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Abstract

Maintaining the proper expression of the transcriptome during development or in response to a changing environment
requires a delicate balance between transcriptional regulators with activating and repressing functions. The budding yeast
transcriptional co-repressor Tup1-Ssn6 is a model for studying similar repressor complexes in multicellular eukaryotes. Tup1-
Ssn6 does not bind DNA directly, but is directed to individual promoters by one or more DNA-binding proteins, referred to
as Tup1 recruiters. This functional architecture allows the Tup1-Ssn6 to modulate the expression of genes required for the
response to a variety of cellular stresses. To understand the targeting or the Tup1-Ssn6 complex, we determined the
genomic distribution of Tup1 and Ssn6 by ChIP-chip. We found that most loci bound by Tup1-Ssn6 could not be explained
by co-occupancy with a known recruiting cofactor and that deletion of individual known Tup1 recruiters did not
significantly alter the Tup1 binding profile. These observations suggest that new Tup1 recruiting proteins remain to be
discovered and that Tup1 recruitment typically depends on multiple recruiting cofactors. To identify new recruiting
proteins, we computationally screened for factors with binding patterns similar to the observed Tup1-Ssn6 genomic
distribution. Four top candidates, Cin5, Skn7, Phd1, and Yap6, all known to be associated with stress response gene
regulation, were experimentally confirmed to physically interact with Tup1 and/or Ssn6. Incorporating these new
recruitment cofactors with previously characterized cofactors now explains the majority of Tup1 targeting across the
genome, and expands our understanding of the mechanism by which Tup1-Ssn6 is directed to its targets.
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Introduction

Eukaryotic enhancers often consist of adjacent binding sites for

multiple proteins that work together cooperatively to recruit co-

activator proteins [1]. These nucleoprotein complexes, often

referred to as enhanceosomes, consist of enhancer DNA packaged

into chromatin, sequence-specific activators, co-activators, and

general transcription machinery [2]. Despite extensive study of

enhanceosomes, there has been relatively little examination of the

recruitment of co-repressors and repressor complex formation.

One fairly well-characterized example is the conserved Drosophila

co-repressor Groucho [2]. Groucho belongs to the Transducin-like

Enhancer of split (TLE) family of repressors [3] and has been

shown to be recruited synergistically by the Drosophila proteins

Dead ringer, Dorsal, and Capicua to repress transcription [4,5].

In budding yeast, Tup1 shares structural and functional

properties with Groucho, and is considered its homolog [2].

Tetrameric Tup1 forms a complex with Ssn6 and a variety of

DNA-binding cofactors to modulate the transcription of hundreds

of S. cerevisiae genes [6,7]. The Tup1-Ssn6 complex is required for

the repression of genes that are activated in response to alterations

in growth conditions and cellular stresses. The Tup1-Ssn6

complex is targeted to promoters by DNA binding cofactors that

are specific to the class of genes being repressed. For example,

Tup1 is recruited to many glucose-repressed genes by Mig1 [8], to

starch-degrading genes by Nrg1 [9], to osmotic-stress inducible

genes by Sko1 [10], to hypoxia-repressed genes by Rox1 [11], to

DNA-damage inducible genes by Rfx1 [12], to iron utilization

genes by Aft1 [13], and to a peptide uptake gene by Cup9 [14]. In

addition, Tup1 has been shown to physically interact with Sut1

[15], a regulator of sterol uptake and hypoxic gene expression

[16], and participate in Tup1-dependent inhibition of transcrip-

tion factor binding [17]. The Tup1-Ssn6 complex also plays a

critical role in regulating cell-type-specific functions in yeast [18].

Specifically, in MATa haploid and MATa/MATa diploid cells

Tup1 is recruited to and represses a-specific genes via the a2-

Mcm1 heterodimer [19,20,21] and in diploid cells the a1-a2

heterodimer recruits Tup1 to repress haploid-specific genes

[21,22,23].

The proteins that bring Tup1-Ssn6 to DNA vary in both their

DNA-binding and protein-protein interaction domains. Tup1-

Ssn6 recruitment and corresponding complex formation occurs by

relatively weak protein-protein interactions with either Tup1 or

Ssn6 [18]. Historically, recruiting cofactors have been identified by
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two criteria: their capacity to mediate locus-specific, Tup1-

dependent repression and an ability to physically interact with

Tup1 or Ssn6 [8,9,10,11,12,13,14,19,24]. Such locus-specific

studies have characterized only a small subset of the more than

150 genes regulated by Tup1 [6].

To provide a more comprehensive model for genome-wide

Tup1 recruitment, we used ChIP-chip assays to identify the

genome-wide distributions of Tup1 and Ssn6. We then compared

the binding pattern to published ChIP-chip data and found that

the majority of loci bound by Tup1 were not co-occupied by a

known Tup1 recruiter. In addition, individual deletions for seven

known Tup1 recruiters did not significantly alter the Tup1 binding

profile. These observations suggest that novel Tup1-Ssn6 recruit-

ing proteins remain to be discovered and that Tup1 recruitment

usually depends on multiple cofactors. To identify unknown Tup1

cofactors, we utilized an unbiased approach where we compared

the genomic distribution of Tup1-Ssn6 to the distribution of more

than 200 transcription factors. Using this method we identified

several novel candidate cofactors along with the majority of the

known Tup1-Ssn6 cofactors. Subsequently, we experimentally

validated that the candidate cofactors Phd1, Cin5, Yap6, and

Skn7 by showing that they physically interact with Tup1 and/or

Ssn6. The newly identified cofactors are involved in regulating

processes in which Tup1 has been previously implicated, including

pseudohyphal growth (Phd1)[25], salt tolerance (Cin5,

Yap6)[26,27], and oxidative stress (Cin5, Skn7)[28,29]. Account-

ing for these new recruiting proteins, we built a model that

explains recruitment of Tup1 to the majority of its binding sites.

Our approach, findings, and model for Tup1 recruitment both

improve the understanding of Tup1 localization and regulation

and provide a foundation for understanding the localization of

eukaryotic repressor complexes.

