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Abstract

The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to
understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate
docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular
details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling
approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of
Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-WA-X-WB,
where W is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important
contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used
to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets)
make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling,
a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-
WA-X-WB

13. This results in a 2-fold increase in kcat/Km for the phosphorylation of Ets by ERK2. Similarly, the substitution of the
N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves kcat/Km by two-fold
compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease
in kcat/Km, with little apparent change in kcat. A peptide that binds to the DRS of ERK2 affects Km, but not kcat. Our kinetic
analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state
ERK2NEtsNMgATP complex and intermediates of the enzymatic reaction.
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Introduction

Mitogen-activated protein kinases (MAPKs) are cell-signaling

enzymes that regulate an extraordinarily diverse range of

biological processes in eukaryotic organisms [1,2]. However,

despite this diversity of signaling, MAPKs are characterized by a

single pronounced specificity, namely a preference for phosphor-

ylating proteins at a Ser/Thr-Pro motif [3]. This specificity comes

from their ability to negatively select against many potential

substrates by virtue of the activation segment, a loop at the active

site that creates a shallow hydrophobic pocket most compatible

with the binding of proline [3,4]. Despite this specificity, proteins

containing just a Ser/Thr-Pro element are poor MAPK substrates,

generally exhibiting large Michaelis-Menton constants when

compared to specific protein substrates. This difference in

specificity reflects the weak interaction of the Ser/Thr-Pro motif

with the MAPK active site [5] and the importance of docking

interactions. Docking interactions underlie the ability of some

MAPKs to phosphorylate as many as fifty substrates or more in vivo

[6].

MAPK docking interactions are mediated through MAPK

recruitment sites, which are known to recognize modular-docking

sequences called docking sites [7]. When these recruitment sites

bind canonical substrate docking sites they are thought to increase

the effective concentration of the substrate Ser/Thr-Pro motif near

the active site, and thereby increase the rate of substrate turnover

[5]. For example, Extracellular signal-regulated kinase (ERK2) has

two recruitment sites called the D-recruitment site (DRS) and the

F-recruitment site (FRS) that bind D-sites and F-sites respectively

[8]. A D-site is a modular motif with a basic and hydrophobic
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composition, (g)2-3-X2-6-WA-X-WB, where g is basic and W is

aliphatic hydrophobic. In contrast, the F-site is a smaller

hydrophobic motif, YXYP, where Y is aromatic [9,10]. The

DRS is an extended peptide-binding groove found on the rear face

of the MAPK (A negatively charged surface (Wchg), containing two

common-docking Asp residues and a nearby hydrophobic docking

groove (Whyd) constitute the D-recruitment site (DRS) of ERK2),

while the FRS is a relatively shallow hydrophobic pocket found

adjacent to the Ser/Thr-Pro binding site. Fig. 1A shows the

general structural organization of ERK2 and the positions of the

DRS and FRS relative to the active site.

Precisely how these recruitment sites facilitate the phosphory-

lation of a substrate has not been established, because no structure

of a substrate bound to a MAPK has been reported. Thus, key

Figure 1. Structural Features of ERK2 and Ets-1. A) Ribbon diagrams of activated ERK2 (PDB: 2ERK) showing the G-loop, which clamps onto
ATP, and the binding site for substrate Ser/Thr-Pro motifs (which become phosphorylated). Also indicated are the D and F recruitment sites, and loop-
16 (blue), which communicates between the D-recruitment site and the activation loop (red). A small insert, unique to MAP kinases, called the MAPK
insert is also shown (colored green, residues 246–276). The D-recruitment site is comprised of the reverse turn (Asn-156–Asp-160) between the b7
sheet and the b8 sheet, part of loop 7 (Glu-107–Asp-109), the aD helix (Leu-110—Thr-116), loop 8 (Gln-117–Ser-120) and part of the aE helix (Asn-
121–Phe-127) and the Common Docking (CD) domain (Asp-316 and Asp-319). The F-recruitment site (indicated) is a hydrophobic pocket with a
preference for binding a Y-X-Y motif (where y are aromatic residues). The pocket is comprised of the C-terminus of the activation loop starting at
Phe-181 through to the end of loop 12 (Phe-181–Thr-204), the aG helix (Tyr-231–Leu-242), and the a2L14 of the MAPK insert helix (Leu-256–Leu-263).
B) Ribbon representation of residues 31-138 of Ets-1 (PDB ID: 2JV3). The ERK2 phosphorylation site, Thr-38, is shown as well as Phe-120 a residue
implicated in ERK2 binding. The five helices, H1-H5, that comprise the SAM domain of Ets-1 are shown. C) Binding of the D-site peptide
RLQERRGSNVALMLDV (consensus; (g)2-3-X4-6-WA-X-WB, where g are basic residues and W are large hydrophobic residues), derived from
hematopoietic protein tyrosine phosphatase, to unactivated ERK2. The WA and WB residues of hematopoietic protein tyrosine phosphatase occupy
the Ø1 and Ø2 pockets of the Whyd subsite, respectively. The Wchg subsite of the DRS is indicated. Surface representations; red, oxygen; orange,
carboxylate oxygen; blue, neutral nitrogen; cyan, e lysine nitrogen, or arginine guanidino nitrogen.
doi:10.1371/journal.pone.0018594.g001
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questions regarding the mechanism of substrate phosphorylation

