year of 2010. In Figure 3A we present the

time evolvement of the ICF for 2010. We divide the entire year

into 5 periods, based on the changes in the ICF. As was observed

in Figure 2B, we find a drop in the ICF at the beginning of 2010

(blue circle), followed by a dramatic jump in the ICF (green circle).

In addition to the strong peak in the ICF observed for April 2010,

we observe additional somewhat weaker peaks, in June and August

of 2010. Finally, as presented in Figure 2B, we compare the ICF to

the average stock-index correlation, for the entire year of 2010

(Figure 3B, color coded according to Figure 3A). We note that in

general, the year of 2010 was dominated by high values of the

ICF, which remains high at the end of the year. Furthermore,

comparing Figure 3B to Figure 2A, we observe that the market is

still in the abnormal stiff state so it continues to be prone to

systemic collapses.

Figure 1. The dynamics of correlations and partial correlations for stocks belonging to the S&P500 Index from April 1999 till April
2010, versus the price of the Index. A) The S&P500 market index from April 1999 until the end of April 2010 Different time periods are marked by
different colors: blue – April 1999 to December 2001, green – December 2001 to January 2002 (transition period), grey – January 2002 to July 2007,
light red – August 2007–March 2009 (crisis), red – March 2009–January 2010 (recovery), and black – January 2010 to April 2010; B) Raster plot of the
stock raw correlations, calculated according to the stocks daily returns and for 22 trading days windows. Each row shows the averaged correlations of
a specific stock with all other stocks (left y axis), with the mean stock raw correlations (over all the stock correlations) superimposed in black (right y
axis). C) Raster plot of the stock residual correlations after subtracting the index contribution, with the mean market residual correlations
superimposed in black. In panel A the different colors indicate different time periods. In panels B and C the colors of the raster plots represent the
strength of the correlations, as indicated in the color bars at the right side of each plot.
doi:10.1371/journal.pone.0019378.g001

Index Cohesive Force
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Reflections on the widely used systemic risk parameter
In finance, the capital asset pricing model (CAPM) [32,33] is

used to determine a theoretically appropriate required rate of

return of an asset, if that asset is to be added to an already well-

diversified portfolio, given that asset’s non-diversifiable risk. The

model takes into account the asset’s sensitivity to non-diversifiable

risk (also known as systematic risk or market risk), often

represented by the systemic risk parameter beta (b) in the financial

industry, as well as the expected return of the market and the

expected return of a theoretical risk-free asset. The correlation

C(i,m) between the return of the given stock i and the daily return

of the market index rm(t), is similar to bi - the systematic risk

parameter of this stock which is defined within the security

characteristic line (SCL) theory [32,34,35]. More specifically,

using these parameters, the return of the asset on the return of the

index is given by,

ri(t)~aizbi � rm(t)zei(t) ð7Þ

Where ei(t) is a random variable and the regression parameters ai

and bi are given by:

bi~
cov(ri,rm)

var(rm)
~C(i,m) � si

sm

ð8Þ

ai~SriT{bi � SrmT ð9Þ

According to these definitions, the residual correlation r i,j mjð Þ
can be viewed as the correlation between the residuals ei(t), after

removing the dependency of the given stock on the index. In

Figure 4 we show that the average of the systematic risk SbiT over

all stocks (blue curve) differs from the average of the stock-index

correlations SC(i,m)T (red curve). As in the case of the average

correlation, we observe a jump in SbiT at the beginning of 2002.

However, we did not decipher a trend reverse in the value of SbiT
as we found for the ICF during the first months of 2010. We note

that in a market which behaves as described by the Capital Asset

Pricing Model (CAPM) [36], the SbiT of the market should equal

1. In such market, as a result of its definition, the ICF should

diverge. Hence, our results might indicate that the market

dynamics do not follow the CAPM.

Furthermore, we present in Figure 5 a comparison of the ICF to

the SbiT as a function of time, color-coded according to Figure 1A.

It is evident that the two parameters are very different, especially

following the transition at the end of 2001.

