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Abstract

Background: Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the
fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes,
which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG).
Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38
MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair.
Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on
native collagen and 3DG-collagen.

Methodology/Principal Findings: Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic
wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the
activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and
ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on
p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and
collagen expression through ERK1/2 and AKT downregulation via p38 MAPK.

Conclusions/Significance: Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays a
significantly opposite role during times of cellular growth and cellular stress, which may account for the differing rates of
wound closure seen in diabetic populations.
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Introduction

The wound healing process is a complex series of events that is

characterized by several phases including inflammation, prolifer-

ation, and remodeling [1,2]. One of the most important events in

wound repair is the migration and proliferation of dermal

fibroblasts resulting in wound closure. Infiltration of fibroblasts

allows for the remodeling of the extracellular matrix (ECM) and

retraction of the wound edges [1,2]. Chronic cutaneous wounds

which fail to heal within an expected time period are characterized

by impaired fibroblast proliferation and migration within the

wound area [1,3,4]. Impaired wound healing is a well-documented

phenomenon in diabetes. Studies have shown that the hypergly-

cemic state in diabetes is accompanied by impaired wound repair

as seen with decreased cellular migration and proliferation and

decreased collagen production and matrix formation

[1,3,4,5,6,7,8]. One possible reason for the defective wound

healing capacity observed in diabetes could be the presence of the

advanced glycation end product precursor 3-deoxyglucosone

(3DG). We previously demonstrated that 3DG-modified collagen

reduced fibroblast migration [9], proliferation, and ECM

production [10] while increasing apoptosis through the activation

of p38 mitogen activated protein kinase (MAPK) [11].

Many cytokines and growth factors transduce their signals via

activation of various kinase pathways. Among these are the growth

activated protein kinases including extracellular signal-regulated

protein kinase (ERK), the protein kinase B (PKB/AKT), and the

stress-activated protein kinase p38 MAPK. Both ERK and AKT

play an important role in signaling during cell proliferation, while

p38 MAPK has been classically associated with apoptosis and

cellular stress [12,13,14,15,16,17,18]. Recent studies have begun

to show an important role for p38 MAPK in cellular migration

and proliferation [14,19,20,21,22,23,24]. In dermal fibroblasts,

phosphorylation of p38 MAPK was found along the wound edge

and correlated with cell migration into the wound [20]. Chemical

inhibition of p38 MAPK resulted in decreased migration and

increased apoptosis of wounded dermal fibroblasts suggesting p38

MAPK plays a positive role in regulating wound healing [20,25].

Furthermore, pharmacological inhibition of p38 MAPK with

SB202190 resulted in cell death under normal growing conditions
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and this death was attributed to the specific inhibition of the p38b
isoform of p38 MAPK, while the p38a isoform was found to

contribute to this cell death [26]. Despite the recent studies

suggesting a growth stimulating role for p38 MAPK, a majority of

the studies performed on p38 MAPK have attributed this kinase to

cell stress and reduced proliferation. In support of this, we have

shown that inhibition of p38 MAPK resulted in caspase-3

activation in dermal fibroblast cultured on native collagen, while

it inhibited 3DG-collagen-induced caspase-3 activity [11]. This

dichotomy suggests that p38 MAPK can be activated to signal as

either a growth kinase or a stress kinase which is dependent upon

extracellular stimuli.

The benefits of p38 MAPK signaling in wound healing is

controversial. During normal wound healing, activation of p38

MAPK results in complete wound closure while in chronic

diabetic wounds, p38 MAPK signaling results in aberrant wound

repair [1,8,15,20,22,24,25,27,28]. One reason for this dichotomy

could be the differential regulation of p38 MAPK during both

normal and diabetic wound repair. Currently there is no known

mechanism by which 3DG-collagen reduces proliferation and

migration of dermal fibroblasts; therefore, it is important to

understand the role of p38 MAPK during wound repair on 3DG-

collagen. In the present study we examined the role of p38 MAPK

signaling in dermal fibroblasts cultured on both native collagen

and 3DG-collagen to address the role of this kinase in the

regulation of wound healing.

Results

p38 MAPK differentially regulates the phosphorylation of
ERK1/2 and AKT

Previous studies within our laboratory have shown that 3DG-

collagen can induce a sustained increase in the phosphorylation of

p38 MAPK at 24 h [11]. Sustained p38 MAPK activity is

responsible for much of the stress-induced apoptosis observed in

cells, while low and transient phosphorylation of p38 MAPK is

associated with cell proliferation and migration. Studies have

shown that p38 MAPK can cross-talk with other pro-survival

kinases, including ERK1/2 and AKT [14,19,29,30]. During cell

proliferation and migration, p38 MAPK, ERK1/2, and AKT are

simultaneously upregulated [14,19,21]. However, during cellular

stress, p38 MAPK activation correlates with reduced phosphor-

ylation of ERK1/2 and AKT resulting in decreased proliferation

and migration of the cell and increased apoptosis [16,29,31,32].

Therefore, we investigated if 3DG-collagen-induced p38 MAPK

signaling modulates the phosphorylation of ERK1/2 and AKT.

