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Abstract

Study of genetic networks has moved from qualitative description of interactions between regulators and regulated genes
to the analysis of the interaction dynamics. This paper focuses on the analysis of dynamics of one particular network – the
yeast cyclins network. Using a dedicated mathematical model of gene expression and a procedure for computation of the
parameters of the model from experimental data, a complete numerical model of the dynamics of the cyclins genetic
network was attained. The model allowed for performing virtual experiments on the network and observing their influence
on the expression dynamics of the genes downstream in the regulatory cascade. Results show that when the network
structure is more complicated, and the regulatory interactions are indirect, results of gene deletion are highly unpredictable.
As a consequence of quantitative behavior of the genes and their connections within the network, causal relationship
between a regulator and target gene may not be discovered by gene deletion. Without including the dynamics of the
system into the network, its functional properties cannot be studied and interpreted correctly.
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Introduction

‘‘The identification of network motifs has been widely

considered as a significant step toward uncovering the design

principles of biomolecular regulatory networks. To date, time-

invariant networks have been considered. However, such

approaches cannot be used to reveal time-specific biological traits

due to the dynamic nature of biological systems and, hence, may

not be applicable to development, where temporal regulation of

gene expression is an indispensable characteristic’’. This sentence

is adopted from the paper of Kim et al. [1] and characterizes

recent focus in the field of genetic networks – network dynamics

and its consequence for their biological function [2]. This topic is

also a subject of this paper.

Kim et al. in his paper developed a concept of temporally

varying networks. Each time-specific network has its own network

motifs and the network motifs change over time (Figure 1).

Temporal change of the network structure means that a static

network, i.e., the network derived from binding experiments,

representing logical relationships between genes (the nodes of the

network), is utilized differently at different times during some time-

evolving process. If we imagine the dynamic nature of gene

expression, where expression of particular genes changes over

time, then the different temporal patterns of the networks shown in

Figure 1 represent temporal gene expression levels in the form of a

network diagram. In principle, Figure 1 can be redrawn to a movie

with the snapshots shown in Figure 2. In Figure 2, the shading of a

gene node and its connection reflects the influence of the regulator

on the temporal expression level of the regulated gene. The

concept of varying networks is thus a projection of gene expression

dynamics in the form of a directed graph of gene interactions. By

examining the temporary gene expression profiles, it is obvious

that at a particular moment, the expression of a particular gene

can be so low that the connection to this node (gene) is practically

functionless. Evolution from one state of the potential network to

another over time is graphically depicted in Figure 2. It is obvious

from these analyses that the networks derived from static DNA

binding experiments are only potential and that their temporal

realization depends on the state of gene expression at a given time

point [1,3].

Genetic networks can, in principle, be described by a directed

graph. Such modeling invokes a Boolean relationships among the

nodes of a network; that is, if gene A is connected with gene B by a

logical relationship, then if A is ON, B is also ON (if the

relationship is positive) or OFF (if the relationship is negative). For

these networks, it is quite easy to calculate terminal states as

attractors or basins of attraction, and from this point of view, they

have been extensively studied [4,5,6,7,8,9]. In the real world, the

situation is more complicated because gene expression is, in

principle, a set of binding equilibria and biochemical reactions;

thus, the expression level of a regulated gene depends on the

expression level of the regulator. This notion led to the

introduction of logical and threshold functions to the Boolean

networks [10,11], which made Boolean networks more realistic,
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but it was more difficult to determine the parameter values of a

given function. In addition to the Boolean approaches, transcrip-

tional networks have been modeled using a variety of other

methods, such as Bayesian networks [12], Petri nets [13] or,

recently, Gaussian processes [14,15]. Genetic network models are

summarized in several reviews [16,17,18,19].

Genetic networks represent causal relationships among regula-

tors (transcription factors) and regulated genes, which can also be

regulators. Such interaction then form complex networks with

feedback and feed forward loops whose topology have been quite

extensively studied in recent years [20,21,22,23]. To what extent

the dynamics of gene expression can influence the network

properties is the subject of this paper.