include understanding how docking interactions control the rate of

access of phosphorylation sites to the active site, what steps control

and limit catalysis and what, if any general features substrates

possess. To address these questions we have examined the

mechanism of phosphorylation of the transcription factor Ets-1

by ERK2 (See Fig. 1B for the structure of residues 29–138 of Ets-

1). Ets-1 is phosphorylated by ERK2 with high specificity, and is

intriguing because it uses two docking sites to bind to ERK2

[11,12,13], neither of which appear to correspond to a canonical

modular sequence. Seidel et al. originally located one docking site

to a five-helix bundle called the Pointed domain (more generally a

sterile alpha motif (SAM) domain) [14]. We recently located a

second site in the intrinsically disordered N-terminus and proposed

a model for the interaction between ERK2 and Ets-1 where the

SAM domain and the N-terminus interact with the FRS and the

DRS of ERK2, respectively (Fig. 2) [11,12,13]. A feature of this

model is that it places the phosphorylation site in the proximity of

the active site.

In the present study we use a computational approach

complimented by steady-state kinetic experiments to extend our

understanding further to elucidate a more detailed model for the

binding of residues 1–138 of Ets-1 (Ets) to ERK2. The modeling

suggests that the N-terminus remains disordered, with residues 10–

16 loosely associating with the hydrophobic groove of the DRS. A

putative WA-X-WB motif is identified comprised of 11LTI13. Our

kinetic analysis suggests that the unstructured N-terminus provides

10-fold uniform stabilization of the ground state ERK2NEtsNMgATP

complex and intermediates of the enzymatic reaction. To our

knowledge, this represents the first model for the structure of an

activated MAPKNsubstrate complex.

Materials and Methods

Reagents
NovaSyn TGR resin was purchased from Novabiochem

(Gibbstown, NJ). Fmoc-6-aminohexanoic acid was purchased

from AnaSpec (Fremont, CA). Other Fmoc-amino acids, HBTU,

and HOBT were obtained from Advanced ChemTech (Louisville,

KY). Ultrapure grade Tris and HEPES were obtained from Sigma

(St. Louis, MO). MP Biomedicals (Irvine, CA) supplied [c-32P]-

ATP. P81 Ion Exchange Cellulose Chromatography Paper was

purchased from Whatman (Piscataway, NJ). Yeast extract,

tryptone, agar, and IPTG were obtained from US Biologicals

(Swampscott, MA). Ni-NTA agarose, Quiaprep Spin miniprep

Kit, PCR QIAquick Purification Kit, and QIAEX II Gel

Extraction Kit were supplied by Qiagen Inc. (Valencia, CA).

Restriction enzymes, PCR reagents, and T4 DNA ligase were

purchased from New England Biolabs (Beverly, MA) and

Invitrogen Corp. (Carlsbad, CA). Oligonucleotides were pur-

chased from Sigma. A Mono Q HR 10/10 anion exchange

column was purchased from Amersham Biosciences (Piscataway,

NJ). The Escherichia coli strain DH5a, used for cloning and

mutagenesis, and the strains BL21 (DE3) used for recombinant

protein expression, were obtained from Invitrogen. The pET28a

vector was purchased from Novagen. The remaining molecular

biology reagents, including DNA ladders and protein molecular

mass standards, were obtained from Invitrogen Corp. All other

buffer components and chemicals were obtained from Sigma.

Peptide Synthesis and Purification. Peptides were

synthesized on rink resin (NovaSyn TGR resin) using a solid

phase peptide synthesizer (Liberty CEM Automated Microwave

Peptide Synthesizer, or a Rainin Quartet Peptide Synthesizer by

utilizing an Fmoc solid-state peptide synthesis protocol.