Fibroblasts were pretreated with SB202190 (p38 MAPK inhibitor)

or the vehicle DMSO for 1 h and then cultured on native collagen

or 3DG-collagen for 24 h. Phosphorylation of p38 MAPK,

ERK1/2, and AKT was detected by Western blotting. Confirming

our previously published data [11], phosphorylation of p38

MAPK was increased by 75%64.1% when fibroblasts were

grown on 3DG-collagen compared to those cultured on native

collagen (Figure 1A). Inhibition of p38 MAPK with SB202190 in

fibroblasts cultured on 3DG-collagen increased the expression of

phospho-ERK1/2 from 48%612% to 93%65.8% (Figure 1B,

p,0.01). Likewise we observed that phospho-AKT increased from

48%63.7% in cells cultured on 3DG-collagen to 101%69.5% in

fibroblasts cultured on 3DG-collagen with the inhibitor SB202190

(Figure 1B, p,0.01). However, in fibroblasts cultured on native

collagen, we observed that inhibition of p38 MAPK downregu-

lated phospho-ERK1/2 to 53%612% and phospho-AKT to

52%612.7% (Figure 1B, p,0.01) suggesting 3DG-collagen

changes the cross-talk between p38 MAPK, ERK1/2, and

AKT. These results also suggest that p38 MAPK in the presence

of native collagen can act as a growth kinase promoting the

phosphorylation of both ERK1/2 and AKT. However, the

signaling in fibroblasts cultured on 3DG-collagen altered p38

MAPK to act as a stress kinase resulting in the depression of

ERK1/2 and AKT phosphorylation.

Figure 1. p38 MAPK differentially regulates ERK1/2 and AKT
phosphorylation. 70% confluent fibroblasts were pretreated with
SB202190 or vehicle DMSO for 1 h and cultured on native collagen or
3DG-collagen for 24 h. Expression of phospho-p38 MAPK (A), and
phopsho-ERK1/2 and phospho-AKT, (B) were analyzed by Western blot
using whole cell lysates. Total p38 MAPK, total ERK1/2, and total AKT
served as loading controls. The bars correspond to the densitometric
values of the intensity of both phospho-ERK1/2 bands and the
phospho-AKT band compared to that of total ERK1/2 (both bands)
and AKT band within each sample, respectively. The density of each
sample was then made relative to the density observed in cells cultured
on native collagen. All comparisons were made against their respective
controls corresponding to native collagen treated with DMSO or 3DG-
collagen treated with DMSO. Data are mean 6 SD (n = 3), *P,0.01.
doi:10.1371/journal.pone.0018676.g001
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p38 MAPK inversely regulates the migration of
fibroblasts cultured on 3DG-collagen or native collagen

We previously demonstrated that 3DG-collagen downregulated

the migration of dermal fibroblasts in an in vitro wound site [9].

Since we observed that the inhibition of p38 MAPK in fibroblasts

cultured on 3DG-collagen restored the level of phospho-ERK1/2

and phospho-AKT to levels observed in fibroblasts cultured on

native collagen, and the phosphorylation of these proteins are

known to promote the growth and migration of fibroblasts; we

sought to evaluate the significance of p38 MAPK on fibroblast

migration. Utilizing an in vitro scratch assay, confluent fibroblasts

were pretreated with DMSO, SB202190 (p38 MAPK inhibitor),

PD98059 (ERK1/2 inhibitor), or LY294002 (AKT inhibitor) for

1 h and a scratch was made along the monolayer of cells. The cells

were cultured with the inhibitors for an additional 24 h or 48 h.

Fibroblasts cultured on native collagen in the absence of any of the

inhibitors had closed the wound by 95%61.0% by 48 h, while

fibroblasts cultured on 3DG-collagen had closed the wound by

68%62.6% (Figure 2, p,0.001). In the presence of the p38

MAPK inhibitor SB202190, fibroblasts cultured on native

collagen were unable to efficiently migrate into the wound,

resulting in only 67%63.5% closure by 48 h, the same as that

observed in fibroblasts cultured on 3DG-collagen (Figure 2,

p,0.001). However, inhibition of p38 MAPK in fibroblasts

cultured on 3DG-collagen restored the migration of fibroblasts,

closing the wound by 88%62.2% in 48 h (Figure 2, p,0.001).

These results suggest that p38 MAPK may be acting as a stress

kinase in the presence of 3DG-collagen resulting in decreased

migration, while p38 MAPK may act as a growth response kinase

in fibroblasts cultured on native collagen allowing for fibroblast

migration and closure of the wound.

To further investigate how p38 MAPK may be altering cellular

migration, we investigated the growth kinases ERK1/2 and AKT,

which are known to regulate wound closure. Fibroblasts pretreated

with the ERK1/2 inhibitor PD98059 and cultured on either

native collagen or 3DG-collagen did not alter the rate of wound

closure compared to that seen in their respective control groups

(Figure 2). Moreover, inhibition of both ERK1/2 and p38 MAPK

resulted in wound closure rates similar to that seen in fibroblasts

pretreated with only the p38 MAPK inhibitor, therefore wound

closure is not significantly dependent on ERK1/2 activation.

Pretreatment of fibroblasts cultured on native collagen with the

AKT inhibitor LY294002, closed the wound by only 66%64.0%

in 48 h (p,0.001), and the addition of LY294002 to fibroblasts

cultured on 3DG-collagen resulted in a significant further

reduction in cell migration, as only 6.7%62.1% of the wound

was closed in 48 h (Figure 2, p,0.0001). The addition of the p38

MAPK inhibitor SB202190 did not further alter the wound

closure rates of fibroblasts cultured on native collagen

(66%64.0%) suggesting that p38 MAPK dependent activation

of AKT controls migration along native collagen. In contrast, p38

MAPK and AKT inhibition showed a partial upregulation in

wound closure compared to AKT inhibition alone in fibroblasts

cultured on 3DG-collagen (30%62.2%) suggesting that p38

MAPK regulation of wound closure is primarily dependent upon

the activation of AKT, however in the absence of both p38 MAPK

and AKT, activation of ERK1/2 or other survival kinases may

help promote migration (Figure 2). Furthermore we did not see

any change in the phosphorylation of p38 MAPK after the use of

the ERK and AKT inhibitors suggesting these inhibitors only

affected the their own kinase activity and not that of p38 MAPK

(data not shown). These results suggest that regulation of wound

healing is dependent on p38 MAPK.