Results

Genetic network model
If we want to formalize transcription control processes so that

they can be treated mathematically, then we can start with

fundamental molecular interactions that lead to gene transcrip-

tion. In principal, the probability of occurrence of a gene

transcription event is given by the probability of binding of a

given transcription factor molecule to the promoter region of a

gene. Other molecules can be considered as readily available in

sufficient amount, and therefore, referring to the principles of

chemical reaction kinetics, the determining factor in the process

of transcription is the number of molecules of a particular

Figure 1. Time varying network motifs.
doi:10.1371/journal.pone.0018827.g001

Figure 2. Transition of network structures given by Figure 1. Darkness of the gene node and its connection reflects the influence of the
regulator to the regulated gene’s temporal expression level.
doi:10.1371/journal.pone.0018827.g002
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transcription factor that is present. The probability of binding of

the transcription regulator (or regulators) to a given promoter

(promoters) is determined by its affinity for the promoter, which is

analogous to a binding constant and is often referred to as a

promoter strength, and the number of molecules of the regulator.

With a low number of regulators molecules, i.e., a low local

concentration, the probability of transcription event occurrence is

very low and, under a certain threshold, does not occur at all.

Transcription starts when the local concentration of the regulator

is sufficient, and the rate of transcription grows proportionally to

the regulator concentration until a certain level. At this level, the

promoter is saturated, and the transcription rate is at its

maximum; a further increase in the amount of the regulator does

not increase the rate of transcription. The relationship between

regulator (regulators) and gene transcript concentrations has

therefore a sigmoidal character (sigmoid in biological reactions

was thoroughly studied in the work of Veitia [24]). Level of

influence, i.e., the affinity for binding of the regulator to DNA, can

be expressed as a weight, specific for a given promoter and a

regulator (regulators). This simple analysis leads to a formulation

of a model where the rate of expression of a given gene transcript

is proportional to the regulator concentration and its weight,

transferred by a sigmoidal function, and is reduced by degrada-

tion. Under this assumption, using an analogy with recurrent

neural networks, a simple model of gene expression was derived

[25] and extended further in the works of Vu and To et al.

[3,26,27,28].

dzi(t)

dt
~

k1

1z exp {
P

wi,jyjzbi

� �{kdzi(t) ð1Þ

for n regulated genes zi, i = 1..n and m transcription factors yj,

j = 1..m, where kdz(t) is a first order degradation function. z

represents gene expression levels of regulated gene measured over

time t. y represents expression levels of regulators measured in the

same time interval. The influence of each transcription factor is

weighted by a constant wi,j, and bi represents the reaction delay

parameter. The question remains of how to determine the

constants k1, kd, wi,j, and bi from the experimental data. As shown

above, the gene expression process and the incidental gene

network topology are temporal processes; therefore, the param-

eters of Eq. 1 can be derived from temporal gene expression

measurements. These time series can be measured using high

throughput quantitative technologies such as DNA microarrays or

qRT-PCR. The parameters can be computed by fitting the

measured gene expression profile of the regulated gene zi(t) to the

computed expression profiles ẑzi (t,y,w,b,k), minimizing an

objective function

Gi~
Xk

j~1

ẑzi,j{zi,j

�� �� ð2Þ

For target gene i = 1..n, where z represents the expression profile

measured in j = 1..k time points, and ẑ is an expression profile

computed by solving equation 1. Without additional information,

it would be necessary to compute parameters for all possible

combinatorial interactions among all regulators and all regulated

genes. This computation is very impractical and, moreover, can

lead to a number of false positive results. Fortunately, a number of

static measurements exist; defining the potential network by

determining which of the regulators can bind to the given

promoter and, thus, regulate the given gene. Most of such

networks were derived from ChIP-on-chip measurements. There-

fore, all interactions not given by these measurements can be

excluded from the parameter fitting step. Computing the

parameters of individual interactions allows us to formulate

‘‘dynamic’’ models of gene expression networks that not only

define interactions among the genes of the network but allow the

computation of gene expression levels from the expression levels of

other genes in the network – it is possible to study dynamic

properties of a network by simulating different experimental

conditions. It is possible to make virtual experiments.

Description of the system
The yeast cell cycle is controlled by many genes, and a

fundamental microarray experimental study of this topic on a

genome-wide level has been performed by Spellman et al. [29].

It has been documented [30,31] that the transition between

stages of the cell cycle is associated with oscillations in the

activity of cell division control protein 28 (CDC28)-cyclin

complexes: cyclin synthesis is necessary for phase entry, and

CDK-cyclin inhibition/degradation is necessary for phase exit.