Results

Tup1 binds to many sites in the absence of a known
recruiter

To better understand how Tup1-Ssn6 is directed to its targets

on a genome-wide scale, we first determined the genomic binding

pattern of Tup1 and Ssn6 in yeast by ChIP-chip during growth in

rich media (Figure 1). Targets were identified by hybridization to

a PCR-based whole-genome DNA microarray covering all coding

and intergenic regions at approximately 800-bp resolution. Tup1

was bound to 282 total targets (187 intergenic targets) with high

confidence (FDR ,0.001) as determined by 21 independent

biological replicates (Dataset S1). For each peak of Tup1

binding, the highest-scored array element was used for all further

analysis. We also determined the binding pattern of Ssn6 using

two biological replicates. As expected, most Ssn6 targets (73%)

were also bound by Tup1, and the Tup1 binding profile was

highly correlated to Ssn6 occupancy (R2 = 0.48). Also as expected,

the majority of genes downstream of Tup1 binding events were

derepressed in a tup1D strain (Figure S1) and included known

targets such as the hexose transporters (GO term enrichment

p = 7.0561028). The ChIP-chip results provided a high-confi-

dence set of 282 Tup1 binding sites to use in down-stream analysis

of Tup1 targeting.

To identify which cofactors occupied each of the 282 Tup1

target sites, we used published ChIP-chip data for the known Tup1

DNA-binding cofactors Aft1, Rfx1, Mig1, Nrg1, Rox1, Mcm1,

Sko1, Cup9, and Sut1 [30]. The Harbison et al. (2004)

experiments were performed on DNA microarrays that contained

only the intergenic regions of the yeast genome; therefore, DNA-

binding cofactor data was available for only 177 of the 282

identified Tup1 targets. Additionally, two well-characterized Tup1

recruiters (a1-a2 and a2-Mcm1) that regulate cell-type specific

genes were not considered in this analysis because they are non-

functional in the majority of the strains used for our study, and are

non-functional in the published ChIP-chip studies. Surprisingly,

109 of the 177 (62%) Tup1 targets for which cofactor data is

available were not co-occupied by a known Tup1 recruiting

cofactor (binding defined at a p-value ,0.001, Figure 1). Even

when using a lenient cutoff of (P,0.01), no cofactor was bound at

42% of these Tup1 targets.

Tup1 binding is not reduced by the deletion of individual
Tup1 recruiters

To further explore the mechanism of Tup1 recruitment to

specific targets, we examined Tup1 binding in seven strains, each

carrying a deletion of a different known recruiter of the Tup1-Ssn6

complex. Then, for each Tup1 target, we compared the wild-type

ChIP values to the values obtained in each of the seven deletion

strains (Figure 1). On a qualitative level, deletion of each of the

recruiters had little effect on Tup1 binding. To quantify our

results, we split the Tup1 targets into groups. First, all Tup1 targets

that were bound by each of the cofactors were identified [30]

(Figure 2A). Next, all of the DNA sequences near sites of Tup1

binding were screened for the presence of DNA sequence motifs

that corresponded to the specificities of each of the recruiters

[7,31] (Figure 2B). For each of these categorizations a given

target may be in more than one group, for example a Tup1 target

bound by both Sut1 and Mig1. We then compared Tup1 binding

in wild-type cells and the appropriate deletion strain for each

group. The results were clear: there was no significant change in

Tup1 binding at sites that contained the deleted recruiter’s motif,

nor was there any change in Tup1 binding at sites normally co-

bound by the deleted recruiter (Figure 2A and B). Thus, for the

majority of Tup1 targets, deletion of a single known recruiter did

not eliminate or significantly alter Tup1 binding. This suggests

that multiple redundant recruiters direct Tup1 to each of its

targets, or possibly that when a single recruiter was deleted

another operates in its place.

Evidence that Tup1 is recruited by multiple cofactors at
many of it sites

To test the hypothesis that multiple recruiters direct Tup1 to its

targets, we once again divided Tup1 targets into groups, this time

based on the number of different recruiters bound to each target.

We then calculated the average Tup1 binding score for each group

of targets. We observed a positive relationship between the

magnitude of either Tup1 or Ssn6 binding signal and the number

of recruiters bound to the target, which was not seen for mock ChIP

experiments (Figure 2C). To further explore this relationship, we

preformed a linear regression for Tup1 binding by the number of

recruiter proteins bound and discovered a highly significant

regression of R2 = 0.500 (P,1610210) (Figure 2D). To ensure

that this correlation was specific to recruiters of Tup1, we calculated

the regression coefficient between Tup1 occupancy at all intergenic

regions to the total number of proteins bound using all the ChIP

data, and found the relationship to be greatly reduced (R2 = 0.097).

The strong association between the number of recruiting proteins

present and Tup1 binding signal suggests that Tup1 is simulta-

neously recruited by multiple cofactors to its targets.

Identification of new candidate Tup1 recruiters
Despite evidence for multiple recruiters, over 40% of Tup1

genomic targets were not bound by a known recruiter, even when

Four New Tup1-Ssn6 Cofactors
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using a relatively liberal cutoff (P,0.01). Thus, either Tup1 binds

directly to some of its targets without assistance, possibly through

association with histone tails [32], or additional transcription

factors are capable of recruiting the Tup1-Ssn6 complex, or both

may be true. To address this question, we utilized ChIP-chip data

for 204 transcription factors [30,31] and expression data from at

TUP1 deletion mutant [7] to identify potential novel Tup1

recruiters. We performed five predictive tests detailed in Materials

and Methods (Figure 3). Briefly, we (a) Calculated the over-

representation of each transcription factor’s DNA-binding motif

among Tup1 targets. (b) Calculated the percentage of Tup1 targets

that were bound by each transcription factor. (c) Calculated the

percentage of each transcription factor’s targets that are bound by

Tup1. (d) Calculated the correlation between the top quartile of

Tup1 binding and the top quartile of binding for each

transcription factor. (e) Calculated the correlation between the

top quartile of expression changes in a tup1D and the top quartile

of binding for each transcription factor. We then assigned each of

the 204 transcription factors a percentile score for each test, and

calculated the average percentile (f) across all five tests for each

transcription factor.

There are three readily apparent biological explanations for

why a transcription factor might score highly in our prediction

tests. First, Tup1 may modulate the binding of the transcription

factor to some of the transcription factor’s targets. Second, Tup1

may independently co-regulate some of the transcription factor’s

targets. Third, the transcription factor may recruit Tup1 to a

subset of its targets or be a member of the Tup1-Ssn6 complex.

We are interested in this third class.

Multiple lines of evidence suggest that some of the predicted

recruiters do in fact function to direct Tup1 to its target genes.

First, six of the eight (Sut1, Nrg1, Rox1, Sko1, Mig1, and Cup9)

previously characterized Tup1 recruiters for which we have data

rank in the top twenty of the 204 tested transcription factors.

