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Abstract

HCV infection is often associated with B-cell regulatory control disturbance and delayed appearance of neutralizing
antibodies. CD81 is a cellular receptor for HCV and can bind to HCV envelope protein 2 (E2). CD81 also participates to form a
B cell costimulatory complex. To investigate whether HCV influences B cell activation and immune function through E2 -
CD81 engagement, here, human Burkitt’s lymphoma cell line Raji cells and primary human B lymphocytes (PHB) were
treated with HCV E2 protein and cell culture produced HCV particles (HCVcc), and then the related cell phenotypes were
assayed. The results showed that both E2 and HCVcc triggered phosphorylation of IkBa, enhanced the expression of anti-
apoptosis Bcl-2 family proteins, and protected Raji cells and PHB cells from Fas-mediated death. In addition, both E2 protein
and HCVcc increased the expression of costimulatory molecules CD80, CD86 and CD81 itself, and decreased the expression
of complement receptor CD21. The effects were dependent on E2-CD81 interaction on the cell surface, since CD81-silenced
Raji cells did not respond to both treatments; and an E2 mutant that lose the CD81 binding activity, could not trigger the
responses of both Raji cells and PHB cells. The effects were not associated with HCV replication in cells, for HCV
pseudoparticle (HCVpp) and HCVcc failed to infect Raji cells. Hence, E2-CD81 engagement may contribute to HCV-
associated B cell lymphoproliferative disorders and insufficient neutralizing antibody production.
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Introduction

Hepatitis C virus (HCV)infection is an important cause of

chronic liver diseases, including chronic hepatitis, liver cirrhosis

and hepatocellular carcinoma [1]. HCV is an enveloped virus

classified in the Flaviviridae family. The HCV envelope proteins

consist of two heavily glycosylated proteins, E1 and E2, which act

as the ligands for cellular receptors [2]. Human CD81 is the first

identified necessary receptor for HCV cell entry, which can

directly bind with HCV E2 protein [3,4]. CD81 is a widely

distributed cell-surface tetraspanin that participates in different

molecular complexes on various cell types, including hepatocytes,

B lymphocytes, T lymphocytes and natural killer cells [5]. It has

been proposed that HCV exploits CD81 not only to invade

hepatocytes but also to modulate the host immune responses. It

was reported that cross-linking of CD81 by HCV E2 protein could

activate human T cells and inhibit human NK cells in vitro [6,7].

On B cell, CD81 is known to form B cell costimulatory complex

with CD19, CD21, and interferon-inducible Leu-13 (CD225)

proteins [8]. This complex reduces the threshold for B cell

activation via the B cell receptor by bridging antigen specific

recognition and CD21-mediated complement recognition [9].

HCV infection is often associated with B-cell lymphoprolifer-

ative disorders such as mixed cryoglobulinemia (MC) and non-

Hodgkin lymphoma (NHL) [10,11]. Reports showing the clinical

resolution of MC and lymphomas after successful interferon

antiviral treatment suggest an important pathogenic role for HCV

in B-cell dysfunction [12,13]. It was reported that engagement of

CD81 on human B cells by a combination of HCV E2 protein and

anti-CD81 mAb leads to the proliferation of naı̈ve B cells, and E2-

CD81 interaction induces protein tyrosine phosphorylation and

hypermutation of the immunoglobulin genes in B cell lines

[14,15,16]. These data suggest that E2 protein should play a role

in the development of B-cell pathophysiology, but the underlying

mechanisms remain unclear.

E2 protein is the main target of HCV neutralizing antibodies

[17,18]. The neutralizing antibodies can block HCV infection via

interruption of viral attachment, entry or membrane fusion, and

have been considered to play an important role in prevention and

possibly recovery from HCV infection [19,20]. However,

neutralizing antibodies are typically delayed in appearance in

acute HCV infection, generally do not confer protective immunity

[18,21]. The chimpanzee is the only available animal model that

could be naturally infected by HCV, the majority of infected
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chimpanzees developed a low titer neutralizing antibodies

response late in disease, which failed to associate with viral

clearance [21,22].The reasons for this need to be addressed.

In the present study, with the use of HCV E2 protein and cell

culture produced HCV (HCVcc) to engage CD81 on surface of

Raji cells and primary human B lymphocytes (PHB), we firstly

demonstrate that HCV triggers phosphorylation of IkBa, up-

regulates anti-apoptosis Bcl-2 family proteins, and enhances the

protection of human B cells from Fas-mediated death. Moreover,

E2-CD81 signaling increases CD81 and costimulatory molecules

CD80 and CD86, and decreases complement receptor CD21.