The G1 and S cyclins CLN1, CLN2, CLB5, and B-type cyclin

involved in DNA replication CLB6 accumulate and associate

with CDC28 in late G1, the B-type cyclins involved in cell cycle

progression CLB1–CLB4 accumulate and associate with

CDC28 in G2 and M. These CDK-cyclin complexes can be

inhibited by specific cyclin-CDK inhibitors such as SIC1 and

FAR1, or can be targeted for degradation by, for example, the

anaphase promoting complex [32].

Simon et al. [32], using genome-wide location data and

previously reported findings, identified a transcriptional regulatory

network for cyclins. The reasons for the choice of the cyclins

network were that the network was identified using genome-wide

location analysis; the network was relatively small, comprising only

22 genes, and closed; i.e. most of the interactions occurred within

the network. The influence of unknown factors from outside the

network is thus minimized. There was also a previous experiment

with microarrays available that measured expression by sampling

relatively densely throughout the yeast cell cycle; this experiment

was performed in triplicate allowing for a basic determination of

the confidence limits of the measurement [33].

In this paper, we used the yeast cyclins genetic network as a

representative case of a gene regulatory network. Together with

the microarray kinetic data and ChIP-on-chip measurements, we

were able to create a numerical model of this network and analyze

its dynamic properties using virtual gene deletion.

Network reconstruction
The cyclins network analyzed here was reconstructed from the

experimental data as described in the Methods. Constraints for the

creation of the networks used in the analysis were as follows: 1.

interaction between regulators and promoter of the regulator gene

had to be confirmed experimentally by ChIP-on-chip experiments,

here, we used data published by Simon et al. [32]; 2. the gene

expression profile reconstructed using the model had to fall within

the 5% confidence interval of the experimentally measured gene

expression profiles (experimental gene expression profiles together

with the confidence intervals are shown in the Figure S1); and 3.

although the inherent experimental and biological variation does

not allow for the creation of a single ‘‘best’’ network [3], for the

purpose of this paper, we had to chose a single network.

Therefore, when constructing the network, we considered only

those connections that were previously documented in literature.

The resulting network is shown in Figure 3. Panel A shows the

wiring diagram; panel B shows the same diagram redrawn to

Virtual Mutagenesis of Cyclins Genetic Network
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demonstrate the causal connection between the genes of the

network. As panel B shows, there exists a first level of genes

(FKH1, FKH2, MCM1, SWI6 and CLN3) that are not controlled

within the network, and the bottom-most layer (CLB4, APC1,

CLB1, CLB2, ACE2, CLN2, CLN1, CLB6, GIN4 and SWE1)

represents the terminal nodes of the network, which do not control

any other genes in the network. The reconstruction using the

model (Eq. 1) allowed us to compute the parameters that best fit

the experimental time series for each of the connections.

Therefore, the network was fully characterized by the parameters,

and by knowing the expression profiles of the first layer, it is

possible to directly compute expression profiles of all of the

remaining genes.

Virtual deletion of genes of the first layer (FKH1, FKH2,
MCM1, SWI6 and CLN3)

Virtual gene deletion, which was used to analyze the network

dynamics, can be performed by substituting the particular

expression profile of a gene in the first layer with a vector of

zeros. Impact of the virtual mutation on other genes was

determined by computation of their expression profiles using the

parameters computed previously. The process of gene deletion was

performed one by one for genes of the first layer of Figure 3B.

Results are shown in Figure 4 in a matrix of graphs where rows i

represent genes of the last layer and columns j the genes of the first

layer. Result of the mutation of the gene j for a target gene i is in

the cell ij of the matrix (APC1 was excluded because its control is

trivial; it is controlled by only one regulator, FKH1). From

Figure 4, it is evident that some gene deletions have a direct

impact on the genes of the lowest level of the causal network, for

example, FKH2 deletion on the levels of CLB1, CLB2, ACE2 and

CLB6 with which FKH2 is directly connected. Importantly, there

are connections that are indirect, involving intermediate levels of

the genes MBP1, NDD1, SWI4, and SWI5. The control including

indirect connections is more complicated. For instance, control of

CLB4 is quite complex, and it is, therefore, advisable to consider

its control more closely.