Figure 1. Only a fraction of sites bound by Tup1 in rich media are co-occupied by known cofactors. 282 sites bound by Tup1 during
exponential growth in rich media were identified by ChIP-chip using a TAP-tagged protein and whole-genome tiled microarrays. For each target, the Z-
score for the highest array element within the peak, as identified by ChIPOTle [55] is shown. Mock experiments performed in a wild-type strain lacking a
TAP-tagged protein are also shown. The 282 Tup1 bound sites were sorted by p-value and split into three groups: 68 sites that are co-occupied by a
known Tup1 recruiting protein (top), 109 sites not co-occupied by a known recruiting protein (middle), and 105 sites with no available cofactor binding
data. Tup1 binding sites without cofactor data were located in regions of the genome that were not present on the microarrays used in the cofactor
binding study [30]. Tup1 binding was also measured by ChIP-chip for strains carrying deletions of the known Tup1 recruiting cofactors Aft1, Rfx1, Mig1,
Nrg1, Rox1, Sko1, and Sut1. DNA-binding cofactors are shown on the right, with occupancy as determined by ChIP-chip indicated in red (P,0.001 [30]).
The following number of biological replicates were performed: Tup1, 21; Ssn6, 2; Mock, 4; recruiter deletion strains, 3–4.
doi:10.1371/journal.pone.0019060.g001
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Second, we have observed that Tup1 itself binds to the regulatory

regions upstream of nine of the top 20 genes, including all six of

the known recruiters on the list (Sut1, Nrg1, Rox1, Sko1, Mig1,

and Cup9) (Figure 3 red dots). This suggests that Tup1 may

regulate its own activity by modulating the expression of its

recruiters in a feed-forward network.

Four of the newly predicted Tup1 recruiters physically
interact with Tup1-Ssn6

We further studied four of the proteins that scored highly in our

predictive tests (Cin5, Phd1, Yap6, and Skn7; Figure 3,

underlines) to determine if they recruit Tup1. While Cin5,

Phd1, Yap6, and Skn7 are generally characterized as activators

of transcription rather than repressors, they all regulate genes

within Tup1 characterized pathways. For example, Cin5 has

previously been implicated in Tup1-mediated repression through

network analysis [33], and Tup1 and Yap6 were proposed to

regulate a common set of genes based on analysis of expression in

a tup1 mutant. [34].

If our candidates are true Tup1 cofactors, we expect that they

will physically interact with Tup1-Ssn6. To test this, we performed

a series of in vivo co-immunoprecipitation (co-IP) experiments in

strains harboring Myc-tagged versions of the potential Tup1

recruiters. In the first experiment, we immunoprecipitated with

anti-Ssn6 antibodies and then immunoblotted with anti-Myc to

determine whether Cin5, Phd1, Yap6, and Skn7 were associated

with Ssn6. As a positive control, we confirmed the ability of Ssn6

to immunoprecipitate Tup1-MYC in an Ssn6-dependent manner

(Figure 4A compare anti-MYC IP blot lanes 3 and 4). Skn7 and

Yap6 exhibited a strong interaction with Ssn6, while Phd1

exhibited a weaker interaction (Figure 4A lanes 9, 10, and 11).

Figure 2. Deletion of individual Tup1 recruiters has little effect on Tup1 binding, and Tup1 binding is correlated with the presence
of multiple recruiters. (A and B) The average enrichment (Z-score) in wild-type and recruiter deletion strains is plotted for (A) Tup1 targets bound
(P,0.001) by a given transcription factor [30], or (B) Tup1 targets containing a binding site (P,0.005) for a given transcription factor [31]. To control
for differences in IP efficiency between experiments Tup1 binding values were standardized to wild-type Tup1 binding by scaling Tup1 binding in
each deletion strain so that the average Tup1 occupancy across all bound regions is the same for all experiments. The number of Tup1 targets in each
group is indicated in parentheses and error bars represent standard error. (C) Tup1 targets were binned based on the number of recruiters bound to
the target (P,0.001; [30]). Average enrichment (Z-score) for Tup1, Ssn6, or mock ChIPs for each group was calculated. The number of targets in each
group is indicated in parentheses and error bars represent standard error. (D) Tup1 occupancy is plotted for Tup1 bound regulatory regions as a
function of the number of bound recruiter proteins (Black) and for all regulatory regions, including the Tup1 bound regions, (Red) as a function of the
number transcription factors bound at the regulatory region. The linear regression line and coefficient for both datasets is shown.
doi:10.1371/journal.pone.0019060.g002
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Hap3, a protein that had low scores for all of our predictive tests,

showed no interaction with Ssn6. However, the known Tup1-

cofactors Sut1, Nrg1, and Sko1 and the newly predicted recruiter

Cin5 were also not detected in this co-IP experiment.

To confirm the strong interaction of Skn7 and Yap6 with Tup1-

Ssn6, we repeated our co-IP experiments. For these experiments

we added a HA-tag to Tup1 in all of the strains harboring a MYC-

tagged recruiter protein to confirm that the Tup1-Ssn6 complex

was intact throughout our IP experiments (Figure 4B). This

second set of co-IPs showed that Tup1 and Ssn6 were always

pulled down together, and confirmed that Skn7 and Yap6 interact

with Tup1-Ssn6. With a longer exposure of the Myc Western blot,

interactions are detectable for our three positive controls, Sut1,

Nrg1, and Sko1, in addition to our two other top candidates, Cin5

and Phd1, while Hap3 continues to show no interaction with Ssn6

(Figure S2). The signal produced by the Cin5 and Phd1 is

comparable to that of the known recruiters.

In a third experiment, we immunoprecipitated Tup1-HA

instead of Ssn6 and identified proteins that were immunoprecip-

itated along with Tup1. Again, we confirmed that the Tup1-Ssn6

complex was intact throughout our experiments by showing that

Ssn6 is consistently co-immunoprecipitated with Tup1-HA. Tup1

exhibited a strong interaction with Skn7 and weaker interactions

with Yap6, Cin5, Phd1 and the previously known recruiter Nrg1

(Figure 4C). In this experiment, we failed to identify a co-IP

interaction between Tup1-HA and Sko1. Detection of Sut1 was

not possible in this experiment because the Sut1 band was

obscured by the IgG band.