One of the main migratory features of dermal fibroblasts is the

extension of their filopodia along the collagen matrix [33,34,35].

After mechanical wounding, fibroblasts begin to extend their

filopodia into the wound site by 4 h [9,36]. We previously

demonstrated that 3DG-collagen caused reduced filopodia

extension [9]. Therefore, we investigated the effect of p38 MAPK

on filopodia extension of fibroblasts cultured on native collagen

and 3DG-collagen after mechanical wounding. Fibroblasts were

pretreated with the p38 MAPK inhibitor SB202190 and the

cultured on native collagen or 3DG-collagen until confluent. After

confluency, a scratch was made and the actin filaments were

stained using rhodamine phalloidin at 4 h post-scratch. As seen

previously [9], fibroblasts cultured on native collagen increased

their filopodia by 4 h. In contrast, fibroblasts grown on 3DG-

collagen showed minimal extension of their filopodia at 4 h

(Figure 3). Inhibition of p38 MAPK with SB202190 delayed

filopodia extension into the wound site when fibroblasts were

cultured on native collagen. However, inhibition of p38 MAPK

induced filopodia extension in fibroblasts cultured on 3DG-

collagen (Figure 3). These results suggest that when fibroblasts are

cultured on native collagen p38 MAPK is required for proper

filopodia extension, while upregulation of p38 MAPK in

fibroblasts grown on 3DG-collagen leads to inhibition of filopodia

extension. These results corroborate the current findings that p38

MAPK differentially regulates cellular migration, which is

dependent upon the dermal fibroblast’s interaction with extracel-

lular stimuli. Moreover, these results are consistent with the

findings that p38 MAPK reduces cell migration through

downregulation of the phosphorylation of AKT when fibroblasts

are cultured on 3DG-collagen as this kinase is needed for proper

migration and cell survival.

Fibroblast proliferation is dependent upon p38 MAPK
activation of AKT

AGE-modified collagen can reduce the proliferation of cells

[37,38] Both ERK1/2 and AKT are known kinases integrally

involved in cell proliferation [14,16,17,29,30,31]. Because p38

MAPK has been shown to inversely regulate the expression of

these kinases in both a stress and growth environment, we

investigated the role of p38 MAPK in cell proliferation. Fibroblasts

were pretreated with SB202190, LY294002, PD98059, or a

combination of the inhibitors and cultured on either native

collagen or 3DG-collagen. Cell proliferation was measured at 0 h,

24 h, and 48 h. Fibroblasts cultured on native collagen were found

to steadily proliferate over 48 h, while fibroblasts cultured on

3DG-collagen decreased their proliferative capacity by 48 h

(Figure 4, p,0.05). There was a downregulation in the rate of

proliferation when p38 MAPK was inhibited in fibroblasts

cultured on native collagen compared to control. When p38

MAPK was inhibited with SB202190 in fibroblasts cultured on

3DG-collagen, proliferation was restored (Figure 4, p,0.05) to

numbers similar to fibroblasts cultured on native collagen at 48 h.

Next we investigated which protein kinase p38 MAPK was

regulating to induce proliferation. Fibroblasts were pretreated with

the ERK1/2 inhibitor PD98059 or the AKT inhibitor LY294002

and proliferation was measured over 48 h. We found that the rate

of proliferation in fibroblasts cultured on native collagen was

dependent on AKT but not ERK1/2 as only inhibition of AKT

showed similar levels of proliferation to that seen in fibroblasts

pretreated with the p38 MAPK inhibitor (Figure 4, p,0.01).

Moreover, the simultaneous inhibition of p38 MAPK and AKT

did not provide any significant additive effect to the decreased rate

of proliferation seen in these fibroblasts, suggesting that prolifer-

ation is dependent on the p38 MAPK regulation of AKT (Figure 4,

Differential Regulation of p38 MAPK
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p,0.01). In addition, fibroblasts pretreated with only the AKT

inhibitor for 1 h and then cultured on 3DG-collagen showed no

signs of proliferation in the first 24 h and by 48 h the majority of

the cells had died, while there was no significant change in the

proliferation capacity of these cells when ERK1/2 was inhibited

(Figure 4, p,0.01). These studies suggest that 3DG-collagen-

induced p38 MAPK downregulates cell proliferation by decreasing

phosphorylation of AKT.

AKT activation is required for regulation of caspase-3 by
p38 MAPK in fibroblasts cultured on native collagen and
3DG-collagen

ASK1 is able to phosphorylate p38 MAPK to signal the activation of

apoptotic cascade [15,27,39,40]. However, recent studies have shown

that H-ras-dependent upregulation of p38 MAPK can enhance cell

survival in cancer cells through activation of AKT [21,22,23,24].

Furthermore, we demonstrated that 3DG-collagen induced the

expression of caspase-3 [11]. Therefore, we investigated the role of

p38 MAPK in caspase-3 activation under growth and stress conditions.