CLB4 is controlled by FKH1 directly and indirectly by MCM1

and FKH2 via SWI5; by SWI6 via NDD1 and SWI5; and by

CLN3 via MBP1, NDD1, and SWI5 (see Figure 5). Deletion of

FKH1 is quite straightforward because it removes its positive

control and results in the repression of the CLB4 expression profile

(see Figure 4). Deletion of FKH2 removes periodicity but preserves

the mean expression level; the positive control of SWI5 by FKH2

is removed resulting in total repression of SWI5 - the repression

force of SWI5, which peaks at approximately 50 h, on CLB4 is

removed. The result is the loss of periodicity of CLB4. MCM1

mutation activates SWI5, which then represses CLB4. SWI6

mutation flattens the NDD1 profile. Flat NDD1 profile conse-

quently increases the activity of SWI5, which partially represses

CLB4. CLN3 mutation causes MBP1 to be expressed at its basal

level, removing the periodicity of NDD1, which results in the loss

of periodicity of CLB4. This example is only one illustration of the

influence of weighted regulator concentration on the expression

level of a target gene. In this case, none of the virtual mutations led

to the complete repression of the target gene. If we consider

Boolean relationships, then deletion of FKH1 would cause

repression of CLB4. For deletion of FKH2, SWI5 would be

repressed and CLB4 over-expressed. For MCM1, SWI6, and

CLN3, we cannot make a prediction because all of them result in a

change of SWI5 control, which cannot be estimated from Boolean

rules unless we know a Boolean function for multiple regulators.

Even more striking is the effect of CLN3, which indirectly

controls all genes of the bottom layer. However, its deletion has an

effect only on CLB4; in all other cases, its deletion is compensated

within the pathway (see Figure 4).

If we look more closely on the values of parameter w for the

connection between MBP1 and other lower-in-cascade genes, it

Figure 3. Yeast cyclins network topology reconstructed from binding experiments, gene interactions modeling (Eq. 1) and
confirmed by literature search. A. Cyclic diagram. B. causal relationship diagram.
doi:10.1371/journal.pone.0018827.g003
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Figure 4. Expression profiles of the genes of the last layer of Figure 3B (rows) resulting from the virtual deletion of the genes of the
first layer of Figure 3B - FKH1, FKH2, MCM1, SWI6 and CLN3 (columns). Thin lines represent measured expression profiles, thick lines
represent computed profiles after virtual deletion of genes in the columns.
doi:10.1371/journal.pone.0018827.g004
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can be seen that it is very low in comparison with the weights of

other regulators controlling the given gene ([SWI6; MBP1]RSWE1

[3.5, 20.14]; [SWI6; SWI4; MBP1]RSWI4 [0.14, 1.37, 20.19];

[MBP1; SWI6]RNDD1 [0.92, 3.4]; [SWI6;SWI4;MBP1]RCLN2

[2.80,1.03,0.01], for comparison, w of connections is noted in the

square brackets, wMBP1 is given in bold), its deletion therefore does

not influence expression profiles of the genes in the lower most level.

Although the ChIP-on-chip data indicate possible binding of CLN3

to the promoter of MBP1, the w computed for this connection is also

very low. Deletion (as well as overexpression, data not shown) of

CLN3 therefore does not influence other genes. Literature search

indeed indicated posttranslation control instead of the transcrip-

tional control [34]. MBP1 was reported as regulated by CLN3

(indirectly by means of WHI5). As the presented model does not

include posttranscriptional events, such connection cannot be

discovered and the low value of wCLN3-MBP1 is quite justified. In

contrast, the low value of wMBP1-other genes has low influence upon

deletion, but overexpression of MBP1 (data not shown) has

pronounced and divergent effect on the genes lower in cascade.

Therefore this connection is, in comparison with CLN3-MBP1

interaction, meaningful.

Another similar example is the influence of deletion of SWI6 on

the expression of CLN2 and CLB6. Both genes are controlled

through SWI4, and SWI4 is the dominant regulator of the genes.

For SWI4, the most important control effect is its self-induction;

therefore, deletion of SWI6 has almost no effect on its expression,

resulting in the loss of the deletion effect of SWI6 on the expression

levels of CLN2 and CLB6. For CLN1, which is also controlled by

SWI4 and SWI6, the effect of SWI4 is low, and deletion of SWI6

causes the complete repression of CLN1 by strong FKH1. The

same effect is observed for GIN4, where the repressor is MCM1

instead of FKH1.

Virtual deletion of genes of the second layer (SWI5,
NDD1, SWI4 and MBP1)

Influence of the deletion of the genes of intermediate level of the

causal network (Figure 3B, SWI5, NDD1, SWI4 and MBP1) to the

kinetic profiles of the genes of the last layer is shown in Figure 6.