The interactions of Cin5, Phd1, Yap6, and Skn7 with
Tup1-Ssn6 are not mediated by DNA

The apparent interactions between the predicted recruiters and

Tup1-Ssn6 could result from the proteins occupying the same

regulatory region and being bridged by DNA rather than by direct

protein-protein interaction. To address this issue, we repeated the

co-IP experiments with extract treated with DNAse I for 30

minutes prior to the immunoprecipitation. While gel electropho-

resis and PCR analysis indicate that the DNA was digested to near

completion (Figure S3), treatment with DNAse I did not prevent

the ability of Ssn6 to pull down Yap6, Skn7, Phd1, or Cin5

(Figure 4D). Thus, the interaction is not likely to be mediated by

DNA, but instead is a protein-protein interaction with the Tup1-

Ssn6 complex. Taken together, the co-IP experiments show that

the newly predicted Tup1-Ssn6 recruiters Skn7, Yap6, Phd1, and

Cin5 all physically interact with Tup1.

Tup1-Ssn6 functions as a repressor at sites bound by
Yap6, Skn7, Phd1, and Cin5

To determine if the Tup1-Ssn6 complex is functioning as a

repressor at sites bound by Yap6, Skn7, Phd1, and Cin5, we

calculated change in gene expression at each bound group

(P,0.001) [30] compared to unbound sites (P.0.05) in a tup1D
strain [7]. In a tup1D strain, genes downstream of sites bound by

any of the four proteins were strongly derepressed (Figure 5A),

indicating that Tup1 is functioning as a repressor at these sites and

suggests that Yap6, Skn7, Phd1, and Cin5 are likely co-repressors

with Tup1-Ssn6. This observation is consistent with a previous

analysis that indicated that the targets of Yap6, Skn7, Phd1, and

Sok2 (an untested candidate Tup1 recruiter) are all significantly

derepressed in strains deleted for Tup1 or Ssn6 [33].

Yap6, Cin5, Skn7, and Phd1 improve models of Tup1-
Ssn6 targeting

To further validate the role of these newly predicted Tup1

recruiters in Tup1-Ssn6 targeting, we performed our analyses from

Figure 2C and 2D incorporating these new proteins. Including

Yap6, Cin5, Skn7, and Phd1 as recruiter proteins strengthens the

positive relationship between the number of recruiters bound to a

given locus and the level of Tup1 and Ssn6 enrichment observed

(Figure 5B) (Dataset S2). Additionally, the regression between

the number of binding recruiters and Tup1 occupancy improves

from an R2 of 0.50 to 0.58 when these four proteins are included

(same analysis as Figure 2D). This strongly suggests that the new

discovered recruiters participate with the previously identified

cofactors in recruiting the Tup1-Ssn6 complex.

It is likely that all Tup1-Ssn6 cofactors recruit the complex with

different efficiencies, and it is further likely that the efficiency of

recruitment varies from locus to locus depending on the DNA

sequence and other factors. To more accurately model Tup1-Ssn6

complex recruitment in rich media we generated a regression model

for Tup1 occupancy using the experimentally measured occupancy

of the recruiters at each regulatory region. This model allows

recruiters to have differing recruitment strengths, and also incorpo-

rates how strongly each recruiter associates with a regulatory region.

Regression analysis examines the relationship between one

variable and another set of variables. The relationship is expressed

as an equation that predicts a response variable (Tup1 occupancy)

from a function of regressor variables (Tup1-Ssn6 recruiting

Figure 3. Prediction of novel Tup1 recruiters. Tup1 binding data
was compared to ChIP-chip data from 204 transcription factors [30,31]
and tup1D expression data [7] using five tests (see text and Material and
Methods for details). The percentile rank for each test and average
percentile rank across all five tests is shown for the top 20 candidate
transcription factors. Known Tup1 recruiting proteins are indicated by
red text. Transcription factors previously shown to physically interact
with Tup1 or Ssn6 are indicated with a black dot [57] and the
transcription factors whose own promoters are bound by Tup1 are
indicated by a red dot. Predicted Tup1 recruiters that were studied
further are indicated with underlined text.
doi:10.1371/journal.pone.0019060.g003
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proteins) and parameters. The parameters are adjusted so that a

measure of fit is optimized. There is a single parameter for each

recruiter protein in the model that defines the weight given to a

recruiter protein in the regression model. A value close to zero has

low weight while a large positive or negative parameter value is

weighted highly for its ability to predict Tup1 occupancy.

We first tested each recruiter independently to determine if each

single recruiter was significantly positively correlated to Tup1

occupancy. At this step, we removed from the model Rfx1, which

did not have a significant relationship with Tup1 binding, and

Aft1, which was negatively correlated (See Discussion). Using only

the previously known Tup1-recruiting proteins (Cup9, Mcm1,

Mig1, Nrg1, Rox1, Sko1, and Sut1) we generated a regression

model on half of the genome, and then validated the model on the

remaining half. The model reports that the presence of Cup9,

Rox1, Sut1, Nrg1, and Sko1 all contribute to the association of

Tup1 with its genomic targets. The occupancy of Mig1 and Mcm1

do not contribute significant additional information to determining

the binding pattern of Tup1 (Table 1). Therefore, Mig1 and

Mcm1 can be removed from the model without sacrificing its

predictive power (See Discussion).

We next determined if a new regression model that includes the

known Tup1 recruiters and our top candidates, Yap6, Phd1, Cin5,

and Skn7, was better able to predict Tup1 experimental

occupancy than the model containing the known recruiters alone

(Figure 5C). We found that the addition of each protein into the

model results in significant improvement (Table 1). By incorpo-

rating all of the newly identified recruiters, the prediction of Tup1

occupancy at Tup1 bound sites improved from an R2 of 0.577 to

0.648 (p-value = 2.3610217) (Dataset S3). Overall, this means

that our model can explain 65% of Tup1 binding variance at

Tup1 bound sites and 43% of variance in Tup1 binding for all

yeast intergenic regions (Figure 5D). This is remarkable because

a significant proportion of the binding variance is likely due to

technical noise in the ChIP-chip experiments, which were

performed using low-resolution spotted-DNA microarrays. This

Figure 4. Candidate recruiters physically interact with Tup1-Ssn6. Strains carrying Myc-tagged candidate recruiters (Cin5, Phd1, Yap6, or
Skn7), previously characterized recruiters (Sut1, Nrg1, or Sko1), or a protein that was not predicted to interact with Tup1 (Hap3) were
immunoprecipitated with anti-Ssn6 antibodies (A and B), or with anti-HA antibodies (to immunoprecipitate HA-tagged Tup1) (C). Inputs (left) and
immunoprecipitated material (right) were immunoblotted with anti-Ssn6 antibody, anti-HA antibody (to detect Tup1), or anti-MYC (to detect recruiter
proteins). (D) The interactions between Tup1-Ssn6 and predicted recruiters are not mediated by DNA. Strains carrying a Myc-tagged characterized
recruiter (Nrg1) or predicted recruiters (Cin5, Phd1, Yap6, or Skn7) were immunoprecipitated with anti-Ssn6 antibodies in the presence (+) or absence
(2) of DNAse I. Inputs (left) and immunoprecipitated material (right) were immunoblotted with anti-Ssn6 antibody (top), anti-HA antibody (middle) or
anti-MYC (bottom).
doi:10.1371/journal.pone.0019060.g004
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noise would be present in both the predictor and the response