Dynamics of Eigenvalue entropy
In Figure 6 we show the evolvement of the spectral entropy

during the last decade. We note a sharp fall in the correlation

Figure 2. Time evolvement of the S&P500 market index cohesive force (ICF – the ratio between the raw correlations and the bare
(partial) correlations), as function of the stocks-index correlations, during the last decade. The color code on the left is as in Figure 1A in
the text. On the right, we only present the time progression during 2010, colored from light yellow at the beginning of the year to black at the end of
April. Using this color code, we observe that during early 2010 the market dynamics moved back towards the stable state, but this trend was reversed
at the end of March and currently the market instability seems to rapidly evolve towards a more fragile state.
doi:10.1371/journal.pone.0019378.g002

Figure 3. Time evolvement of the ICF for the entire year of 2010. (A) The ICF as a function of time, for 2010. We observe that the fluctuations
of the ICF during 2010 were strong; we identify 5 different periods, which are characterized by changes in trend of the ICF. The Transition from the
first period (blue circle) to the second (green circle) is similar to the one presented in Figure 2B. Furthermore, we observe two more strong peaks in
the ICF – at June and in August of 2010. (B) Comparison of the ICF to the average stock index correlation, as presented in Figure 2, for the entire year
of 2010. Color code as is indicated in Figure 3A.
doi:10.1371/journal.pone.0019378.g003

Index Cohesive Force
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entropy at the end of 2001, followed by strong entropy

fluctuations. A second significant entropy fall is detected at

September 2008 when the index dynamics switched from a

negative trend to a positive trend. In Figure 7 we present the

values of the entropy versus the average stock-index correlation,

color-coded according to Figure 1A. This representation provides

additional support that the market underwent a rapid transition

between two very different dynamical states.

In a previous paper [19], we have studied how the entropy

(information) content of a stock correlation matrix changes, when

the market mode is removed. Either analyzing the partial

correlation matrix, or looking at the eigenvalue spectrum without

the principal eigenvalue can achieve this. Preliminary results (not

shown) reveal that removing the principal eigenvalue dramatically

influences the spectral entropy; while this is consistent with the

rationale, the results are still inconclusive in this regard, and

further research is necessary.

Manifestation of the transition at the end of 2001
The dramatic differences between the flexible and stiff

(inflexible) market states are best manifested in the 3-dimensional

scatter plot presented in Figure 8A. The axes of this 3D space are

the average Stocks-Index correlations, the average raw correla-

tions, and the average residual correlations. The color code makes

transparent the fact that the market dynamical state was not

determined by the Index trend (positive or negative): The stiff state

started in the midst of a decline in the Index and continued

unchanged as the Index trend changed several times. To

demonstrate this change, we show in Figure 8B a scatter plot in

a different 3D space – the axes are the spectral entropy SE, the

average beta coefficient, SbiT and the average residual correla-

tions. Clearly the two scatter plots capture the same phenomenon.

We also note that repeating the analysis while using the financial

sector Index instead of the S&P500 Index yielded similar results.

Discussion

In summary, we presented new approaches to quantify the

dynamics of the stock market, using the correlation entropy and

the index cohesive force (ICF). The ICF parameter provides a new

quantitative measure to investigate different financial states of the

market, and the transitions between these states.

Using this approach we discovered a rapid transition in the

market dynamical state at the end of 2001. This transition is

manifested by a jump in the stock correlations, and a sharp fall in

the stock residual correlations. After the transition the market

entered into a high ICF stiff state. In this state the index

predominantly affects the market dynamics while it shades the

effect of other degrees of freedom that can contribute to the

market flexibility. Thus, we suggest that during this state the

market is highly prone to systematic collapses, even due to

relatively small external perturbations, leaving it incapable of

coping with crises. This interpretation is consistent with the fact

that following the burst of the subprime bubble and the fall of

Lehman Brothers [37,38], the market collapsed. It is also

reasonable to assume that this rapid transition at the end of

2001 might have been a consequence of the ‘‘dot-com’’ bubble

crisis, combined with the traumatic events which took place in the

Figure 4. comparison of the average b (red curve) to the
average stock-index correlation (blue curve).
doi:10.1371/journal.pone.0019378.g004

Figure 5. Comparison of the ICF to the SbiT as function of time,
color coded according to Figure 1A.
doi:10.1371/journal.pone.0019378.g005

Figure 6. Correlation Eigenvalue entropy as function of time.
doi:10.1371/journal.pone.0019378.g006

Figure 7. Eigenvalue entropy versus the average stock-index
correlation, as function of time, color coded according to
Figure 1A.
doi:10.1371/journal.pone.0019378.g007

Index Cohesive Force
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U.S. at the beginning of the decade and the outcome of the rapid

interest cuts [39] and other financial policies employed to

overcome the fallout effect of those. One such important financial

policy was the implementation of the Decimal Pricing system in

the American stock markets. The process of implementation was

finalized in the NYSE at January 2001, and in the NASDAQ at

April 2001. However, the observed transition in the market

uncovered by the ICF took place at December 2001; thus, this

change in tick size is one more contributing factor to the transition

in the market.