When fibroblasts were pretreated with the p38 MAPK inhibitor

SB202190 and cultured on native collagen, there was a 81%65.5%

increase in the level of caspase-3 activation (Figure 5, p,0.001). To

determine how p38 MAPK is regulating caspase-3 activation in

fibroblasts cultured on native collagen we investigated the role of AKT

and ERK1/2. The regulation of caspase-3 by p38 MAPK in

fibroblasts cultured on native collagen was dependent on the activation

of AKT as inhibition of AKT increased the level of caspase-3 to

190%64.5% (p,0.001). Additionally, there was no significant additive

Figure 2. Wound closure rates in fibroblasts pretreated kinase inhibitors. A. Confluent fibroblasts were pretreated with the inhibitors; p38
MAPK inhibitor SB202190, AKT inhibitor LY294002, or the ERK1/2 inhibitor PD98059 for 1 h and cultured on native collagen or 3DG-collagen. The
fibroblasts were then scratched manually with a pipette tip to introduce a wound as previously described. Cell migration into the wound was
monitored at 0 h, 24 h, and 48 h by bright field visualization with an epi-fluorescence microscope. For each sample the distance across the wound
margin was measured at 10 different points from wound edge to wound edge using Spot software. The measured distance was then converted into
a percentage of wound closure when compared to the initial scratch at 0 h as shown in Material and Methods. All statistical comparisons were
performed within each time point. Inhibitor comparisons were compared to their respective controls (native collagen or 3DG-collagen). B. To
determine that LY294002 or PD98059 did not affect p38 phosphorylation, we pretreated fibroblasts with the AKT or ERK inhibitors for 1 h and
cultured the cells on native collagen (COL) or 3DG-collagen (3DG) for 24 h. Whole cell lysates were extracted and phosphorylated p38 MAPK was
detected by Western blotting. Phosphorylation of p38 MAPK was normalized to total p38 MAPK. The blot shown is representative of two individual
experiments, each producing similar results. All statistical comparisons were performed within each time point. Inhibitor comparisons were compared
to their respective controls (native collagen or 3DG-collagen). Data are mean 6 SD (n = 3), **P,0.0001, *P,0.001.
doi:10.1371/journal.pone.0018676.g002
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effect on the level of caspase-3 activation when both p38 MAPK and

AKT were simultaneously inhibited (208%62.6%). Moreover, the

inhibition of ERK1/2 with PD98059 did not significantly increase the

expression of caspase-3 (109%63.2%), while inhibition of both

ERK1/2 and p38 MAPK increased the expression of caspase-3 to

187%67.0% (Figure 5, p,0.001). Survival of fibroblasts cultured on

native collagen is dependent upon p38 MAPK-induced AKT

activation.

Figure 3. Differential regulation of filopodia extension after fibroblast pretreatment with the p38 MAPK inhibitor SB202190.
Fibroblasts were pretreated for 1 h with the p38 MAPK inhibitor SB202190, or the vehicle DMSO and then cultured on native collagen or 3DG-
collagen until confluent. The monolayer of cells was then manually scratched with a pipette tip to introduce the wound. At 4 h post-scratch the
fibroblasts were fixed, permeabilized with Triton X-100, and stained with the F-actin dye rhodamine phalloidin. Extension was denoted as filopodia
protrusion from initial wound site. The dotted line denotes initial wound site taken at 20 X magnification. Inset picture taken at 40 X magnification.
Scale bar represents 10 mm.
doi:10.1371/journal.pone.0018676.g003

Figure 4. Proliferation rates in fibroblasts pretreated with kinase inhibitors. 46103 cells/well were pretreated with the p38 MAPK inhibitor
SB202190, AKT inhibitor LY294002, or ERK1/2 inhibitor PD98059 for 1 h and then seeded in a 96-well plate containing either native collagen or 3DG-
collagen for 0 h, 24 h, and 48 h. At each designated time point the level of proliferation was determined using the cell proliferation reagent WST-1.
Quantification of each sample was determined by measuring the absorbance at 450 nm, with a reference wavelength of 600 nm. Comparisons were
performed within each time point and compared to their respective controls (native collagen or 3DG-collagen). Data are mean 6 SD (n = 3),
**P,0.01, *P,0.05.
doi:10.1371/journal.pone.0018676.g004
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We next investigated the role of p38 MAPK in fibroblasts

cultured on 3DG-collagen. Fibroblasts cultured on 3DG-collagen

increased the expression of caspase-3 to 271%66.6% and this

upregulation was abrogated when p38 MAPK was inhibited

(Figure 5, 108%61.5%, p,0.0005). Also, p38 MAPK downreg-

ulated the phosphorylation of AKT and ERK1/2 in fibroblasts

cultured on 3DG-collagen (Figure 1); therefore, we investigated

whether downregulation of AKT or ERK1/2 by p38 MAPK was

responsible for increased caspase-3 activation in fibroblasts

cultured on 3DG-collagen. The activation of caspase-3 by p38

MAPK in fibroblasts cultured on 3DG-collagen was shown to be

dependent on the inactivation of AKT. Inhibition of AKT

(LY294002) caused a 190%65.0% increase in the level of caspase-

3 activation in fibroblasts cultured on 3DG-collagen (Figure 5).

This increase was not significantly altered when fibroblasts were

pretreated with both AKT and p38 MAPK inhibitors simulta-

neously (161%67.1% increase), unlike that seen in fibroblasts

treated simultaneously with ERK1/2 (PD98059) and p38 MAPK

(SB202190) inhibitors (172%66.8% increase with ERK1/2

inhibitor vs. 14%66.6% increase with ERK1/2 and p38 MAPK

inhibitor). These results suggest that in fibroblasts cultured on

3DG-collagen p38 MAPK reduces the phosphorylation of AKT,

which is responsible for increased caspase-3 activation.