variables. By comparison, our ChIP-chip of Ssn6, which is thought

to be in tight association with Tup1 at all times on genomic DNA

and theoretically would predict Tup1 binding perfectly, does only

slightly better than our model, explaining 48% of the Tup1-

binding variance across the genome. This suggests that our model

is approaching the maximal possible predictive value achievable

with these datasets. Finally, the addition of Cin5, Phd1, Skn7, and

Yap6 increased the proportion of Tup1 binding sites also occupied

by a recruiting protein from between 38% and 58% (Figure 1) to

between 55% and 73% depending on the cofactor binding p-value

used to define ‘‘occupied’’ (,0.001 or 0.01 respectively).

Discussion

We have demonstrated that Tup1 is bound to 282 loci across

the yeast genome and shown that deletions of individual recruiters

did not significantly change the Tup1 binding pattern. We also

identified a correlation between Tup1 occupancy and the number

of recruiting proteins bound at a given regulatory region. This is

consistent with a study showing that the Tup1 recruiters Rox1 and

Rfx1 together with a third protein Mot3 act synergistically to

promote Tup1 mediated repression [35]. Our results indicate that

this cooperation in directing Tup1 binding is likely more wide

spread phenomena.

Prior to our study, no known Tup1 recruiter was present at 62%

of Tup1-bound sites. We utilized computational approaches to

identify new candidate recruiters. These approaches predicted that

Yap6, Cin5, Phd1, and Skn7 may act as Tup1 recruiters, and we

experimentally verified that these proteins physically interact with

Tup1-Ssn6. Additionally, genes bound by Yap6, Cin5, Phd1, and

Skn7 were shown to be strongly de-repressed upon knockout of

Tup1.

The newly identified Tup1 recruiters are functionally
linked to stress response

Each of the new Tup1-Ssn6 cofactors has been previously

characterized to function in a variety of stress and growth

responses processes that Tup1 is known to regulate [36]. Cin5 and

Yap6 are closely related AP-1 factors that belong to a fungus-

specific family of bZIP proteins [26]. Their binding patterns are

highly correlated, targeting 73% to 86% of the same sites,

depending on the growth conditions [37]. Cin5 and Yap6 are

likely involved in yeast stress response, because overexpression of

Cin5 or Yap6 increases tolerance to sodium, lithium, and cisplatin

[27,38], and overexpression of Cin5 confers resistance to

quinidine, mefloquine, and chloroquine [39]. While these proteins

are often considered transcriptional activators, there is evidence

that many of them also have repressive functions. Yap6 binding

has been shown to occur at activated and repressed genes in

response to exposure to increased salt [37]. Skn7 is required for the

oxidative stress response in yeast [40,41] and appears to function

as a transcriptional activator with Yap1 to activate oxidative stress

response genes [42]. However, Skn7 may also have repressor

activity, since increased binding of Skn7 is associated with

repression during salt response [37]. Phd1 has been identified as

key hub protein for the regulation of pseudohyphal growth [43],

and over expression of Phd1 causes the activation Flo11 and the

induction of pseudohyphal growth [25].

The new recruiters allow us to explain up to 73% of
Tup1’s targeting

Inclusion of new recruiters increases the correlation between the

number of distinct recruiters bound and Tup1 occupancy for all

yeast intergenic regions (Figure 5B). Furthermore, the new

recruiters increase the number of Tup1 targets also bound by a

recruiter protein from 58% to 73%, helping to fill gaps in our

understanding of Tup1-targeting. Importantly, incorporating the

four new recruiters with the previous characterized recruiters into

a regression model for Tup1 binding explains 65% of Tup1

occupancy at Tup1 bound sites, and strengthens the case for

simultaneous recruitment of the Tup1 complex by multiple DNA

binding cofactors. While inclusion of the newly identified Tup1

recruiters does not explain all Tup1 binding, our results do

increase the number of Tup1 binding events explained by the

presence of a recruiter by 15% or more (depending on cutoff used

to define binding events) and explain a significantly greater

proportion of the Tup1 occupancy variance. Additionally, we were

able to experimentally validate 7 of the top 10 computationally

identified candidate cofactors, suggesting that some other highly-

ranked proteins on our list may also function in association with

Tup1-Ssn6. Rap1 and Sok2, which we were not able to test, are

good candidates. At individual sites, Tup1-Ssn6 is recruited

simultaneously by multiple proteins and is likely forming a multi-

Table 1. Regression results for both the initial and final model.

Intercept SUT1 NRG1 ROX1 SKO1 CUP9 MIG1 MCM1 YAP6 CIN5 PHD1 SKN7 R2

Initial Model 0.105 0.656 0.588 0.644 0.263 0.772 0.086 0.006 0.33

p-value ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 ,0.0001 0.0864 0.8553

Final model 0.129 0.454 0.348 0.215 0.198 0.513 0.053 20.029 0.706 0.395 0.190 0.170 0.43

p-value ,0.0001 ,0.0001 ,0.0001 0.0002 ,0.0001 ,0.0001 0.2618 0.344 ,0.0001 ,0.0001 ,0.0001 ,0.0001

doi:10.1371/journal.pone.0019060.t001

Figure 5. New Tup1 recruiters improve the model for Tup1 recruitment. (A) The average downstream gene expression for the targets
(P,0.001) and non-targets (P.0.05) of the four new recruiters in tup1D strain is plotted [7]. The number of sites is listed and error bars represent
standard error. The significance for the difference between the bound (P,0.001) and unbound sites (P.0.05) was determined by t-Test; * P,0.001,
** P,161024, *** P,161025. (B) Tup1 targets were separated based on the number of recruiters bound (P,0.001; [30]), including the four new
candidate recruiters (Cin5, Phd1, Yap6, and Skn7). The average enrichment (Z-score) for Tup1, Ssn6, or Mock experiment for each group is shown. The
number of targets in each group is shown in parenthesis and error bars represent standard error. (C) Regression model including new candidate
recruiters. This model describes how recruiter occupancies, as measured by ChIP-chip, can be used to predict Tup1 occupancy at a genomic region.
(D) The log2 ratio for each Tup1 recruiting protein is shown on the left, with the parameter estimate for the regression model on top. Tup1 binding
predicted by the model is shown with the experimental Tup1 and Ssn6 occupancy. All data is sorted by the experimental Tup1 occupancy.
doi:10.1371/journal.pone.0019060.g005
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meric complex containing Tup1, Ssn6, multiple recruiting

proteins, and chromatin remodeling factors.