These results are helpful to understand the mechanisms involved

in HCV-associated B cell lymphoproliferative disorders and weak

neutralizing antibody production.

Results

Raji cells express HCV receptors CD81 and SR-BI
CD81, SR-BI, claudin-1(CLDN1) and occludin (OCLN) are

considered to be the necessary surface factors for HCV infection

[23]. CD81 could be detected on surface of naı̈ve Raji cells, and

was down-regulated by 95% after the cells infected with a

lentivirus containing CD81-shRNA (Fig. 1A). Expression of SR-BI

was detectable by FACS and Western blotting analysis (Fig. 1A,

1B). CLDN1 and OCLN could not be detected by Western

blotting (Fig. 1B). Quantitative real-time RT-PCR was performed

to determine mRNAs of CLDN1 and OCLN in Raji cells, and

both were undetectable (data not shown). Huh7.5 cells express all

of the receptors and CHO cells do not express any one of these

molecules (CD81 expression on Huh7.5 and CHO cells assayed by

FACS were not shown).

CD81 mediates HCV E2 protein binding to Raji cells
It has been reported that the amino acid residue W529 in

HCV E2 protein is essential for CD81 binding [24]. A mutant

protein E2-W529/A was prepared, in which the tryptophan

residue was replaced by an alanine (Fig. 2A). CD81 was

detectable on CHO cells after transfected with CD81 expression

plasmid (data not shown). Based on the analysis using this cell

model, the CD81 binding activity of the mutant E2 protein is

Figure 1. Expression of HCV receptors on Raji cells. (A). Expression of CD81 on naı̈ve Raji cells, mock lentivirus infected Raji cells and CD81
shRNA lentivirus infected Raji cells were assayed by FACS. The primary antibodies used were anti-CD81 mAb JS81 and mouse isotype IgG1. (B)
Expression of SR-BI on Raji cells. The primary antibodies used were mouse anti-SR-BI sera and control mouse sera. (C). Lysates of Raji, Huh7.5 and CHO
cells were analyzed for expression of SR-BI, CLDN1 and OCLN by immuno-blotting. The primary antibodies used were mouse anti-human SR-BI, rabbit
anti-human CLDN1 and mouse anti-human OCLN.
doi:10.1371/journal.pone.0018933.g001

Hepatitis C Virus Enhances Human B Cells Survival

PLoS ONE | www.plosone.org 2 April 2011 | Volume 6 | Issue 4 | e18933



less than 5% of that the wild type protein (Fig. 2B). The E2

protein also binds to Raji cells, while the binding activity of

mutant E2 decreased to about 26% of that the wild type protein

(Fig. 2C). Compared with the binding activity of wild type E2 to

naı̈ve Raji cells, that of wild type E2 and the mutant E2 to

CD81-silenced Raji cells decreased to 29% and 26%, respec-

tively (Fig. 2C). These results indicate that CD81 plays a major

role in mediating E2 binding to Raji cells, and other molecules,

such as SR-BI, may also participate in the interaction between

E2 and Raji cells.

HCVpp and HCVcc fail to infect Raji cells
The major site of HCV replication is the liver in host. However,

it was reported that HCV RNA was detectable in peripheral blood

mononuclear cells of infected individuals [25,26,27,28,29,30].

Recently, some studies demonstrated that primary B cells or B cell

lines are not permissive to HCV based on HCVpp and HCVcc

models [31,32]. In our observation, all of the tested pseudo

particles, including that of H77 strain (1a subtype), Con-1 strain

(1b subtype) and J6 strain (2a subtype), can infect Huh7.5 cells, but

not infect Raji cells (Fig. 3A). The expression of E2 protein could

be detected in Huh7.5 cells infected with the J6/JFH1 chimeric

HCVcc, but could not be detected in Raji cells even incubated

Raji cells with a higher dosage of virus (Fig. 3B). The negative-

strand RNA of HCV was also determined by RT-PCR, it could be

detected in the total RNA prepared from HCVcc infected Huh7.5

cells, but could not be detected in that from HCVcc infected Raji

cells (data not shown).

E2-CD81 engagement triggers phosphorylation of IkBa
and up-regulates expression of NF-kB

NF-kB transcription factor is a key regulator of B cell survival

during the differentiation and activation of B cells by antigens or

mitogens [33]. We dissected the possible CD81-mediated

activation of NF-kB by E2 or HCV treatment. Raji cells were

pretreated with proteasome inhibitor MG-132 (Merck), for this

reagent can block the degradation of phosphorylated IkBa and

consequently makes this factor easier to be detected [34]. As

shown in Fig. 4A, phosphorylated IkBa could be detected at

15 min after E2 stimulation. Expression of NF-kB increased after

treatment with E2 or HCVcc (Fig. 4B). Neither E2 treated CD81-

silenced Raji cells, nor mutant E2-W529/A treated Raji cells

produced these reactions, and the expression of NF-kB in CD81

silenced Raji cells treated with HCVcc was not increased

(Fig. 4B).