Type I collagen expression is inversely regulated by p38
MAPK in fibroblasts cultured on native collagen and
3DG-collagen

During wound healing, type I collagen is synthesized by dermal

fibroblasts to aid in successful contraction of the wound margins

[1,2]. We previously demonstrated that 3DG-collagen inhibits the

expression of type I collagen in fibroblasts [10]; therefore, we

investigated the role of p38 MAPK in type I collagen production.

Fibroblasts were pretreated for 1 h with the inhibitors SB202190,

LY294002, PD98059, or a combination of inhibitors were cultured

on native collagen or 3DG-collagen for 24 h. Fibroblasts cultured on

native collagen induced the expression of collagen at both the level of

transcription and translation. In contrast, fibroblasts cultured on

3DG-collagen reduced both the transcript levels of COL1A1

(75%63.2%, Figure 6A) and the protein levels of procollagen

(71%63.6%, Figure 6B). Inhibition of p38 MAPK with SB202190

in fibroblasts cultured on native collagen showed both reduced

transcript levels of COL1A1 (68%63.2%, p,0.05) and reduced

expression of procollagen (62%66.5%, p,0.05, Figure 6). In

contrast, inhibition of p38 MAPK restored the expression of

COL1A1 (101%64.2%) and procollagen (98%64.4%) in fibro-

blasts grown on 3DG-collagen (Figure 6, p,0.05).

Moreover, p38 MAPK regulation of collagen was dependent on

the activation of both AKT and ERK1/2 as there was a similar

decrease in collagen expression when both p38 MAPK and AKT

and p38 MAPK and ERK1/2 were inhibited in fibroblasts grown

on native collagen (Figure 6, p,0.05). In fibroblasts cultured on

3DG-collagen, collagen expression was dependent on the p38

MAPK downregulation of both AKT and ERK1/2 as restoration

of collagen expression by p38 MAPK inhibition was abrogated

when both AKT and ERK1/2 were independently inhibited

(Figure 6, p,0.05). These data suggest that p38 MAPK is playing

a major role in the transcription and translation of collagen.

Furthermore, this data highlights that p38 MAPK is playing a

positive role in the regulation of collagen when fibroblasts are

grown on native collagen, while playing a negative role in

fibroblasts grown on 3DG-collagen.

Discussion

Cutaneous wound healing is a dynamic process that is regulated

by the balance of the pro-survival signaling pathway and the pro-

Figure 5. Caspase-3 activation after fibroblast pretreatment with kinase inhibitors. Fibroblasts were pretreated with the inhibitors; p38
MAPK inhibitor SB202190, AKT inhibitor LY294002, or ERK1/2 inhibitor PD98059 for 1 h and then cultured on native collagen or 3DG-collagen for
24 h. Whole cell lysates were assayed for caspase-3 activity at an absorbance of 405 nm. All comparisons were made against their respective controls
(native collagen or 3DG-collagen alone). Data are mean 6 SD (n = 3), **P,0.0005, *P,0.001.
doi:10.1371/journal.pone.0018676.g005
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apoptotic signaling pathway [1,2]. During normal wound repair

the dermal fibroblasts proliferate and migrate allowing for

contraction of the wound margins [2,4]. However, during times

of chronic wound repair as seen in diabetes, the dermal fibroblast

appears to be incapable of proper proliferation and migration

resulting in aberrant and delayed wound closure [3,4,5,6,7,8].

Moreover, there is an increase in the number of apoptotic cells

residing in chronic wounds, which would further decrease the

wound healing rate [6,7,8]. Recent evidence has provided a dual

role for the stress-activated kinase p38 MAPK in both normal and

chronic wound repair and our findings support this observation.

Under normal wound repair, studies have shown that p38 MAPK

can be activated to induce cell proliferation and migration; while

p38 MAPK has been shown to induce apoptosis and prevent cell

migration in chronic diabetic wounds [1,14,20,22,25,41,42]. In

support of this, increased levels of 3DG-collagen have been shown

to induce caspase-3 and reduce fibroblast migration [9,11];

however, the signaling mechanism by which 3DG-collagen may

impact diabetic wound healing had not been investigated. These

results suggest that p38 MAPK is being differentially regulated by

Figure 6. Expression of type I collagen after fibroblast pretreatment with kinase inhibitors. Fibroblasts were pretreated with p38 MAPK
inhibitor (SB202190), AKT inhibitor (LY294002), or ERK1/2 inhibitor (PD98059) for 1 h and then cultured on native collagen or 3DG-collagen for 24 h.
A, COL1A1 mRNA levels were quantified by real-time RT-PCR and transcripts were normalized to b-actin. B, The bar graph was obtained by
determining the expression levels of procollagen analyzed by Western blot and normalized to b-actin which was the loading control and the bars
correspond to the relative density of procollagen protein compared to that observed in cells cultured on native collagen treated with DMSO.
Statistical comparisons were also made against their respective controls (native collagen or 3DG-collagen). Data are mean 6 SD (n = 3), *P,0.05.
doi:10.1371/journal.pone.0018676.g006
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PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e18676



an upstream mediator to induce either cell growth or cell stress in

normal wounds and chronic wounds, respectively. Because of the

antagonizing role p38 MAPK plays, we sought to better

understand how p38 MAPK signals to promote cell survival and

cell death in normal and chronic wounds.