Strengths and limitations of the Tup1 recruitment model
Our model can only be as accurate as the datasets used for

predictions and for determining Tup1 occupancy. Any noise or

biases in the datasets will generate noise in our model. In addition,

our model did not incorporate the possibility that Tup1 binds

directly to deacetylated histone tails [44]. It is likely that use of

higher resolution binding data, inclusion of a parameter to allow

Tup1 to bind directly to histone tails, and the discovery of

additional Tup1 recruiting proteins will improve our model when

incorporated. Nonetheless, our regression model including the

new cofactors, describes a significant percentage (43%) of Tup1

binding variance across the entire genome.

To develop our model we initially tested each recruiter to

determine if their binding was significantly positively correlated

with Tup1 occupancy. Rfx1 was not significantly correlated and

Aft1 was negatively correlated with Tup1 occupancy. The

significant negative correlation of Aft1 suggests Aft1 negatively

predicts Tup1 binding in rich media, which is inconsistent with the

function of a Tup1 recruiter. However, Aft1 does not recruit Tup1

during growth in rich media because it is restricted to the

cytoplasm in this growth condition [45]; therefore it is not

surprising that Aft1 is not correlated with Tup1 localization under

the conditions tested in this experiment. On the other hand, Rfx1

recruits Tup1-Ssn6 to DNA damage inducible genes to repress

transcription in the absence of DNA damage signals [35].

Therefore, Rfx1 should be actively recruiting Tup1-Ssn6 in the

conditions tested for these experiments. The lack of a significant

correlation between Rfx1 binding and Tup1 is likely do to noise in

the datasets or the limited number of genomic loci for which Rfx1

recruits Tup1.

Our multi-recruiter model of Tup1 binding was generated by

regression analysis. Regression analysis creates an equation

describing how all the recruiters in combination predict Tup1

occupancy. In this analysis, if a recruiter’s targets are completely

contained within another recruiter’s targets, then its parameter or

weight in the model will be reduced. Our final model showed that

the presence of Yap6, Cup9 Sut1, Cin5, Nrg1, Rox1, Sko1, Phd1,

and Skn7 all contributed to the association of Tup1 with its

genomic targets, while the occupancy of Mig1 and Mcm1 do not

contribute additional information. It is not surprising that Mcm1

binding from a MATa strain of yeast does not significantly help

predict the location of Tup1, because a2-Mcm1 only recruits

Tup1-Ssn6 in MATa yeast [21]. On the other hand, Mig1 should

be functioning to recruit Tup1 in the strains tested in our study,

but was removed from the regression model only after the

inclusion of other cofactors. This could be caused if, for example,

Mig1 binds and recruits Tup1 with another cofactor already in the

model, or the published Mig1 ChIP-chip data is of lower quality

than the other ChIP-chip datasets.

Integrating multiple environmental inputs at gene
promoters

How does the Tup1-Ssn6 repressor receive signals from

multiple signaling pathways, integrate those signals, and regulate

gene expression accordingly? The activities of Tup1 recruiting

proteins are modulated by signaling pathways that are activated by

an overlapping set of environmental conditions and cellular

stresses. These pathways include the hexokinase 2 signaling

pathway, Snf1 signaling pathway, the Hog protein kinase pathway,

and the Mec1 kinase cascade [12,46,47,48]. Tup1 and its

recruiting proteins integrate the signals from these pathways using

a number of mechanisms. For example, the Snf1 signaling

pathway regulates Mig1 localization [49]. In the presence of

glucose, Mig1 recruits Tup1 to its targets to repress their

transcription, while in low glucose Snf1 phosphorylates Mig1,

resulting in Mig1 export from the nucleus and expression of its

target genes. In contrast, the Hog kinase pathway regulates Sko1

by converting it from a repressor to an activator [48]. In normal

growth conditions, Sko1 recruits Tup1 to its targets and represses

their transcription, while osmotic stress causes Hog1 to phosphor-

ylate Sko1, resulting in the recruitment of SAGA and SWI/SNF

and the activation of its targets. Interestingly, full activation of

these genes requires the presence of Tup1 [48,50]. Consistent with

this observation, we have shown previously that Tup1 remains

bound to many targets even when transcriptional repression is

relieved [17].

Years of work from numerous labs studying Tup1 and its

recruiters together with our results suggest that Tup1, Ssn6, and

multiple recruiting proteins form a repressor complex that

prevents the expression of hundreds of genes that are not required

under normal laboratory growth conditions [6,18,51]. The

relationship between Tup1-Ssn6 and its recruiters allows the cell

to respond quickly and specifically to a given stress, without, for

example, derepressing all gene targets of Tup1. It is likely that the

function of the Tup1-Ssn6 complex at an individual site depends

heavily on the context of the promoter and the suite of cofactors

assembled.

Materials and Methods

Yeast strains
The genotypes and sources of the strains used in this study are

listed in Table S1. SHy048 was generated by first mating SHy028

with BY4742, sporulating the resulting diploid and selecting a

MATa colony containing the Tup1-TAP::HIS3 allele. All other

epitope tagged and deletion strains were generated by one-step

gene replacement as previously described [52].