E2-CD81 engagement protects Raji and PHB cells from
Fas-mediated death

To observe whether E2 binding is able to enhance Raji cells’

proliferation, we detected the proliferation of Raji cells after E2

stimulation. Under present conditions, E2 protein did not show

obvious effect on the proliferation of Raji cells (Fig. 5A). ForPHB

cells, similar results were observed (data not shown). Given the

fact that E2-CD81 engagement can activate phosphorylation of

IkBa and up-regulat expression of NF-kB, we next examined

whether E2 can protect B cells from Fas-mediated death. We

observed that treatment of Raji cells or PHB cells with anti-Fas

CH11 resulted in significant apoptosis in a dose-dependent

manner, and the wild type E2 protein, not the mutant E2-W529/

Figure 2. The role of CD81 in mediating HCV E2 binding to Raji
cells. (A). 293T cells were transfected with HCV E2 expression plasmid,
E2-W529/A expression plasmid, or mock plasmid, respectively. The cells
were lysed at 72 h post-transfection and expression of E2 protein was
analyzed using immuno-blotting. (B). The binding of cell extract
containing HCV E2 protein with naı̈ve or CD81 expression plasmid
transfected CHO cells was measured using a FACS-based assay. E2
binding was expressed as the percentages of mean fluorescence
intensity (MFI) relative to that of wild type E2 to CHO-CD81. Results are
the means + standard deviations of three independent experiments. (C).
The binding of cell extract containing HCV E2 protein with naı̈ve or
CD81-silenced Raji cells was measured using a FACS-based assay. E2
binding was expressed as the percentages of mean fluorescence

intensity (MFI) relative to that of wild type E2 to Raji cells. Results are
the means + standard deviations of three independent experiments.
doi:10.1371/journal.pone.0018933.g002
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A, strongly augmented the protection against apoptosis and

enhanced cell viability (Fig. 5B and 5C). Under stimulation with

the mAb at a concentration of 400 ng/ml, E2 protein also

inhibited anti-Fas induced cell death in CD81-silenced Raji cells

significantly (Fig. 5B). This may be partly owing to the residual

CD81 expression on the cell surface.

E2-CD81 engagement regulates protein expression of
Bcl-2 family

The proteins of Bcl-2 family play essential roles in the control of

activation induced B cells apoptosis, and the transcription factor

NF-kB regulates the expression of several anti-apoptotic gene

products of this family [35]. It is possible that E2 induced B cells

resistant phenotype to anti-Fas may correlate with the expression

of these proteins. When assayed at 72 h after treatment, as showed

in Fig. 6A, E2 elevated the expression of the anti-apoptotic

proteins Bcl-2 and Bcl- xL in Raji cells, and did not affect the

expression of Bax. This effect is exclusive to E2-CD81 binding, for

the expression of these proteins were unchanged in both mutant

E2-W529/A treated Raji cells and E2 treated CD81-silenced Raji

cells. Expression of Bcl-2 and Bcl-xL was also up-regulated in

HCVcc treated Raji cells, but not in HCVcc treated CD81

silenced Raji cells (Fig. 6A). A similar profile but higher expression

levels of both Bcl-2 and Bcl-xL in Raji cells were observed at 24 h

after treatment with E2 or HCVcc (data not shown). For PHB

cells, the expression of Bcl-2 and Bcl- xL were also up-regulated by

treatment with E2 protein and HCVcc, but not by the mutant E2

protein (Fig. 6B).

E2-CD81 engagement modulates B lymphocyte
activation markers

Chronic HCV infection is often associated with the activation of

B lymphocytes, and some studies indicated that E2-CD81

interaction may be responsible for this activation [14]. We found

that the expressions of costimulatory molecules CD80 and CD86

on Raji cells and PHB cells were up-regulated, the expression of

complement C3 receptor CD21 was down-regulated, and the

expression of CD81 itself was elevated after treatment with E2 or

HCVcc (Fig. 7).

Discussion

In the present study, we demonstrated that HCV can modulate

the activation, survival and immunological phenotype of Raji cells

via E2-CD81 engagement, which may be related with B

lymphocyte disorders and weak neutralizing antibody response

in HCV patients.