In this study, we provide evidence for a novel mechanism by

which the differential regulation of p38 MAPK is dependent upon

the fibroblast’s interaction with varying extracellular stimuli. p38

MAPK can be regulated by both the growth factor induced-

GTPase H-ras and the pro-apoptotic kinase ASK1. Previous

studies have provided a fundamental role for H-ras-induced p38

MAPK signaling in promoting cell survival; while activation of

ASK1 induces p38 MAPK signaling to promote apoptosis

[15,22,23,24,27,30,43,44]. Further evidence has suggested that

the activation of H-ras can suppress the phosphorylation of ASK1

thereby preventing cell death and promoting proliferation and

migration of cells [45,46]. Through the use of pharmacological

inhibitors, we found that fibroblasts cultured on 3DG-collagen

have a sustained activation of p38 MAPK as evidenced by its

upregulation at 24 h (Figure 1). Studies have shown that sustained

activation of p38 MAPK is responsible for the increased apoptosis

and reduced cellular migration [16]. This effect is dependent on

the ability of p38 MAPK to be activated as a stress kinase by an

upstream mediator such as ASK1. Also, ASK1 has been shown to

induce p38 MAPK during times of cellular stress [39]. In contrast,

native collagen transiently phosphorylates p38 MAPK to promote

growth of the fibroblast, which suggests that under normal growth

conditions p38 MAPK may be phosphorylated by the upstream

mediator H-ras.

p38 MAPK cross-talks with other members of the MAPK

family, especially ERK1/2 and AKT [29,30]. Under normal

conditions, signaling within the fibroblast via p38 MAPK, ERK1/

2, and AKT results in proliferation and migration of the cell

[14,21]. However, under times of cellular stress, p38 MAPK may

inhibit the activation of ERK1/2 and AKT leading to the

upregulation of pro-apoptotic genes [16,31,32]. 3DG-collagen

induced changes in the signaling cross-talk between p38 MAPK

and ERK1/2 and AKT, as we observed that 3DG-collagen

decreased the phosphorylation of ERK1/2 and AKT, and this was

found to be dependent on p38 MAPK activation (Figure 1).

Additionally, inhibition of p38 MAPK in fibroblasts cultured on

native collagen reduced the phosphorylation of ERK1/2 and

AKT, which supports previous claims [14,17] that under normal

conditions p38 MAPK, ERK1/2, and AKT work synergistically to

enhance cell growth (Figure 1).

Downregulation of the ERK1/2 and AKT pathway can lead to

decreased migration and proliferation of the cell

[14,16,17,21,31,32,47]. Previous work in our laboratory has

demonstrated that 3DG-collagen decreased the proliferation and

migration of fibroblasts [9] suggesting that decreased phosphor-

ylation of ERK1/2 and AKT mediated via p38 MAPK activation

is responsible for this growth depression. Chemical inhibition of

p38 MAPK with SB202190 in fibroblasts grown on 3DG-collagen

restored the migration potential of these fibroblasts to that

observed in fibroblasts grown on native collagen (Figure 2). The

decreased migration seen in fibroblasts cultured on 3DG-collagen

was due to the p38 MAPK depression of phosphorylated AKT

(Figure 2). Also, p38 MAPK inhibition in fibroblasts grown on

native collagen reduced the migratory capacity of these cells,

supporting a dual role for the need of both p38 MAPK and AKT

activation in non-stressed cells (Figure 2). In support of this, the

AKT inhibitor did not affect the phosphorylation state of p38

MAPK suggesting that the p38 MAPK inhibitor can act on both

the activity of itself and that of AKT, while the AKT inhibitor can

only act by reducing AKT phosphorylation. Although inhibition of

ERK1/2 did not significantly alter the migration rate of

fibroblasts, we cannot rule out the possibility that ERK1/2 plays

a role in migration as AKT activation could mask the effects of

ERK1/2. Furthermore, simultaneous inhibition of both p38

MAPK and AKT in fibroblasts cultured on 3DG-collagen did

not result in reduced migration comparable to that seen when

AKT alone was blocked, suggesting that ERK1/2 activation is

playing a role in controlling fibroblast migration. This role

however, may be secondary to that of AKT.

During wound healing, fibroblasts along the wound edge begin

to extend their filopodia to promote migration into the wound. We

previously demonstrated that at 4 h post-wounding, fibroblasts

cultured on 3DG-collagen show minimal extension of their

filopodia into the wound [9], in contrast to the extension of

filopodia observed in fibroblasts cultured on native collagen.

Filopodia extension was restored in fibroblasts cultured on 3DG-

collagen when p38 MAPK was inhibited (Figure 3). Together

these results support the idea that p38 MAPK promotes cell

migration by upregulating AKT in fibroblasts cultured on native

collagen, while p38 MAPK acts as a stress kinase to depress

migration in fibroblasts cultured on 3DG-collagen.