Chromatin Immunoprecipitations
Vegetative samples were grown in YPD (1% yeast extract, 2%

peptone, 2% dextrose) to an OD600 of 0.6–0.8. ChIPs for TAP-

tagged Tup1 were performed as before [17] with minor

modifications. The function of Tup1 when tagged with TAP was

confirmed by examining Tup1 repression of the FLO1 gene (data

not shown). Briefly, 1% formaldehyde-fixed cells were resuspended

in FA-Lysis buffer (50 mM Hepes-KOH, pH 7.5, 300 mM NaCl,

1 mM EDTA, 1.0% Triton-X, 0.1% Sodium deoxycholate, and 1

X protease inhibitors (Calbiochem)) and disrupted using a Mini-

Beadbeater-8. The isolated chromatin was sheared to an average

size of 0.8 kb and incubated overnight at 4uC with IgG sepharose

beads to recover Tup1-TAP associated DNA. The beads were

washed two times each with FA lysis buffer, FA Wash 2 (50 mM

Hepes-KOH, pH 7.5, 500 mM NaCl, 1 mM EDTA, 1.0% Triton-

X, 0.1% Sodium deoxycholate), FA Wash 3 (50 mM Hepes-KOH,

pH 7.5, 250 mM LiCl, 1 mM EDTA, 1.0% Triton-X, 0.1%

Sodium deoxycholate) and TE each supplemented with 1 X

protease inhibitors. ChIP Elution Buffer (50 mM Tris-Cl pH 8.0,

10 mM EDTA, 1% SDS) was added to the washed beads and

Tup1-TAP associated DNA fragments were eluted by incubation

for 1 hour at 65uC. Eluted ChIP samples (and inputs) were

incubated at 65uC overnight to reverse cross-links, excess protein

was degraded using Proteinase K and DNA was isolated using

Zymo columns according to the manufacturer’s instructions (Zymo

Research).
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DNA amplification and labeling
ChIP and input DNA were amplified by ligation-mediated (LM)

PCR as described previously [53]. Briefly, recovered ChIP and

input DNA were blunted using T4 DNA Polymerase (NEB) and

unidirectional linkers were ligated to the ends of the DNA

fragments using T4 DNA Ligase (NEB). The long oligonucleotide

from the unidirectional promoter was then used to amplify the

DNA in two steps of PCR for a total of 33 cycles. In the second

PCR step (20 cycles) amino-allyl dUTP (Sigma) was incorporated

at a ratio of 3:2 with dTTP. Reactive Cy3 or Cy5 (Amersham) was

coupled to the amino-allyl of the resulting DNA fragments in the

presence of sodium bicarbonate.

Microarray hybridizations and image acquisition
ChIP samples were competitively hybridized with input DNA to

low-resolution spotted-DNA yeast whole genome spotted micro-

arrays containing coding and non-coding regions at approximately

800 bp resolution. The arrays were scanned with an Axon 4000

scanner, and data was extracted using GenePix 6.0 software. Only

spots of high quality by visual inspection, with less than 10%

saturated input pixels, with a background corrected sum of

medians for both channels greater than 500 were used for the

analysis.

Array normalization and quality control
The DNA microarrays were normalized using block-by-block

loess with the limma R package as part of Bioconductor [54].

Initially the complete dataset contained 56 arrays generated by 3

researchers in both dye-orientations. All of the arrays were

accessed for quality and bad arrays were removed due to regional

artifacts, inefficient labeling, or low correlation to other arrays in

the experimental group. The final 41 arrays have been uploaded

to the GEO database accession GSE26311, and supplemental files

are available at http://buffalo.edu/&mjbuck/Tup1-recruiters.

html.

Determination of binding sites
The median standardized value was determined across all

biological replicates. The standardized log ratio was used as input

for ChIPOTle [55] with the following parameters: Gaussian

background distribution, step size 0.25 kb and window size 1 kb.

Peaks with FDR cutoff ,0.001, a Z-score .1 above mock control,

and a mock Z-score ,2 were retained for further analysis.

Neighboring peaks within 1 kb were collapsed and the highest

bound array element was represented in the cluster-grams and

used for all further analysis.

Prediction of novel recruiters
Starting with our Tup1 ChIP-chip data we utilized published

ChIP-chip data for 204 transcription factors [30,31] and tup1D
expression data [7] to identify potential novel Tup1 recruiters. We

performed five separate prediction tests: (a) Calculated the over-

representation of each transcription factor’s DNA-binding motif

among Tup1 targets compared to the rest of the genome. Motif over-

representation was determined using the Relative OVER-abundance

of cis-elements (ROVER) algorithm with a p-value cutoff of 0.001

[56] and previously reported position-weight-matrixes (PWM) [31].

(b) Calculated the percentage of Tup1 targets that were bound by

each transcription factor (i.e. sensitivity). Sensitivity was calculated by

dividing the number of binding events for a transcription factor (at a

p-value ,0.001; [30]) that fall within Tup1 targets by the total

number of Tup1 targets. (c) Calculated the percentage of each

transcription factor’s targets that are bound by Tup1 (i.e. specificity).

Specificity was calculated by dividing the number of binding sites for

a transcription factor (at a p-value ,0.001) [30] that fell within Tup1

targets by the total number of targets for the transcription factor (at a

p-value ,0.001) [30]. (d) Calculated the correlation between the top

quartile of Tup1 binding and the top quartile of binding for each

transcription factor. This approach allowed us to examine the

relationship between Tup1 and possible recruiters, without rigidly

selecting bound Tup1 targets, and it determined which possible

recruiters’ binding pattern changes in a similar manner as Tup1

binding pattern. If a protein is in fact a Tup1 recruiter, its occupancy

at any site in the genome should be positively correlated to Tup1

occupancy at that site. Although this approach assumes inaccurately

independence between recruiters, it still identifies the strongest

correlated components. (e) Calculated the correlation between the top

quartile of expression changes in a tup1D and the top quartile of

binding for each transcription factor. The last approach is similar to

the fourth but instead of using in vivo Tup1 binding data we used the

change in expression for downstream genes in a tup1D [7]. Each

transcription factor was assigned a percent rank for each test and (f)

the average percent rank across all five tests was calculated. The

average was calculated based only on those tests for which a

transcription factor could be included. All 204 transcription factors

were sorted based on the average percent rank.

Regression analysis
Regression analysis examines the relationship between one

variable (Tup1 occupancy) and another set of variables (Tup1-

Ssn6 recruiting proteins). The data for each recruiter was the log2

ratios from ChIP-chip experiments [30] and missing data was

simulated by a Gaussian random function. The simulation was

repeated 10 times, and was demonstrated to have a limited effect on

parameter estimates. We first determine which previous character-

ized recruiting proteins (Aft1, Rfx1, Mcm1, Mig1, Nrg1, Rox1,

Sko1, Cup9, and Sut1) independently, and positively, predicted

Tup1 occupancy. Based on this initial analysis Aft1 and Rfx1 were

removed from further consideration. The six remaining variables

were then fit to a regression model using a random half of all yeast

intergenic regions and validated by repeated random sub-sampling

cross-validation. The validated model was then tested on the

remaining half of the yeast intergenic regions to estimate its R2. The

yeast intergenic dataset was then randomly split 4 additional times

and the regression model estimation was repeated. The final

parameter estimates were determined as the average across all five

regression models. The final regression model was determine as

outlined above but included the additional Tup1-Ssn6 recruiting

proteins (Cin5, Phd1, Skn7, and Yap6). Mcm1 and Mig1 were

removed from the final model because they were both non-

significant predictors (p.0.01). All regression analysis was per-

formed using SAS v 9.1 (SAS Cary, NC).

