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Abstract

Constructing a home to protect offspring while they mature is common in many vertebrate groups, but has not previously
been reported in lizards. Here we provide the first example of a lizard that constructs a long-term home for family members,
and a rare case of lizards behaving cooperatively. The great desert skink, Liopholis kintorei from Central Australia, constructs
an elaborate multi-tunnelled burrow that can be continuously occupied for up to 7 years. Multiple generations participate in
construction and maintenance of burrows. Parental assignments based on DNA analysis show that immature individuals
within the same burrow were mostly full siblings, even when several age cohorts were present. Parents were always
captured at burrows containing their offspring, and females were only detected breeding with the same male both within-
and across seasons. Consequently, the individual investments made to construct or maintain a burrow system benefit their
own offspring, or siblings, over several breeding seasons.
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Introduction

Cooperative behaviour and social aggregations are relatively

common in many animal groups, but rare in lizards, a large and

otherwise behaviourally diverse group [1]. Mate fidelity is another

trait that is uncommon in lizards [2]. Within social groups,

cooperation is widely considered to be facilitated by genetic

relatedness, and as such thought to have evolved in groups of

related individuals [3]. In addition, breeding males are expected to

invest more in their offspring as their certainty of paternity

increases [4]. These predictions may explain the rarity of

cooperative behaviours in lizards and their lack of investment in

long-term home construction for groups of individuals.

Several lizard species belonging to the closely allied Egernia

and Liopholis genera have kin-based sociality, a trait that is

considered pleisomorphic to the group [5]. The only other lizard

demonstrated to live in groups of related individuals is Xantusia

vigilis [6]. Within the Liopholis and Egernia genera, species that

form long-term groups tend to aggregate in pre-existing retreat

sites, mostly rock crevices [2]. Although these species are

characterised by groups that consist of close kin levels of

polygamy vary both within and across species [2,7]. One species,

Liopholis kintorei constructs and maintains an interconnected

network of tunnels within which it aggregates [2]. We have

measured these spanning 13 meters across and with up to 20

entrances. Groups of individuals living within these consist of

adults and immature lizards with overlapping generations.

Liopholis kintorei is viviparous with 1–7 offspring produced

annually [2]. The tunnels provide protection from predators

and the extreme thermal environment in the region [2] and

construction and regular maintenance must require a large

investment of time and energy.

Here we evaluate the longevity of these burrow systems,

whether multiple individuals construct and share tunnels, the

relatedness among group members and their dispersal character-

istics. Because kin-based sociality is an ancestral trait [5],

cooperation among close kin would suggest that in this case

inclusive fitness benefits have led to this behaviour. Furthermore,

this would provide the first example of lizards constructing a long-

term home for family members.

Results

Field observations
Adult and immature individuals use, share and maintain more

than one tunnel in the system. This was directly observed and

was evident from fresh tracks left by different sized individuals at

tunnel openings. Tunnels are mostly excavated and maintained

by adults and immature lizards contribute small ‘pop’ holes to

the network. These are too narrow to be maintained by adult

individuals. On average, only 6% of tunnels within a burrow

system became disused each year. From the first record of the 26

burrow systems, the average (6 s.d.) period of continuous

occupancy in years is 4.0461.43 (Fig. 1), each of these burrow

systems had annual breeding success, so this time period

represents 4 age cohorts of offspring. High philopatry of

immature lizards to their natal burrow system was demonstrated

by the genetic data.

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e19041



Parentage and relatedness analysis
Polygynous males were detected with 40% of the male parents

siring offspring to different females, and these were each located in

different burrow clusters (separated by 18–179 meters). Juveniles

from a single breeding season that were assigned the same mother

show an absence of multiple paternity, and all females for which

more than one age cohort of offspring were identified had bred

with the same male across more than one breeding season. Only a

single female was located in a different burrow system to one of its

offspring (67 meters separate). As a consequence, groups of

immature lizards only contained full siblings in 18 of 24 burrow

systems where more than one immature lizard was sampled, and

12 of these contained siblings of more than one age cohort (Fig. 1).