Proliferation of fibroblasts also showed dependence of p38

MAPK induction of AKT. p38 MAPK-induced AKT activity

promoted cell proliferation in fibroblasts cultured on native

collagen (Figure 4). Moreover, 3DG-collagen reduced the

proliferation of fibroblasts, which was found to be dependent on

p38 MAPK suppression of AKT (Figure 4), which supports a dual

role for p38 MAPK controlling wound closure. Accompanying

reduced proliferation in fibroblasts cultured on 3DG-collagen was

an upregulation in caspase-3 activation. Caspase-3 is an early

marker of apoptosis, which can be activated by ASK1-induced

p38 MAPK. Upregulation of caspase-3 in fibroblasts cultured on

3DG-collagen was dependent on the p38 MAPK downregulation

of AKT (Figure 5). In contrast, p38 MAPK promoted cell survival

through phosphorylation of AKT in fibroblasts cultured on native

collagen (Figure 5). These results further suggest native collagen

promotes cell survival through activation of p38 MAPK, while

3DG-collagen results in caspase-3 activation through activation of

p38 MAPK. The final step in wound closure is the fibroblast’s

ability to remodel the ECM through production of type I collagen.

p38 MAPK promoted the production of collagen both transcrip-

tionally and translationally in fibroblasts cultured on native

collagen, which was found to be dependent on the activation of

AKT and ERK1/2 by p38 MAPK (Figure 6). In contrast,

activation of p38 MAPK reduced the production of collagen,

which was dependent on the downregulation of AKT and ERK1/

2, in fibroblasts cultured on 3DG-collagen (Figure 6). Because

there was an additive effect when both p38 MAPK and ERK or

AKT were inhibited, p38 MAPK, ERK, and AKT could be

working through independent but redundant pathways. Although

this claim is beyond the scope of this paper, it may be worth

investigating other upstream mediators that control p38 MAPK,

ERK, and AKT simultaneously such as TGF-beta, H-ras, and

ASK-1, which are known to be involved in wound healing. Wound

healing is a complex process that utilizes a network of signaling

pathways activated by different stimuli and can converge upon

multiple kinases to regulate gene expression, proliferation, and

survival of the cell. Because both H-ras and ASK1 have been

shown to activate p38 MAPK during times of growth and stress,

respectively, we anticipate that H-ras mediates the phosphoryla-

tion of p38 MAPK to promote migration and proliferation of the

fibroblast, while ASK1 phosphorylates p38 MAPK to activate

downstream stress responses.
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The antagonizing roles of p38 MAPK in wound healing have

not been extensively elucidated. Furthermore, the signaling cross-

talk among p38 MAPK and other kinases such as AKT and

ERK1/2 have not been fully investigated in dermal fibroblasts

cultured on both native collagen and 3DG-collagen. Here we

report that under normal wound healing conditions p38 MAPK

promotes the closure of the wound through increased fibroblast

migration, proliferation, and collagen production. Activation of

p38 MAPK as a growth kinase resulted in upregulation of AKT

and ERK1/2 which were essential for proliferation and migration

of fibroblasts on native collagen (Figure 7). In contrast, fibroblasts

cultured on 3DG-collagen, decreased wound closure similar to

that seen in chronic diabetic wounds (Figure 7). p38 MAPK has

been implicated as a stress kinase in chronic wounds, which results

in decreased proliferation and migration and increased apoptosis

of fibroblasts [42]. Although these studies relied heavily upon the

use of pharmacological inhibitors, we did not notice any change in

the phosphorylation of p38 MAPK following the use of AKT and

ERK inhibitors (Figure 2B). However, it should be noted that

other non-specific off target effects may have taken place and

future studies should also include siRNA against p38 MAPK to

validate these claims. Despite the reliance on pharmacological

inhibitors, the data presented does corroborate the different roles

that p38 MAPK has been shown to play during times of stress and

growth.

Regulation of p38 MAPK activation appears to be critical

during wound healing. This apparent dichotomy between normal

and chronic wound healing associated with p38 MAPK suggests

that extracellular stress on the fibroblast can alter the signaling

cross-talk associated with cell survival to promote pro-apoptotic

events. More importantly, this is the first evidence providing a

mechanism by which 3DG-modified collagen, which is upregu-

lated in diabetic wounds, prevents in vitro wound closure through

the dysregulation of p38 MAPK. These results may have bearing

on current therapeutic strategies for treating wounds in diabetic

patients.

Materials and Methods

This study was approved by the Internal Review Board of

Drexel University for human studies.

Tissue Culture
Collagen coating of culture dishes with cross linking of the

collagen has been described previously [9,11]. Normal human

dermal fibroblasts from individuals (GM08333, GM00498,

GM04190, GM00321) aged 3-85years old (passage ,10) were

purchased from the Coriel Institute (Camden, NJ). Fibroblasts

were seeded onto native collagen and 3DG-collagen coated dishes

and cultured until 70% confluent in Dulbecco’s Modified Eagle’s

Medium (DMEM) supplemented with 10% dialyzed FBS and 1%

penicillin/streptomycin unless otherwise noted.

Chemicals and Antibodies
p38 MAPK inhibitor SB202190 was purchased from Sigma (St.

Louis, MO). AKT inhibitor LY294002, ERK1/2 inhibitor

PD98059, and monoclonal antibody against type I collagen (sc-

133179) was purchased from Santa Cruz Biotechnology (Santa

Cruz, CA). Polyclonal antibodies against phospho-p38 MAPK,

phospho-ERK1/2, phospho-AKT, total p38 MAPK, total ERK1/

2, total AKT, and b-actin were purchased from Cell Signaling

Technologies (Danvers, MA). Secondary antibodies were pur-

chased from Jackson Labs (West Grove, PA).

Inhibition of p38 MAPK, ERK1/2, and AKT
For inhibition studies, fibroblasts were cultured until 70%

confluent, trypsinized, preincubated for 1 h with or without the

p38 MAPK inhibitor SB202190 (10 mM), ERK1/2 inhibitor

PD98059 (50 mM), or AKT inhibitor LY294002 (25 mM), and

then replated onto collagen or 3DG-collagen coated dishes for

24 h in DMEM containing 1% FBS and 1% Pen/Strep. The

concentrations of inhibitors are similar to doses used in previously

published studies [19,23,48].