Synthesized peptides were acetylated at the N-terminus and then

cleaved using a cleavage cocktail (1 mL thioanisole, 0.5 mL H2O,

0.5 mL ethanedithiol, and 18 mL trifluoroacetic acid). The

cleaved peptides were precipitated with 45 mL ethyl ether. After

centrifugation the ethyl ether was removed and the precipitated

peptides resuspended in 15% aqueous acetonitrile and freeze-

dried. Crude peptides were purified by HPLC using a reverse

phase C-18 column (Hi-Pore RP-318, Bio-Rad) on an AKTA

system (Amersham) using a gradient of H20 (0.1% trifluoroacetic

acid) against acetonitrile (0.1% trifluoroacetic acid) with a flow rate

of 2 mL/min. The peptides were subjected to an elution profile of

0–10% acetonitrile 0–5 min; 10–30% 5–60 min. Purified peptides

were characterized for purity and mass by analytical HPLC

(System Gold, Beckman Coulter) followed by mass spectrometry

using either a MALDI-TOF (Voyager, PerSeptive Biosystem) or

an ESI (LCQ, Thermo Finnigan). The following analytical results

were obtained; Lig-F, observed 1860.01, calculated mass 1860.99;

Lig-D, observed 2209.98, calculated mass 2211.31).

Molecular Biology
A pET-28a bacterial expression vector encoding a hexa-

histidine tag followed by the cDNA encoding murine Ets-1

residues 1-138 (pET-28a Ets, a gift of L. P. McIntosh, University of

British Columbia, Vancouver) was modified by PCR using site

directed mutagenesis to construct an N-terminal truncation mutant

containing Ets-1 residues 24-138 (D23N-Ets) with an initial

methionine (pET-28a DN23Ets).

Construction of pET-28a DN23-Ets N-terminal truncation

mutant. pET-28a Ets was PCR amplified with a forward primer

containing an NdeI site (encoding the initial methionine) followed

by the codon encoding Phe-24 (59-GG GAA TTC CAT ATG

TTC CCT TCC CCG GAC ATG-39) and an outer reverse

primer (59-GCT AGT TAT TGC TCA GCG GTG G-39) using

the following PCR conditions: 94uC for 5 min to denature the

complementary strands; 30 cycles of 55uC for 30 sec to anneal the

primers, extension for 1 min at 72uC, followed by a denaturation

step at 94uC for 45 sec; complementary strands were extended a

final 10 min at 72uC. The N-terminal mutant PCR product was

digested with NdeI and HindIII and ligated into NdeI-HindIII

digested pET-28a. All proteins produced from pET-28a have an

N-terminal sequence of M-G-S-S-H-H-H-H-H-H-S-S-G-L-V-P-

R-G-S-H- prior to the initial methionine encoded by the Ets

cDNA giving EtsD24-138 an approximate mass of 15, 391 Da

whereas Ets 1-138 has a mass of 17, 681 Da (lacking the initial

methionine).

Construction of mutants of single cysteine - (Cys-31)

Ets. pET28a-Ets was modified by overlap extension polymerase

chain reaction to construct the single cysteine mutant of Ets

(C99A/C106A/C112A) in an Ets S26A background as reported

elsewhere [15]. Mutations were produced by a single-step PCR

reaction using the following PCR amplification reaction (50 mL)

contained Phusion DNA polymerase GC buffer, 200 mM each of

the four deoxynucleoside triphosphates, 2 mM MgCl2, 3%

DMSO, 80 ng of template DNA (Ets-C31 pET28a vector),

0.5 mM primers forward and reverse, and 1 mL of Phusion DNA

polymerase (Finnzymes, USA, Product # F-530-S). The cycling

parameters were 98uC for 2 min, followed by 35 cycles at 98uC for

10 s, 72uC for 30 s, with a final elongation step 72uC for 10 min.

Forward primers (I13A/I14A: 5- ATG GCT AGC ATG AAG

GCG GCC GTC GAT CTC AAG CCG ACT CTC ACC GCA
GCA AAG ACA GAA-3, I13D/I14D: 5-ATG GCT AGC ATG

AAG GCG GCC GTC GAT CTC AAG CCG ACT CTC ACC

GAC GAC AAG ACA GAA-3, L11D: ATG GCT AGC ATG

AAG GCG GCC GTC GAT CTC AAG CCG ACT GAC ACC

Docking Interactions in the ERK2NEts-1 Complex
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ATC ATC AAG, I13D: ATG GCT AGC ATG AAG GCG GCC

GTC GAT CTC AAG CCG ACT CTC ACC GAC ATC AAG

ACA GAA, L7R: ATG GCT AGC ATG AAG GCG GCC
GTC GAT CGA AAG CCG ACT CTC, D6R/L7R: ATG GCT
AGC ATG AAG GCG GCC GTC CGA CGA AAG CCG ACT