It has been proposed that HCV infects B cells, which may lead

to clonal B cell expansions. CD81, SR-BI, CLDN1 and OCLN

have been proved to be necessary for HCV infection [23].

However, B cells in peripheral blood lack necessary HCV entry

receptors and do not support HCV replication [32]. Our findings

showed that the expressions of CD81 and SR-BI were detectable

on Raji cells, but CLDN1 and OCLN were undetectable. Three

strains of HCVpp with high infectivity to Huh7.5 cells failed to

infect Raji cells, and there was no evidence showing HCVcc could

infect Raji cells. These data suggest that HCV viral particles rarely

infect B cells, at least under experimental conditions in vitro,

although they may be able to bind with B cells via envelope

proteins-cellular receptors interaction.

For the costimulatory role of CD81 on B cells, E2-CD81

binding is suggested as a contributory factor in the pathophys-

iological process leading HCV infection to B-cell clonal

expansion [14]. But we did not observe obvious enhancement

of E2 protein on proliferation of Raji cells and PHB cells under

the present conditions. We think it is possible that the amount of

E2 immobilized onto the culture plates is not sufficient to

enhance the cell proliferation or more time is required to observe

the effect of E2 protein on cell proliferation. Complement-

binding of CD21/CD19/CD81 acts a role in enhancing

protection of human B cells from Fas-mediated apoptosis

[36,37]. We found that treatment of Raji cells or PHB cells with

CH11 anti-Fas mAb led to significant cell death, and E2 protein

efficiently diminished cell death. The mutant E2-W529/A, which

fails to bind with CD81, did not protect cells from death.

Treatment of CD81-silenced Raji cells with E2 protein also

showed no protective effect.

B cells are susceptible to mitochondria- and receptor-initiated

death at various stages of peripheral differentiation and during

immune responses, which plays an important role in maintaining

homeostatic control of B lymphocytes [38,39]. The transcription

factor NF-kB enhances cell viability by activating genes that

counteract both mitochondria- and receptor-initiated death

pathways [33]. Bcl-2 family proteins that consist of anti-

apoptotic and pro-apoptotic members are important regulators

of apoptosis, which may be either death antagonists (e.g. Bcl-2

and Bcl-xL) or death agonists (e.g. Bax, Bad and Bak), the

balance between these two types of Bcl-2 family members has

been reported to partly control cell fate [40]. In the present

study, E2-CD81 engagement triggered phosphorylation of IkBa
and increased expression of NF-kB and NF-kB target genes Bcl-

2 and Bcl-xL. A higher over-expression rate of Bcl-2 was

reported in HCV patients with cryoglobulinemia (MC) com-

Figure 3. HCVpp and HCVcc infection of Huh7.5 and Raji cells.
(A). HCV pp of 1a (H77 strain), 1b (Con-1 strain) and 2a (J6 strain)
genotypes were used to infect Huh7.5 cells and Raji cells. At 72 h
postinfection, the cells were lysed and then luciferase activity was
determined using the Bright Glow Luciferase Assay System (Promega)
and expressed as relative light units (RLU). Values are the means +
standard deviations of three independent experiments. (B). Lysates of
Huh7.5 cells and Raji cells infected with HCVcc were detected for E2
protein expression by immune-blotting. 1, Huh7.5 cells; 2, HCVcc
infected Huh7.5 cells; 3, Raji cells; 4, HCVcc infected Raji cells.
doi:10.1371/journal.pone.0018933.g003
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pared those without MC, with a further increase in patients with

non-Hodgkin lymphoma (NHL) [41,42]. Moreover, antiviral

treatment led to a decrease in Bcl-2 expression, which may

further support the relationship between HCV infection and

induction of Bcl-2 over expression [43]. A recent report

indicated that mature activated B cells in patients with chronic

HCV infection are intrinsically resistant to apoptosis, and

expression of Bcl-2 in these cells were commonly elevated

[44,45]. Our results indicated that E2-CD81 engagement

activates transcription factor NF-kB, which then increases the

expression of Bcl-2 proteins and in turn enhances the survival of

B cells and protects B cells from apoptosis. This possibility is

supported by the observation that improvement of mixed

cryoglobulinemia and non-Hodgkin lymphoma in chronic

HCV patients after interferon therapy, however, no HCV

proteins or HCV genome was able to be detected in villous

splenic lymphoma cells in these patients prior to treatment [13].