A low level of dispersing immature lizards is also demonstrated by

the spatial distribution of relatedness. Levels of relatedness among

immature lizards sharing the same tunnel system was high (mean

relatedness 6 s.d.; 0.44660.123) and significantly greater than the

relatedness among lizards located in different tunnel systems, even

those located within 500 meters of each other (Fig. 2). Parents

were always captured in a burrow containing their offspring and

burrows in relatively close proximity (,500 meters) could contain

immature lizards that shared the same father.

Figure 1. Relatedness composition within burrow systems. For each of 26 burrow systems two sets of relatedness data (R) are given, the
average R61 s.d between all lizards captured at that burrow and, in the next column to the right, R61 s.d between the immature lizards. The average
relatedness among all 120 genotyped individuals is shown by the lower horizontal line (R = 0.021), the upper horizontal line shows the average
within-group relatedness (R = 0.371). Along the x-axis, for each group a series of numbers are given separated by commas. From bottom to top these
are; the number of adults, age-cohorts of immature lizards, total group size of sampled individuals and the minimum number of years for which the
burrow has been continuously occupied.
doi:10.1371/journal.pone.0019041.g001

Figure 2. The distribution of genotypic similarity (r) with geographic distance (kilometres) for immature lizards. The solid line tracks
relatedness, dashed lines represent the upper (U) and lower (L) 95% confidence interval around random expectations while bars around R show the
95% confidence interval around this estimate determined by bootstrapping. The distance class of 0 kilometres contains the r estimate among
individuals sharing the same burrow system.
doi:10.1371/journal.pone.0019041.g002
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Discussion

Liopholis kintorei cooperates to construct a burrow system that

houses close kin (Fig. 1). Furthermore, the investment in time and

energy that adult L. kintorei make towards creating this unique and

elaborate tunnel system is realized by the high probability that it

protects their offspring [4,7], providing a unique example of

parental care in lizards. For L. kintorei the relative importance of

direct and indirect benefits of tunnel excavation and maintenance

have not been estimated. Additionally, low levels of dispersal can

increase competition between relatives [8]. Nonetheless, in L.

kintorei there must be a net benefit to these behaviours and because

they evolved in groups of close kin [5], this strongly suggests that

inclusive fitness advantages played a role.

High natal philopatry of juvenile lizards has been associated

with social aggregations of other members of the Liopholis and

Egernia groups, and more recently, the unrelated lizard Xantusia

vigilis [2,6]. Indirect parental care in the form of reduced

intraspecific aggression may offer a selective advantage to low

juvenile dispersal [6,9]. Our data on L. kintorei suggest that

whatever the benefits of low juvenile dispersal are, they have

driven the provisioning of an extensive burrow system in the

absence of other retreat sites. Interestingly, two sympatric

congeners L. inornata and L. striata appear to have lost their

sociality and are largely solitary burrowers [2,5].

For long-term social aggregations home sites need to be

defendable and within foraging distance of a reliable food source

[10]. The long-term stability of burrow systems constructed by L.

kintorei implies that they may defend their home. The principle

food source for L. kintorei is the termite Drepanotermes perniger [11]

which has a naturally patchy distribution and burrow systems

appear to be constructed in close proximity to the termite mounds.

While the presence of a reliable food source in this arid

environment seems necessary to support social aggregations of L.

kintorei, it is unlikely to explain the evolution of these social

groupings.

In mole rats the food-aridity hypothesis proposes that less

rainfall is associated with increasing sociality because food

resources become patchier [12]. Patchy food resources may select

for individuals to aggregate close to food resources and cooperate

because of the costs involved with dispersal and burrowing.

However, the origin of the Liopholis lineage in mesic regions [13]

and apparent loss of sociality for several species of Liopholis that

occupy arid areas suggests that the food-aridity hypothesis may not

explain social aggregations in L. kintorei. Furthermore, there are

several Egernia species in arid regions that are primarily rock-

dwelling (e.g. E. stokesii) and therefore have less choice when it

comes to the location of their housing but still live in large kin-

based social groups [2]. Nonetheless, the distribution and

abundance of the primary food source for L. kintorei may influence

aspects of their sociality. For example, it would be of interest to

explore whether the proximity and longevity of termite colonies

are associated with group sizes of L. kintorei and the length of time

for which they occupy their tunnel systems.