CTC, Elk-1312-324: ATG GCT AGC ATG AAG GCG AAA

GGC CGC AAA CCG CGC GAC CTG GAA CTG CCG AAG
ACA GAA AAA GTG GAT CTC GAG C, MKK1 1-13: ATG
GCT AGC ATG AAG ATG CCG AAA AAA AAA CCG ACC
CCG ATT CAG CTG AAC AAG ACA GAA AAA GTG GAT

CTC GAG C) (NheI site and mutations are in bold) and
reverse primer (5-CAG AAA GAG GAT GTG AAA TAA
CAA GCT TGC -3) (HindIII site in bold) were used to generate

the mutants. The PCR product was digested with NheI and

HindIII, ligated into the NheI-HindIII digested pET28a vector and

then transformed into DH5a E. coli cells. The construct was

verified by sequencing the DNA at the UT core facilities

Preparation of Proteins. Activated tagless ERK2 was

generated essentially as described in (Kaoud, T.S. et al. manu-

script in preparation). Expression and purification of Ets-1 (1-138)

was followed by the method described in the previously published

literature [15].

Data Analysis
Steady-state kinetic experiments. zReactions were carried

out at 27uC in kinase assay buffer (25 mM HEPES pH 7.4,

100 mM KCl, 2 mM DTT, 40 mg/mL BSA, and 20 mM MgCl2)

containing 2 nM ERK2 and varied concentrations of substrates

and inhibitors. Rates were measured under conditions where

total product formation represented less than 10% of the initial

substrate concentrations. The reaction was incubated for 10 min

before initiation by addition of enzyme and quantified as

described previously [16]. Initial rates were determined by

linear least squares fitting to plots of product against time.

Reciprocal plots of 1/v against 1/s were checked for linearity,

before the data were fitted to eqn. 1 using a non-linear least

squares approach, assuming equal variance for velocities, using

the program Kaleidagraph 3.5 (Synergy software). The intercepts

1
�

Vapp
max and slopes K

app
mS

�
Vapp

max obtained from these fits were then

plotted against either the inhibitor concentration (i) (for inhibition

experiments) or the reciprocal of the non-varied substrate

concentration (1/s) (for initial velocity experiments). These plots

were used to determine the appearance of the overall kinetic

equation. Values for kinetic constants were then obtained using

the program Scientist (Micromath) by fitting the kinetic data to

the relevant over-all equation. Data conforming to a sequential

initial velocity pattern were fitted to eqn 2; data conforming to

linear competitive inhibition were fitted to eqn. 3; data

conforming to hyperbolic mixed inhibition were fitted to eqn.

4. Dose-response curves for data conforming to linear inhibition

were fitted to eqn. 5; and for data conforming to hyperbolic

inhibition to eqn. 6.
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The parameters used in deriving equations are defined as follows;

kobs, observed rate constant; k
app
cat, apparent catalytic constant; s,

concentration of substrate S; K
app
mS, apparent Michaelis constant for

substrate S; a, concentration of substrate A; b, concentration of

substrate B; KiA, inhibition constant for substrate A; KmA,

Michaelis constant for substrate A; KmB, Michaelis constant for

substrate B; i, concentration of inhibitor I; K
app
i or K

app
ic , apparent

competitive inhibition constant for inhibitor I; a K
app
i , apparent

uncompetitive inhibition constant for inhibitor I; b k
app
cat, apparent

catalytic constant for enzyme inhibitor complex; k0, is the

observed rate constant in the absence of inhibitor, k’ is the

observed rate constant at saturating inhibitor, I, or activator x,

K50 is the concentration that leads to half the maximal change in

kobs.

Molecular Modeling
Construction of models of peptide ligands. To facilitate

the virtual docking of peptides to ERK2, we constructed the

initial peptide structures based on homology using Modeler [17]

when possible. This step, while not absolutely necessary, likely

improves the search for optimal docked structures. Here we briefly

describe the approach used to model the structures of three

peptide sequences onto the surface of activated ERK2:

a) For sequence FQRKTLQ-RRNLKGLNLNL (Lig-D), coordi-

nates were first obtained for the fragment RRNLKGLNLNL

using the known structure of this fragment bound to the

Figure 2. Schematic representation of ERK2, and the ERK2NEts
complexes depicting the DRS, the FRS and the active site. The
N-terminal docking site and the SAM domain of Ets are shown binding
to the DRS and the FRS of ERK2 respectively. The phosphorylation site
of Ets, Thr-38 is depicted in proximity to the active site.
doi:10.1371/journal.pone.0018594.g002
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MAPK FUS3 (PDB ID: 2B9H) [18]. Next, the remaining

seven residues FQRKTLQ were added to the N-terminus

using homology software (Modeller9v4) [17]. By using

‘‘2222222RRNLKGLNLNL’’ as the template and

‘‘FQRKTLQRRNLKGLNLNL’’ as the target, Modeller

predicts the possible 3-D structures for the seven residues

based on the sequence similarity to a library of loops with

known structures. Ten structures were produced, and the one

with the best score was used for subsequent virtual docking.