Deletion of SWI5 influences only CLB4. By deletion of SWI5, its

repressive influence on CLB4 is removed, resulting in increase of

the expression level of CLB4. Deletion of NDD1, which represses

CLB1, CLB2 and ACE2 has a straightforward effect on their

expression. NDD1 deletion increases their expression levels.

NDD1 indirectly controls CLB4 by means of SWI5 for which it

acts as repressor. Deletion of NDD1 increases levels of SWI5

which consequently represses more CLB4 resulting in overall

decrease of its expression level. SWI4 acts as an activator for the

genes lover in regulatory cascade (CLN2, CLN1, CLB6 and

GIN4). Deletion of SWI4 influences expression of CLB6 and

GIN4. By SWI4 deletion, its positive regulatory effect is removed

and the expression levels of CLB6 and GIN4 decrease. The

influence of SWI4 on CLN1 and CLN2 expression is lower and its

deletion is therefore compensated by other regulators controlling

these two genes. Consistently with the observations made for

CLN3, the deletion of MBP1 has minimal effect on the genes

downstream the cascade (CLN2, CLN1, CLB6, GIN4 and SWE1)

as wMBP1-other genes is lower in comparison with the w of regulators

controlling the affected genes (see above).

A conclusion from these observations is that the effect of

regulator concentration and weight determine the expression level

of its target genes at the bottom of the regulatory cascade in a

highly unpredictable manner, which does not follow simple logic.

In certain cases, the deletion of a gene on top of the cascade can

have a striking effect (as in the case of the effect of deletion of

FKH2 on CLB4), whereas in other cases, this effect completely

vanishes in the regulatory cascade, as in the case of genes

controlled indirectly by CLN3. An important consequence of the

quantitative network behavior is that existing causal relationships

between regulators and regulated genes in a cascade may not be

discovered by gene deletion. Even direct connections, as in the

case of SWI6-CLN2, may not be discovered if the influence of the

regulator is not sufficiently pronounced. This statement has a

profound consequence on the interpretation of mutagenesis

experiments. In principle, we can state that the causal relationship

between a regulator and target gene exists if we see the effect of

Figure 5. Regulatory pathway of CLB4.
doi:10.1371/journal.pone.0018827.g005
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Figure 6. Expression profiles of the genes of the last layer of Figure 3B (rows) resulting from the virtual deletion of the genes of the
intermediate layer of Figure 3B - SWI5, NDD1, SWI4 and MBP1 (columns). Thin lines represent measured expression profiles, thick lines
represent computed profiles after virtual deletion of genes in the columns.
doi:10.1371/journal.pone.0018827.g006
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gene deletion; however, we cannot say the opposite: that if the

effect is not observed, then the connection does not exist. A

relationship may exist but may not be observable. Building

conclusions about network topology by drawing links between

genes whose causal relationship was discovered by mutation

experiments can lead to incomplete and sometimes even incorrect

connections. Without including the dynamics of the system into

the network, its functional properties cannot be studied and

interpreted correctly. Logical interpretation of observations can be

completely wrong when the regulation is complicated and includes

a cascade of reactions. Therefore, to discover regulatory

relationships in genetic networks, one cannot rely solely upon

static data but must also consider the dynamics of the network.

Discussion

Using a mathematical description of regulation of gene

expression (Equation 1) and a procedure for computation of its

parameters from experimental data, it was possible to construct

a complete numerical model of the genetic network of yeast

cyclins active during cell cycle. The model was able to fully

describe the kinetics of gene expression of any gene of the

reconstructed network coherently with the measured gene

expression profiles. The model allowed the simulation of a

situation when genes in the topmost level of the regulatory

cascade were deleted, which simulated experimental gene

deletion. Influence of such deletion on the change in the

expression profiles of other genes of the network was analyzed.

The virtual gene deletion showed that in more complicated

cascades of regulation, with many genes in between the deleted

gene and the target gene, the result of gene deletion is quite

unpredictable and, in several cases, the absence of the deleted

gene can be compensated within the cascade. This compensa-

tion means that even if there is a causal relationship between the

deleted gene and the target gene, it may not be discovered by

the mutation experiment.