Co-Immunoprecipitations
Appropriate strains were inoculated and grown in YPD to an

OD600 of 0.5–1.0 and for each strain, 25–30 OD600 units were

collected at 4uC (all remain steps performed at 4uC). Pellets were

washed with Co-IP buffer (50 mM Tris-Cl pH 7.4, 250 mM

NaCl, 5 mM EDTA, 0.1% NP40; for DNAse I experiments

EDTA was omitted) plus protease inhibitors (1x protease inhibitor

cocktail, 1.5 mM DTT, 1 mM PMSF, 1 mM Benzamidine),

transferred to ependorf tubes, and lysed with glass beads. The

lysates were removed from the glass beads and cleared by spinning

at 15,000 RPM for five minutes. For the DNAse I experiments,

DNAse I was added to a final concentration of 100 U/ml, samples

were incubated for one hour at 4uC, and EDTA was added to a

final concentration of 10 mM to stop reactions. For inputs, 25 ml
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of cleared lysates was added to 25 ml of 2X sample buffer

(125 mM Tris-Cl pH 6.8, 20% glycerol, 4% SDS, 10% beta-

mercaptoethanol). For IPs, antibody (either 1 ml of anti-Ssn6

antibody or 5 ml of anti-HA antibody) was added to 500 ml of

cleared lysates and incubated for three hours at 4uC. Antibody-

protein complexes were recovered by incubation with Protein G

Sepharose beads in Co-IP Buffer, beads were washed two times

with Co-IP Buffer and once with high-salt Co-IP Buffer (50 mM

Tris pH 7.4, 500 mM NaCl, 5 mM EDTA, 0.1% NP40).

Following the final wash, all buffer was removed from the beads

and 20 ml of 2X sample buffer was added to the beads. For

detection of proteins by Western blot, 5 ml of each input was

loaded for each blot (approximately 0.5% of material used in IP).

For anti-Ssn6 co-IP blots, 10 ml was loaded for anti-Myc blots

(approximately 50% of Immunoprecipitated material), 4 ml was

loaded for anti-HA blots (approximately 20% of Immunoprecip-

itated material) and 2 ml was loaded for anti-Ssn6 blots

(approximately 10% of Immunoprecipitated material). For anti-

HA co-IP blots, 10 ml was loaded for anti-Myc blots (approxi-

mately 50% of Immunoprecipitated material), 4 ml was loaded for

anti-Ssn6 blots (approximately 20% of immunoprecipitated

material) and 2 ml was loaded for anti-HA blots (approximately

10% of immunoprecipitated material).

Western blots
Lysates were electrophoresed on 4–12% NuPAGE Bis-Tris gels

with MOPS running buffer according to manufacturer’s instruction

(Invitrogen). Separated proteins were transferred to a nitrocellulose

membrane according to standard methods. Membranes were

blocked with 5% NFDM (nonfat dry milk) in 1X TBS (20 mM

Tris-Cl pH 7.5, 250 mM NaCl)/0.1% Tween. Following blocking,

the membranes were incubated overnight in either a 1:6000 dilution

(in 1X TBS/0.1% Tween/5% NFDM) of rabbit anti-Ssn6 (Sharon

Dent), a 1:500 dilution (in 1X TBS/0.1% Tween/1% NFDM) of

mouse anti-HA (Santa Cruz) or a 1:2500 dilution (in 1X TBS/0.1%

Tween/1% NFDM) of mouse anti-Myc (Upstate). The membranes

were then washed three times in 1X TBS/0.1% Tween/1% NFDM

and incubated in a 1:15000 dilution (in 1X TBS/0.1% Tween/1%

NFDM) of HRP conjugated donkey anti-rabbit IgG (anti-Ssn6

blots) or HRP conjugated donkey anti-mouse IgG (anti-HA and

anti-Myc blots) (Amersham). Following washing, blots were

developed by enhanced chemiluminescence (ECL) using an

Amersham ECL Plus Detection Kit.

Supporting Information

Figure S1 Genes derepressed in a tup1D strain are
bound by Tup1. (A) Tup1 ChIP-chip data at single promoters

are plotted versus derepression of the downstream genes in a tup1D
strain [7]. (B) All genes were sorted into 10 bins depending on the

degree to which they were derepressed in a tup1D strain [7]. The

most derepressed genes are in the ‘‘90-100’’ bin the average Tup1,

Ssn6, and Mock ChIP signal for unidirectional promoter genes in

each bin is shown. Deciles

(TIF)

Figure S2 Tup1 interacts with the known Tup1 recruit-
ers Sut1, Nrg1, or Sko1. This figure is a longer exposure for

the same blot shown in Figure 4B. Strains carrying Myc-tagged

predicted recruiters (Cin5, Phd1, Yap6, or Skn7), characterized

recruiters (Sut1, Nrg1, or Sko1), or a protein which was not

predicted to interact with Tup1 (Hap3) were immunoprecipitated

with anti-Ssn6 antibodies, anti-HA antibody (to detect Tup1), and

anti-MYC (to detect recruiter proteins).

(TIF)

Figure S3 Characterization of DNAse I-treated Co-IP
experiments. Top, Genomic DNA isolated from the superna-

tant of Co-IP experiments in the presence or absence of DNAse I.

Middle and bottom, To show digestion of the DNA, PCR was

performed using genomic DNA prepared from the TOP panel as a

template. The ability to amplify through small regions (,400 bp)

in the RPS1A gene (middle) and Tup1-HA tagged region (bottom)

were examined.

(TIF)

Table S1 Strains used in this study.

(DOCX)

Dataset S1 Tup1 bound sites with data shown in
Figure 1.

(XLSX)

Dataset S2 Regulatory regions bound by each recruiter
with Tup1 and Ssn6 occupancy.

(XLSX)

Dataset S3 All regulatory regions with regression model
results compared to experimental results (data from
Figure 5D).

(XLSX)
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