The time period studied here covers the two largest crises that

took place in the past decade – the 2000–2001 ‘‘.com’’ crisis, and

the 2007–2009 credit crunch crises. During the ‘‘.com’’ period,

internet and technological companies were hit hard by the crisis,

while other sectors were less affected. This was a local crisis, and

the bubble-crash was unevenly distributed among these sectors.

This means that the residual correlations during this period should

be unusually high, as indeed we found. The credit crunch crisis

was a systemic (global) one, which spilled over from the financial

sector into all other sectors. As such, the entire market dynamics

exhibited high synchrony, as is reflected by the high values of the

ICF measure introduced here. As we have shown, during the first

part of 2010 there seemed to be a recovery in the markets, which

was accompanied by a drop in the values of the ICF. However, a

jump in the ICF, and indeed a renewed dangerous process in the

market followed this drop in late March. Extending the analysis of

the ICF to the entire year of 2010, we find that the ICF remains

high; furthermore, short periods of relaxation in the ICF are

followed by strong jumps in the ICF. Finally, we find that the end

of 2010 is marked by an upwards trend in the ICF, which shows

that the market is still in the abnormal state, and still strongly

prone to systematic collapse.

Comparing between the ICF and the risk parameter b, we

found that the ICF provides better representation of the state of

the market: While b represents the coupling of a given stock to the

index, the ICF represents the full state of the system, and can be

considered as a system level measure of the state of the market.

Probably for this reason, while the ICF revealed that during the

first three months of 2010 the market was on its way to recovery,

and then the trend was drastically changed at the end of March

back into stiff state, this phenomenon is not revealed by the b
parameter. Finally, the ICF parameter presented here can be

further generalized, such as by a normalization of the volatility, or

standard deviation of correlations; we propose this normalized ICF

parameter as an Herding factor, which allows a quantification of

herding in financial markets. A brief example of this Herd factor is

presented in Text S1 (see Figure S6), and we plan on presenting a

thorough investigation of this issue in the future.

In conclusion, we propose the ICF as a new system-level

parameter, which provides an efficient measure to describe and

quantify the market dynamical state, and which can be used as a

tool to monitor the stability of stock markets. The stability of the

markets is crucial for the world’s economies, thus this tool can be

very important to governments and regulation agencies worldwide.

Supporting Information

Figure S1 Comparison of the ICF to the average stock-index

correlation, for the period of 2010. The ICF and average

correlation were computed for the 500 S&P500 stocks (left) and

the 418 S&P500 stocks used for the entire analysis. We use a color

code to present the chronological time progression, from dark blue

for the beginning of 2010, to dark red, for April 2010. Comparing

the two panels, we note that there is a high qualitative similarity

between the two.

(TIFF)

Figure S2 Calculation of the ICF for a sub-set of 300 stocks. To

validate the results of the ICF for the full dataset, we randomly

chose 300 stocks, calculate the average stock, stock-index, and

partial correlation, and the ICF. We perform this selection 4 times.

The values of the ICF is presented for each of the 4 iterations,

using a different color.

(TIF)

Figure S3 A three-dimensional scatter plot of the market

dynamical evolution of stocks belonging to the S&P500 index in

the past decade, as presented in Figure 8. We first calculate the

average value of the raw, stock-index and partial correlations, over

the 4 iterations of random selection of the 300 stock sub-set. The

color code used is the same as in Figure 8.

(TIF)

Figure S4 Eigenvalue entropy versus the average stock-index

correlation, as function of time, color coded according to

Figure 1A. This is presented for the 300 stock subset, as in Figure

S1, S2, S3. We first calculate the average value of the entropy and

the stock-index correlation over all 4 iterations.

(TIF)

Figure S5 Comparison of the ICF calculated using the S&P500

index (red curve) and the ICF calculated using a synthetic index.

Figure 8. A three-dimensional scatter plot of the market dynamical evolution of stocks belonging to the S&P500 index in the past
decade. (A) The axes are the average stocks-index correlations (X-axis), average raw stock correlations (Y-axis), and the average residual (partial)
correlations (Z-axis). Each dot corresponds to a time window of 22 trading days and the color code is similar to that used in Figure 1A. (B) similar
results are obtained when using longer time window and when replacing the average stocks-index correlation with the average b coefficient as the
X-axis, and replacing the average stock-stock correlation with the entropy as the Y-axis.
doi:10.1371/journal.pone.0019378.g008

Index Cohesive Force
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The synthetic index was calculated using only the stocks included

in the dataset, as a weighted average of these stocks, using their

original weights from the S&P500 index. While the ICF calculated

using the synthetic index is nosier, the two are qualitatively very

similar, with a correlation of 0.65, which is probably strongly

affected by the fact that the ICF(synthetic) is much nosier in the

pre-2002 period.