SYBR Green Quantitative RT-PCR
Cells were harvested and RNA was extracted using the RNeasy

Mini kit (Qiagen, Valencia, CA) according to manufacturer’s

protocol. To verify expression of COL1A1; 2.0 mg of total RNA

was reverse-transcribed using Superscript-III reverse transcriptase

(Invitrogen Carlsbad, CA), according to manufacturer’s protocol.

Transcripts were quantified using SYBR green PCR amplification

(Qiagen). All mRNA transcripts were normalized to b-actin

expression. The following primers were employed to detect

transcripts of interest: COL1A1-forward: 59-CCAGAAGAAC-

TGGTACATCAGCA-39 and COL1A1-reverse: 59-CGCCATA-

CTCGAACTGGAAT-39; b-actin-forward 59-TTGCCGACAG-

GATGCAGAA-39 and b-actin-reverse 59-GCCGATCCACACG-

GAGTACTT-39.

Figure 7. Diagram of p38 MAPK regulation of wound healing
on native collagen and 3DG-collagen. Under normal wound
healing phosphorylation of p38 MAPK activates AKT and ERK1/2 to
promote migration, proliferation, and collagen production. During
diabetic wound healing, 3DG-collagen negatively impacts the dermal
fibroblast by phosphorylating p38 MAPK to downregulate the
expression of ERK1/2 and AKT and promote reduced cell proliferation
and migration.
doi:10.1371/journal.pone.0018676.g007
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Western blotting
Cells were harvested and protein was extracted using cell lysis

buffer supplemented with 0.3% PMSF and proteinase and

phosphatase inhibitors. 100 mg of protein from each sample was

size fractionated on 10% SDS PAGE gels or 4–12% NATIVE

PAGE gel (Invitrogen) and transferred to PVDF membrane. The

membrane was blocked with 5% skim milk or 3% BSA with

antibodies directed at phospho-groups, and probed with an

antibody directed against either procollagen (1:200), b-actin

(1:1000), phospho-ERK1/2 (1:1000), phospho-p38 MAPK

(1:1000), phospho-AKT (1:1000), total p38 MAPK (1:1000), total

AKT, or total ERK1/2 (1:1000). The membrane was washed with

TBS-Tween and incubated with a secondary antibody, goat-anti-

rabbit-HRP (1:2000) (Jackson Labs, West Grove, PA). The signal

was developed with SuperSignal Chemiluminescent Substrate

(Pierce, Rockford, IL). The bands were assessed by densitometry

by Image J software (NIH).

In vitro Scratch Assay
Wound healing assays were performed as previously described

[9]. Confluent fibroblasts cultured on native collagen or 3DG-

collagen were pretreated with 10 mM of SB202190, 25 mM of

LY294002, 50 mM of PD98059, or the vehicle DMSO for 1 h.

Scratch wounds were introduced with a sterile pipette tip onto the

confluent monolayer of fibroblasts. The cells were washed to

remove damaged and detached cells and DMEM containing 1%

FBS was added to prevent proliferation. At the time of wounding,

inhibitors were added back into the media containing 1% FBS.

The wound area was photographed immediately after wound

induction (0 h), and again at 24 h and 48 h post scratch using

brightfield exposure at 10 X magnification on a Nikon eclipse 80i

epi-fluorescence microscope. The images were captured using an

RT3 Color Mosaic Camera (Diagnostic Instruments, Sterling

Heights, MI). The distance between the edges of the wound were

measured at ten different areas from the wound edge to edge using

Spot software. The measurements were then converted into a

percentage using the formula: % of wound remaining =

(measurement at time X/measurement at time 0 h) * 100; then

to obtain the % of wound closure: 100% - % of wound remaining.

Immunofluorescence of Filopodia
For F-actin staining of filopodia extension, fibroblasts were

wounded as described above, washed three times with sterile PBS,

and air-dried at 4 h post scratch. The fibroblasts were then fixed

with 4% paraformaldehyde, permeabilized with 0.3% Triton X-

100, and stained with rhodamine phalloidin (Cytoskeleton,

Denver, CO). The samples were counterstained with DAPI

(Vector Laboratories, Burlingame, CA). Five images from each

sample were captured as described above at 20 X and 40 X

magnification.

Proliferation Assay
Cells were plated at a density of 46103 cells/well on a native

collagen or 3DG-collagen coated 96-well plate in 100 mL of

complete DMEM supplemented with 10% FBS and 1% Penn/

Strep. Proliferation of cells was measured at 0 h, 24 h, and 48 h.

Proliferation was measured by the addition of Cell Proliferation

Reagent WST-1 to cells for 4 h at 37uC. Absorbance of the

samples was measured at 450 nm with a reference wavelength of

600 nm according to the manufacturer (Roche, Indianapolis, IN).

Caspase-3 Assay
Cells were harvested and lysed in cell lysis buffer as previously

described above. Whole cell lysates were combined with Caspase-3

substrate reaction buffer and incubated for 3 h at 37uC and the

absorbance was measured at 405 nm with a plate reader

according to the manufacturer (Assay Designs, Ann Arbor, MI).

Background readings from cell buffers and substrates were

subtracted from the sample readings according to the protocol.

Statistical Analysis
The data are presented as mean 6 SD. The resulting data were

subjected to either a two-tailed unpaired Student t- test for

comparison between two groups, or a one-way ANOVA for

comparison between multiple groups followed by Tukey’s post-hoc

test with GraphPad InStat 3 software (San Diego, CA). P values

,0.05 were considered significant.
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