It is reported that peripheral B cells from the majority of

hepatitis C patients expressed elevated levels of B lymphocyte

activation markers and a great number of non-specific activation

of T cells infiltrated in liver, and the latter is considered an

important cause of hepatocyte damage [14,46]. In the present

study, both E2 protein and HCVcc conferred Raji cells and PHB

cells more activated phenotype by increasing the expressions of

CD80, CD86, which are consistent with the observation that

E2 promoted Raji cells to secret TNF-a [16]. Since activated B

cells gain enhanced ability to stimulate T cells, we think E2

binding to CD81 on B cells should be involved in non-specific

activation of T cells.

CD21-mediated complement recognition acts as an important

role for B cells’ response to specific antigens [9]. We found that E2

protein and HCVcc significantly decreased CD21 expression on

Raji cells and PHB cells. This phenomenon is also consistent with

the activation and maturation phenotype of B cells, which display

decreased expression of CD21 [47]. If E2 in deed lowers CD21

expression in vivo, which would make B cells lose the ability of

capturing opsonized antigen-complement C3d complex, and

consequently decrease B cells’ response to antigen-BCR engage-

ment. Thus, it is possible that E2-CD81 engagement inhibits

antibody response to E2 protein. It is interesting that CD81 itself

was elevated by E2 or HCVcc treatment, which may act as a

positive feedback between E2 engagement and B cells activation,

so as to facilitate the establishment of HCV chronic infection and

the progress of B-cell disorders. In fact, the expression of CD81 is

increased on circulating B cells from HCV infected individuals,

and decreased significantly in patients responded to IFN therapy

[48,49].

Although few existing characterized viral clones that can

replicate in vitro have consistently failed to infect human B cells,

some groups have detected HCV RNA in other lymphoid cells,

including B- and T-lymphocytes, monocytes, and dendritic cells

[25,26,27,28,29,30]. A B-cell line (SB) established from an HCV-

infected non-Hodgkin’s B-cell lymphoma was reported to

produces HCV particles that can further infect B- and T-

lymphocytes in vitro [50,51]. These data hint lymphotropism of

HCV in natural infection may be possible. The data here strongly

suggest that HCV may interfere with B cells independent on HCV

replication in cells.

Together, the present study indicates that E2-CD81 engage-

ment plays a role in activating B cells, protecting B cells from

activation-induced cell death, and regulating immunological

function of B cells. Therefore, the E2-CD81 engagement should

be involved in the HCV associated B-cell disorders and insufficient

neutralizing antibody response. These findings provide valuable

insights into the development of therapeutic strategies against

HCV infection and the related B-cell disturbance.

Figure 4. E2-CD81 engagement activates phosphorylation of IkBa and increases expression of NF-kB. (A). Proteasome inhibitor MG-132
treated naı̈ve or CD81-silenced Raji cells were added to wild type E2 or E2-W529/A coated plates, at the indicated time points (minutes), the cells
were lysed and the lysates were subject to Western blot analysis with anti-phospho-IkBa mAb and anti-total IkBa mAb. (B). Raji cells were cultured in
HCV E2 protein coated plates or incubated with HCVcc, three days later, the cells were lysed, and then NF-kB in the lysates were analyzed using
immuno-blotting, the ratios were obtained of the densitometric intensity of NF-kB band relative to the loading control GAPDH band. 1, Naı̈ve Raji
cells; 2, E2 treated Raji cells; 3, E2 treated CD81-silenced Raji cells; 4, E2-W529/A treated Raji cells; 5, HCVcc treated Raji cells; 6, HCVcc treated CD81-
silenced Raji cells.
doi:10.1371/journal.pone.0018933.g004
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Materials and Methods

Cells
The B-cell line Raji, and the Chinese hamster ovary (CHO) cells

(purchased from the Cell Bank of Shanghai Institutes for Biological

Sciences, Chinese Academy of Sciences, Shanghai, China) were

propagated in RPMI 1640 and DMEM media supplemented with

10% fetal bovine serum (Invitrogen), respectively. Huh7.5 cells,

high permissive to HCV (provided by Dr.C.M. Rice, Rockefeller

University, NY, USA), were propagated in DMEM supplemented

with 10% heat-inactivated fetal bovine serum (Invitrogen) and 1%

nonessential amino acids (Invitrogen).

CD81 RNA interference
Human CD81 siRNA expression plasmid pGCsi-U6-CD81

siRNA5 was constructed in this laboratory [52], and used as a

template for amplification of the siRNA expression cassette by

PCR. The siRNA expression cassette was then inserted into

lentivirus vector pLenti6 (Invitrogen). Lentivirus containing CD81

shRNA (short hairpin RNA) were generated using Power

Lentiviral Support Kit (Invitrogen) according to the directions.

Raji cells were infected overnight with the packaged lentivirus two

times at an interval of three days, and then the expression of CD81

was assayed by a fluorescence-activated cell sorting (FACS) using a

FACSCalibur instrument (Becton Dickinson).