Conclusions drawn from the dynamic model of the cyclins

genetic network can be criticized because they are not experi-

mentally verified. Although this model has been verified by

comparison with previously measured experimental data, this

point cannot be ignored. If the network model is wrong in

particular connections, then parameters that were computed to fit

experimentally measured expression profiles would be wrong as

well; thus, the results of virtual gene deletion could also be wrong

or, at least, altered. A crucial point of this paper is that the

response to mutation of genes in the topmost layer has highly

unpredictable impact on the genes lower in the causal cascade and

that the effect of mutation can disappear in the cascade of

reactions. This statement remains unchanged even if the model is,

in certain cases, wrong. An error would influence interpretation of

a particular network of cyclins, what is indeed, with currently

available data possible, but would not change the basic conclusion

that the network dynamic is essential in the interpretation of its

biological function.

Another point of discussion is the linearity of the relationship

between mRNA and final protein concentration. Recent studies

show [35] that, as measured by microarrays or qPCR, almost 50%

of genes exhibit a linear relationship whereas others are either

posttranslationally modified to alter their activity or their

relationship is nonlinear for other reasons. For this reasons we

excluded from our analysis genes that are known to be controlled

postranscriptionally (e.g., according to Bahler et al. [34] CLB2 is

controlled transcriptionally by MCM1/FKH2/NDD1 and post-

translationally by CLN1 and SIC1; thus, this connection was

excluded).

Any model is only an approximation of the actual biological

process and has a value if it can capture its features on a given level

of abstraction. We are convinced and provide evidence here that

the conclusions drawn in the Results are relevant to the level of

abstraction used here. As support for the presented model of the

yeast cyclins network, we must emphasize that only connections

which are physically possible (i.e., were measured by ChIP-on-

chips) and were confirmed by the literature were considered in the

final network. The resulting network is thus smaller than the one

suggested by Simon et al. [32]. In our previous work [26,27,28]

and in the work of others [36] it was shown that the assumptions

on which the model is based are relevant to the conclusions which

are drawn from the simulation presented here. Therefore the

conclusions about functioning of dynamic genetic networks can be,

with a high level of confidence, considered as valid.

It can be concluded that for the correct interpretation of the

biological function of genetic networks dynamic properties cannot

be ignored, and that a static network represents only a potential

which is utilized differently over time and during different

physiological processes.

Materials and Methods

Inference of the parameters of the gene expression
model

Reconstruction of the topology of the cyclins genetic network

was performed using gene expression data published by Pramila

et al. [33]. The triplicate experiments in the time series were

averaged and used to compute parameters of Eq. 1. Relative

mRNA expression levels ẑ (Eq. 2) can be computed by integrating

Eq. 1, provided that the temporal expression profile of the

regulator (regulators) and the parameters w,b,k1,kd are known. If

there is not a feedback loop between the regulator and the target

gene, then the first term of Eq. 1 remains constant, and Eq. 1 can

be integrated (see Text S1). Where this condition was not satisfied,

Eq. 1 was solved numerically using a modified Runge-Kutta

algorithm as coded in the Matlab ode45 function. Parameters

w,b,k1,kd were computed iteratively with a simulated annealing

scheme [37] by minimizing the value of the objective function G

(Eq. 2) and using gene expression profiles of the cyclins measured

by Pramila et al.. Simulated annealing allowed the discovery of a

global minimum in a parameter space given by the parameters of

Eq. 1 and the objective function G (Eq. 2). Parameter optimization

was performed 100 times for each connection for different

randomly set initial values of the parameters. The parameters

giving the smallest value of function G were selected for further

analysis. Parameters of Eq. 1 were computed for all connections

predicted by the ChIP-on-chip experiments. Interactions for which

the modeled profiles fell within the 5% confidence interval of the

measured gene expression profiles were selected. These interac-

tions were compared with literature, and only those confirmed by

previous experiments were selected. The resulting network is

shown in Figure 3. Computed parameters allowed for a full

reconstruction of the cyclins network at any point within the

confidence interval given by the measurement error (for

the measured and reconstructed gene expression profiles see

Figure S1).

Virtual gene deletion was performed for all genes of the first

level (see Figure 3B) individually by substituting the gene

expression profile with a vector of zeros. Expression profiles of

the remaining genes in the causal cascade of figure 3B were

computed using the optimized parameters. Computed profiles of

Virtual Mutagenesis of Cyclins Genetic Network
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the genes of the lowest level of the cascade are shown in Figure 4

for each individual virtual deletion.

Supporting Information

Figure S1 Measured expression profiles of the cyclins network.

(EPS)

Text S1 Integration of the model given by Eq. 1.

(DOC)
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