(TIF)

Figure S6 Comparison of the H factor to the ICF, color coded

for time according to the code presented in Figure 1A.

(TIF)

Figure S7 ICF analysis of the S&P500 dataset, using a sliding

window of 50, 100, 200, 300, 400, and 500 days. The transition,

observed using the 22-day window, is qualitatively observed for all

other window sizes, around the same period.

(TIFF)

Figure S8 The average stock correlation (left) and average stock

partial correlation (right), as resented in Figure 1 A and B

respectively, with the addition of error lines. The error lines were

estimated using the standard deviation for each parameter

separately, marked by a dotted red line.

(TIFF)

Figure S9 The average Beta coefficient, as presented in Figure 4,

with the addition of error, estimated using the standard deviation,

marked with a dotted red line.

(TIF)

Figure S10 The value of the ICF as a function of time, with the

addition of error markers, estimated by the standard deviations of

the average correlation and average partial correlation, and the

functional relation between them. The error boundaries are

marked by a dotted red line.

(TIF)

Text S1

(DOC)

Text S2

(DOC)

Text S3

(DOC)

Acknowledgments

We thank H. Eugene Stanley, Rosario Mantegna, and Didier Sornette for

their insights and helpful conversations on the subject. We also thank Sorin

Solomon for his illuminating comments on the results presented in this

study.

Author Contributions

Conceived and designed the experiments: DYK YS AM SB-Z GG-G EB-J.

Performed the experiments: DYK. Analyzed the data: DYK GG-G EB-J.

Contributed reagents/materials/analysis tools: DYK YS AM SB-Z GG-G

EB-J. Wrote the paper: DYK YS GG-G EB-J.

References

1. Sornette D, Woodard R (2010) Financial Bubbles, Real Estate Bubbles,

Derivative Bubbles, and the Financial and Economic Crisis. Econophysics

Approaches to Large-Scale Business Data and Financial Crisis. pp 101–148.

2. Boyd JH, Jagannathan R, Kwak S (2010) What Caused the Current Financial

Mess and What Can We Do about It?(Digest Summary). CFA Digest 40.

3. Bastiaensen K, Cauwels P, Sornette D, Woodard R, Zhou W (2009) The

Chinese equity bubble: Ready to burst. Quantitative Finance Papers.

4. Jiang Z, Zhou W, Sornette D, Woodard R, Bastiaensen K, et al. (2010) Bubble

Diagnosis and Prediction of the 2005–2007 and 2008–2009 Chinese stock

market bubbles. Journal of Economic Behavior & Organization 74: 149–162.

5. Krawiecki A, Holyst JA (2003) Stochastic resonance as a model for financial

market crashes and bubbles. Physica A: Statistical Mechanics and its
Applications 317: 597–608.

6. Sornette D, Woodard R, Zhou W-X (2009) The 2006–2008 oil bubble:

Evidence of speculation, and prediction. Physica A: Statistical Mechanics and its
Applications 388: 1571–1576.

7. Kaizoji T, Sornette D (2010) Market bubbles and crashes. Encyclopedia of
Quantitative Finance.

8. Woodard R, Sornette D, Fedorovsky M (2010) The Financial Bubble
Experiment: Advanced Diagnostics and Forecasts of Bubble Terminations,

Volume III. Quantitative Finance Papers.

9. Lux T (1995) Herd behaviour, bubbles and crashes. The Economic Journal 105:
881–896.

10. Lillo F, Bonanno G, Mantegna RN (2002) Variety of stock returns in normal
and extreme market days: The August 1998 crisis. Empirical Science of

Financial Fluctuations. pp 77–89.

11. Lillo F, Mantegna RN (2004) Dynamics of a financial market index after a crash.
Physica A: Statistical Mechanics and its Applications 338: 125–134.

12. Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Guhr T, et al. (2002)
Random matrix approach to cross correlations in financial data. Physical

Review E 65: 66126.

13. Podobnik B, Wang D, Horvatic D, Grosse I, Stanley H (2010) Time-lag cross-

correlations in collective phenomena. EPL (Europhysics Letters) 90: 68001.