HCV E2plasmid constructs and protein expression
DNA sequence encoding carboxyl terminal truncated E2 protein

(aa 364–661 in HCV polyprotein) of strain H77, genotype 1a

(GenBank accession no. AF009606) was synthesized by overlap

extension PCR using optimized codons of highly expressed

mammalian genes, and the resulting DNA fragment was sequenced

and inserted into pCI-neo plasmid (Promega). A mutant E2-W529/

A, in which the 529th aa tryptophan was replaced by alanine, was

prepared using Site-directed Gene Mutagenesis Kit (Stratagene),

and then inserted into pCI-neo vector. The expression plasmids

were transfected into 293T cells by using Lipofecatamine 2000

(Invitrogen), respectively. At 72 h after transfection, the cells were

removed from the tissue culture dishes by phosphate-buffered saline

(PBS)-EDTA treatment, resuspended in PBS supplemented with

proteinase inhibitor cocktail (Roche), and lysed by ultrasonication.

The lysates were centrifuged and the supernatants were removed

and concentrated 10-fold by using Centricon ultrafiltration tube

(Millipore).The expression of E2 and E2-W529/A was assessed with

goat anti E2 polyclonal antibodies (Biodesign International) using

Western blotting. HCV E2 protein in the lysates was normalized by

using ELISA described previously [53,54]. The E2 mAb H53

(provided by provided by Dr. J. Dubussion, Institut Pasteur, Lille,

France) was used as a detective antibody. This antibody is not a

neutralizing antibody, and does not interfere with the interaction

between E2 and CD81 [53,54].

HCV E2 binding with CHO and Raji cells
The human CD81 expression plasmid was constructed in this

laboratory, this plasmid and mock vector were separately

Figure 5. E2 blocks Raji cells apoptosis induced by anti-Fas
antibody. (A). Raji cells or CD81-silenced Raji cells were placed in 96-
well plates coated with or without HCV E2 protein, cell viability was
measured by MTS assay at various time courses. Data represent the
means 6 standard deviations of triplicate determinations. The
treatments of the cells were: Raji cells cultured in 96 wells without
coating with HCV E2 protein (open triangles), CD81 silenced Raji cells
cultured in 96 wells without coating with HCV E2 protein (filled
triangles), E2-treated Raji cells (open squares), E2-W529/A-treated Raji
cells (filled squares), E2-treated CD81 silenced Raji cells (open
diamonds), E2-W529/A-treated CD81 silenced Raji cells (filled dia-
monds). (B). Raji cells or CD81-silenced Raji cells were cultured in 96-well
plates coated with or without HCV E2 protein for 24 h, and then
incubated with CH11 at various concentrations for 5 h. Apoptotic cells
were measured by Hoechst 33342 staining. Data points represent the
means 6 standard deviations of triplicate determinations. The
treatments of the cells were described above. Student’s t test was

used to determine the statistical significance. Double asterisks, p,0.001
relative to other cell-treatment combinations. Asterisk, p,0.05 relative
to the CD81 silenced Raji cells without treatment with E2 protein. (C).
PHB cells were cultured in HCV E2 protein pre-coated 96-well plates for
24 h, and then incubated with CH11 at concentrations of 100 or
400 ng/ml. Apoptotic cells were measured after 5 h. Double asterisks,
p.0.05. Asterisk, p,0.001.
doi:10.1371/journal.pone.0018933.g005
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transfected into CHO cells by using Lipofecatamine 2000

(Invitrogen). At 48 h after transfection, the expression of CD81

on CHO cells was assayed by FACS. The binding of HCV E2

protein with the transfectant CHO cells and Raji cells were

measured using FACS-based assay [53,55]. The cells were washed

twice in PBS supplemented with 2% fetal calf serum and 0.05%

NaN3 (washing buffer). Then, 56105 cells were incubated with

crude cell extract containing E2 proteins or control cell extract for

1 h at room temperature in washing buffer and were washed twice

with PBS. The cells were incubated for 1 h at 4uC with diluted

polyclonal goat anti-E2. After incubation with FITC conjugated

rabbit anti-goat IgG, E2 binding was quantified by flow cytometry

(mean fluorescence intensity, MFI).