The construction and maintenance of a long-term family home

occurs in many other taxa, in vertebrates there are examples from

most phyla, though it appears most prevalent in birds and

mammals [4]. However, this form of parental care and

cooperation to construct housing where ones offspring and siblings

mature was, until now, unknown among lizards, a group

containing at least 5000 species [14]. We have identified inclusive

fitness benefits of this behaviour in L. kintorei, which, given the few

examples of sociality in lizards, would also seem to explain its

rarity.

Materials and Methods

Field collections
The study was conducted at Uluru – Kata Tjuta National Park,

Northern Territory, Australia. From 1999 to 2009 monitoring was

carried out once a year between September and April when lizards

are most active. Monitoring consisted of searching for new burrow

systems and inspecting all previously located burrow systems. For

each burrow system the number of entrances and spatial

organisation were recorded. Activity levels were noted by

recording track activity and the presence of any fresh adult and

immature lizard scats in their latrine area. Thirty hours of

observations were carried out September to December 1996

within a raised hide located 8 meters from a burrow system

containing an adult pair and 4 immature lizards. During this time

burrowing activity, lizard locations and interactions were record-

ed. Trapping was undertaken during the summer activity periods

at spatially discrete burrow systems distributed across 45 km2.

Tissue biopsies were taken from the tail tips of 31 adult and 89

juveniles, with groups of individuals (mean group size 6 SD;

4.1961.67) sampled from 26 burrow systems. Sexing of adult

individuals was carried out by visual appraisal. All methods

involving L. kintorei were carried out in accordance with a protocol

considered and approved by Parks Australia and the Macquarie

University Ethics Committee under the Animal Research

Authority 2008/025.

Genotyping
Total DNA was extracted from 120 tissue samples using a

salting-out protocol [15] and genotyped by amplifying seven

microsatellite loci, ECU1, 2, 3 [16] and EST 1, 2, 9, 12 [17].

Numbers of alleles at these loci ranged from 8 to 24 and analysis of

data from adults using the software GENEPOP 3.0.1 [18] showed

that none of the loci significantly deviated from Hardy-Weinberg

or linkage equilibrium. The combined non-exclusion probability

for siblings was 0.0004, calculated using CERVUS 3.0.3 [19].

Analysis of Relatedness
The maximum likelihood method of CERVUS 3.0.3 and

COLONY 2.0.0.1 were used to assign parents to offspring [19–

20]. All adult individuals (.165 mm SVL [2]) were included as

candidate parents. Simulations for CERVUS were run with:

10000 cycles, 50% of candidate parents sampled, 100% of loci

typed and a genotyping error rate of 1%. For our COLONY

analysis we carried out a full-likelihood approach and allowed

both males and females to be polygamous, and therefore the

assignment of half siblings. We carried out a long-run with

medium likelihood precision and no sib-ship prior. We used the

same error rates as the analysis with CERVUS. Parental

assignments were accepted if the candidate was not genetically

incompatible at more than one locus and could be the parent with

80% or 95% confidence using CERVUS and that these

assignments were compatible with those calculated using COLO-

NY at p.0.8. COLONY identified groups of half and full siblings,

even if one or both parents were not sampled. These sibling groups

were accepted at p.0.8. In addition, the relatedness between

individuals was estimated from allele frequency data obtained

from all 120 samples. In order to calculate average levels of

relatedness for individuals sampled within the same burrow

complex we used a likelihood approach with KINGROUP 2.0

[21]. Dispersal patterns were inferred by examining the geo-

graphical structuring of relatedness using spatial autocorrelation

analysis. Relatedness estimates calculated in GenAIEx 6.0 [22],

were analysed at several distance classes. For each distance class,
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the significance of any deviation from zero was assessed by 999

permutations [22] and the 95% confidence intervals around

relatedness were obtained via bootstrapping 999 times. Distance

bins were chosen to estimate relatedness within a burrow system

(distance = 0), among individuals sampled in different burrow

systems that were within 0.500 kilometres of each other, and for

individuals located between 0.500 and 0.999 kilometres and

1.000 meters to 14.000 kilometres of each other.
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