14. Podobnik B, Horvatic D, Petersen AM, Stanley HE (2009) Cross-correlations
between volume change and price change. Proceedings of the National

Academy of Sciences 106: 22079.

15. Podobnik B, Stanley HE (2008) Detrended cross-correlation analysis: A new

method for analyzing two nonstationary time series. Physical Review Letters

100: 84102.

16. Xu L, Ivanov PC, Hu K, Chen Z, Carbone A, et al. (2005) Quantifying signals

with power-law correlations: a comparative study of detrending and moving
average techniques. Phys Rev E 71: 051101.

17. Reigneron PA, Allez R, Bouchaud JP (2010) Principal Regression Analysis and

the index leverage effect. Arxiv preprint arXiv: 10115810.

18. Harmon D, de Aguiar MAM, Chinellato DD, Braha D, Epstein IR, et al. (2011)

Predicting economic market crises using measures of collective panic. Arxiv
preprint arXiv: 11022620.

19. Kenett DY, Shapira Y, Ben-Jacob E (2009) RMT assessments of market latent

information embedded in the stocks’ raw, normalized, and partial correlations.
Hindawi Journal of Probability and Statistics 2009: 249370.

20. Shapira Y, Kenett DY, Ben-Jacob E (2009) The Index cohesive effect on stock
market correlations. The European Physical Journal B 72: 657–669.

21. Varshavsky R, Gottlieb A, Horn D, Linial M (2007) Unsupervised feature

selection under perturbations: meeting the challenges of biological data.
Bioinformatics 23: 3343–3349.

22. Varshavsky R, Gottlieb A, Linial M, Horn D (2006) Novel unsupervised feature

filtering of biological data. Bioinformatics 22: e507–e513.

23. Mantegna RN, Stanley HE (2000) An Introduction to Econophysics: Correlation

and Complexity in Finance. Cambridge, UK: Cambridge University Press.

24. Baba K, Shibata R, Sibuya M (2004) Partial correlation and conditional
correlation as measures of conditional independence. Australian & New Zealand

Journal of Statistics 46: 657–664.

25. Alter O, Brown P, Botstein D (2000) Singular value decomposition for genome-
wide expression data processing and modeling. PNAS 97: 10101–10106.

26. Kenett DY, Shapira Y, Madi A, Bransburg-Zabary S, Gur-Gershgoren G, et al.

(2010) Dynamics of stock market correlations. AUCO Czech Economic Review 4.

27. Laloux L, Cizeau P, Bouchaud JP, Potters M (1999) Noise dressing of financial

correlation matrices. Physical Review Letters 83: 1467–1470.

28. Bouchaud JP, Potters M Theory of Financial Risk and Derivative Pricing
Cambridge University Press.

29. Onnela JP, Chakraborti A, Kaski K, Kertesz J (2002) Dynamic asset trees and

portfolio analysis. European Physical Journal B 30: 285–288.

30. Onnela JP, Chakraborti A, Kaski K, Kertesz J (2003) Dynamic asset trees and

Black Monday. Physica A 324: 247–252.

31. Mauboussin MJ (2005) Revisiting market efficiency: the stock market as a
Complex Adaptive System. Journal of Applied Corporate Finance 14: 47–55.

32. Lintner J (1965) The Valuation of Risk Assets and the Selection of Risky

Investments in Stock Portfolios and Capital Budgets. Review of Economics and
Statistics 47: 13–37.

33. Sharpe WF (1964) Capital asset prices: A theory of market equilibrium under

conditions of risk. Journal of Finance 19: 425–442.

34. Malevergne Y, Sornette D (2007) Self-Consistent Asset Pricing Models.

Physica A 382: 149–171.

35. Malevergne Y, Santa-Clara P, Sornette D (2009) Professor Zipf Goes to Wall
Street. NBER Working paper 15295.

36. Black F, Michael C. Jensen, Myron Scholes (1972) The Capital Asset Pricing

Model: Some Empirical Tests. In: Jensen M, ed. Studies in the Theory of

Capital Markets. New York: Praeger Publishers.

Index Cohesive Force

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e19378



37. Demyanyk Y, Hemert OV (2009) Understanding the Subprime Mortgage Crisis.

pp 1–33.
38. Sieczk P, Sornette D, Holyst JA (2010) The Lehman Brothers Effect and

Bankruptcy Cascades. Swiss Finance Institute Research Paper 10-06.

39. Taylor J (2009) The financial crisis and the policy responses: An empirical

analysis of what went wrong. NBER Working paper.

Index Cohesive Force

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e19378