HCV pseudoparticles (HCVpp) production and infection
HCVpp were generated as described previously [31]. Briefly,

293T cells were cotransfected with expression vector encoding the

HCV envelope glycoproteins, gag/pol (pLP1), rev (pLP2), and

transfer vector encoding the luciferase. HCV envelope expression

plasmids encoding E1 and E2 glycoproteins of genotype 1a strain

H77 (provided by Dr. F.L.Cosset, INSERM U758, Lyon, France),

genotype 1b strain con-1 (provided by Dr. C. M.Rice, Rockefeller

Figure 6. Effect of E2-CD81 engagement on expression of Bcl-2 family proteins. Raji cells (A) and PHB cells (B) were treated with HCV E2
protein or HCVcc as described above, three days later, cell lysates were prepared and Bcl-2, Bcl-xL and Bax were determined by Western blot analysis,
the ratios were obtained of the densitometric intensity of anti-apoptotic or pro-apoptotic protein band relative to the loading control GAPDH. A: 1,
Naı̈ve Raji cells; 2, E2 treated Raji cells; 3, E2 treated CD81-silenced Raji cells; 4, E2-W529/A treated Raji cells; 5, HCVcc treated Raji cells; 6, HCVcc
treated CD81-silenced Raji cells. B: 1, untreated PHB cells; 2, E2 treated PHB cells; 3, E2-W529/A treated PHB cells; 5, HCVcc treated PHB cells.
doi:10.1371/journal.pone.0018933.g006

Hepatitis C Virus Enhances Human B Cells Survival

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e18933



University, NY, USA), genotype 2a strain J6 (provided by Dr. C.

M. Rice, Rockefeller University, NY, USA) were used. The culture

supernatants containing HCVpp were harvested at 48 h after

transfection, and filtered through 0.45-mm-pore-size membrane

for infection use.

Target cells, Huh7.5, or Raji cells were seeded into 96-well

plates at a density of 16104 cells/well and incubated overnight at

37uC. HCVpp supernatants were added 50 ml to each well, and

incubated for 5 h. The supernatants were removed and the cells

were incubated in regular medium for 72 h at 37uC. Cells were

washed once with PBS and lysed with 50 ml of cell lysis buffer

(Promega) per well. Luciferase activities were quantified using a

Bright Glow Luciferase Assay System (Promega).

Cell culture produced HCV (HCVcc) generation and
infection

The plasmid pFLJ6/JFH1, containing the full-length chimeric

HCV genomic cDNA of J6 and JFH-1 isolate and kindly provided

by Dr. C. M.Rice (Rockefeller University, NY), was used to

generate HCVcc as described previously [4]. Briefly, the RNA was

transcribed from full-length genomes using the in vitro MEGAscript

kit (Promega) and delivered into Huh-7.5 cells by electroporation.

Viral stocks were obtained by harvesting cell culture supernatants

at days 8–12 after transfection. The virus was concentrated by

polyethylene glycol (PEG) precipitation and the viruspellet was

resuspend in complete PRMI1640 medium. Infection was

quantified by enumerating HCV E2 positive cells and was defined

as the number of focus-forming units (FFUs).

Huh7.5 cells and Raji cells were seeded 56105 per well in 2 mL

of media in 24-well plates, respectively. Meanwhile, HCVcc was

added to Huh7.5 cells at a multiplicity of infection of 0.5 (2.56105

FFU), and to Raji cells at a multiplicity of infection of 2 (16106

FFU). The cell cultures were incubated at 37uC in an incubator at

5% CO2 atmosphere. Three days later, the cells were collected for

FACS and Western blot assay.

Assay of negative stand RNA of HCV using PCR
The total RNA was isolated from Huh7.5 and Raji cells using

Rneasy mini kit (Qiagen) three days after HCVcc infection, and

then negative HCV RNA strand was detected using RT-PCR.

The procedure and specific primers are detailed as described

previously [56].

Isolation of human B lymphocytes
PBMCs from four healthy donors were isolated using standard

ficoll density gradient centrifugation. Informed consent was

obtained from the donors studied. The final pellet was resus-

pended in RPMI 1640 medium supplemented with 10% foetal calf

serum. Enriched B cells were isolated by positive selection using

magnetically labeled antibodies specific for human CD19

(Miltenyi Biotec, Bergisch Gladbach, Germany) according to the

manufacturer’s instructions. Briefly, 5 6 107 PBMCs were

incubated with 100 ml of CD19 Microbeads for 15 min at 4uC.

These cells were passed through a positive-selection column. The

purified B lymphocytes were stained with FITC-anti-CD19 mAb

and then were sorted by flow cytometry with .97% purity.

E2 coating and cell stimulation
HCV E2 protein was coated as described previously [7,57,58].

Briefly, the E2 mAb H53 was diluted to 10 mg/ml in carbonate

buffer (15 mM Na2CO3, 35 mm NaHCO3, pH 9.6) and added to

each well of 96 or 24-well plates. The plates were incubated

overnight at 4uC, and then washed three times with phosphate-

buffered saline (PBS) and saturated for 30 min at 37uC with

complete RPMI1640 medium. The normalized cell extracts of

293T cells transfected with HCV E2 expression plasmids were

added to the wells, and plates were incubated for 60 min at 37uC.

After further washing with PBS buffer, Raji cells or PHB cells in

complete medium were added to the coated plates, followed by

incubation for various time periods as indicated in the experi-

ments.

Cell viability and apoptosis assay
Raji cells or PHB cells (26103 cells, 200 mL) were cultured in

96-well plates coated with or without HCV E2 protein, and

incubated at 37uC in an incubator at 5% CO2 atmosphere. The

MTS/PES solution (Promega) was used for cell viability assays

according to the directions. 20 mL premixed solution of 3-(4,5-

dimethylthazol-2-yl)-5-3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-

2H-tetrazolium (MTS) and phenazine methosulfate (PMS) was

added per well at hours 24, 48, 72, 96 and 120, and the cell cultures

were continued for additional 4 h at 37uC for color development.

Then the absorbance of the cell cultures at 490 nm was measured

using a 96-well plate reader (Bioteck).

The anti-Fas mAb CH11 was used to induce cell apoptosis and

the cell apoptosis was assayed using Hoechst 33342 staining as

Figure 7. Effect of E2-CD81 engagement on expression of
CD80, CD86, CD21 and CD81 on Raji and PHB cells. Raji cells (A)
and PHB cells (B) were treated with HCV E2 protein or HCVcc, and the
expressions of CD80, CD86, CD21 and CD81 were measured using a
FACS-based assay. The mean fluorescence intensity (MFI) relative to
untreated cells was calculated. Results are the means + standard
deviations of three independent experiments. Asterisk, p,0.001.
doi:10.1371/journal.pone.0018933.g007
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described previously [36,59]. Briefly, cells (26104 cells, 200 mL)

were incubated in E2 coated plates for 24 h, pulsed with anti-Fas

mAb CH11 at diverse concentrations for 5 h, and then fixed with

4% paraformaldehyde/PBS, followed by staining with 300 mM

Hoechst 33342 (Calbiochem). The number of normal and

condensed nuclei was counted under fluorescent microscope.

Apoptotic cells (%) were calculated as (condensed nuclei/total

nuclei) 6100. The cell viability was assayed using MTS/PES and

expressed as a percentage of absorbance in cells with indicated

treatments to that with control treatment.

Western blotting
Cell lysates were separated by sodium dodecylsulfate (SDS)-

12.5% polyacrylamide gels electrophoresis (PAGE). Proteins were

then electrophoretically transferred onto nitrocellulose membranes

for immuno-blotting analysis. The primary antibodies used were:

mouse anti-SR-BI (BD Pharmingen), rabbit anti-human CLDN1

(Cell Signaling), mouse anti-human OCLN (Invitrogen), goat anti-

HCV E2 (Biodesign International), anti-phospho-IkBa mAb (Cell

Signaling), anti-total IkBa mAb (Cell Signaling), rabbit anti-NFkB

p65 (Cell Signaling), rabbit anti-Bcl-2 (Cell Signaling), rabbit anti-

Bcl-xL (Cell Signaling), rabbit anti-Bax (Cell Signaling) and rabbit

anti-GAPDH (Cell Signaling). The secondary antibodies were:

peroxidase-conjugated anti-mouse IgG, anti-goat IgG and anti-

rabbit IgG. Immunoreactivity was visualized with enhanced

chemiluminescence (GE Healthcare).

To detect phosphorylated IkBa, Raji cells were pretreated with

proteasome inhibitor MG-132 (Merck) at a concentration of

20 mM for 30 min at 37uC and then added to HCV E2 coated

plates. After incubation of 0, 5, 15, or 30 min at 37uC, the cells

were washed and lysed for Western blot analysis.

Flow cytometry
Cells were washed with PBS containing 1% bovine serum

albumin, resuspended in the same buffer, and then incubated with

the following mAbs: anti-CD81 clone JS81 (BD Pharmingen), anti-

CD80 (BD Pharmingen), anti-CD86 (BD Pharmingen), anti-CD21

(BD Pharmingen), and anti-SR-BI mouse sera (prepared by DNA

immunization of Balb/C mouse with human SR-BI expression

plasmid) for 30 min on ice, respectively. After washes, the cells

were incubated with FITC-conjugated secondary antibodies for

30 min on ice, then washed and assessed using a FACSCalibur

(Becton Dickinson).
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