b) YAPRAPAKLAFQFPSR (Lig-F) - coordinates were first

obtained for the FSFG motif from mRNA export factor

MEX67 (PDB ID: 2KHH) [19]. The FSFG motif was then

transformed to FQFP using the LEaP module [20] of Amber

9.0, with the new side chains placed randomly. The

remaining residues were modeled as in a).

c) Residues 1-28 of Ets-1 were modeled onto Ets-1 (residue 29-

138) (PDB ID: 2JV3) [21] using Modeller as described in a).

In this case, five structures were generated. The residues 1-42

of the five structures were subsequently used in docking to

ERK2.

Defining binding pockets and restraints. a) Binding

within the DRS – The crystal structure of a docking site

peptide (RLQERRGSNVALMLDC) derived from the protein

phosphatase HePTP in complex with inactive ERK2 (PDBID:

2GPH) [22] was used to define the binding pocket of Lig-D within

the DRS of ERK2. All residues on ERK2 within 20 Å from the

peptide were selected as the constituents of the DRS pocket.

During computational docking, distance constraints between the

peptide FQRKTLQRRNLKGLNLNL (Lig-D) and ERK2 were

set according to the known interactions of the two motifs (RR and

WA-X-WB) with the phosphatase. The structure of 2GPH indicates

that WB in the WA-X-WB motif will make Van der Waals contacts

with Leu-113 of aD in ERK2, Phe-127 of aE, Leu-155 of b7, Cys-

159 in the b7-b8 loop, and Thr-108 in the crossover connection.

WA binds to a hydrophobic patch on the surface of helix aE in

ERK2, formed by His-123 and Tyr-126, and Cys-159 in the b7-

b8 hairpin. Asp-316 and Asp-319 in the CD site of ERK2 can

form direct contacts with the RR motif [22]. b) Binding within the

FRS – Previous studies have shown that a docking site motif

containing the Phe-Xaa-Phe motif (DEF motif, or F-site) binds a

distinct hydrophobic pocket formed between the P+1 site, the

aF helix and the MAP kinase insert [23]. Thus, residues, Leu-

144–Leu-153, Phe-181–Asn-199, and Phe-226–Leu-262, were

assigned as binding pocket residues for the F-site of Lig-F

(YAPRAPAKLAFQFPSR). These interactions were also utilized

as loose constraints in the docking.

Computational docking
Computational docking studies were performed with GOLD

4.1 (The Cambridge Crystallographic Data Centre [24,25]). The

x-ray coordinates of the active form of the MAP kinase ERK2

(PDBID: 2ERK) [3] were used to dock each of Lig-D and Lig-F.

Distance constraints were applied between certain peptide residues

and ERK2 to guide the docking, and the tolerance is typically

+/2 1 Angstrom. Specific information about the distance

constraints, including atom pairs, force constants and the distance

ranges are listed in Table S1. During the docking, the protein was

kept rigid and peptides were flexible. In each run, 2,500,000

genetic operations were performed on an initial population of 200

members, which were divided into five sub-populations. The

default parameters were used for the rest of the settings. A total of

50 structures were generated at the end of each docking run.

ChemScore [24] was used to rank the predicted structures.

Modeling of ERK2-Ets-1 complex. The fragment (residues)

1-42 docking to ERK2 were predicted using GOLD 4.1 (The

Cambridge Crystallographic Data Centre [24,25], again with the

TP residue constrained in the active site. As described earlier

Modeller was used to generate 5 initial structures for this fragment.

Since the peptide is longer than the other peptide substrates, the

search for optimal binding mode is very challenging. To achieve

confident results, all five structures were used in five independent

docking runs. The complex structure of active ERK2 (PDB ID:

2ERK) bound to Ets-1 (residues 29–138) (PDB ID: 2JV3) [21] was

predicted using the molecular mechanics modeling approaches

using a semi-rigid body potential smoothing energy minimization

as described previously [13]. To assemble a model for complete

Ets-1 (1–138) complexed to ERK2, the two models ERK2NEts(1–

42) and ERK2NEts(29–138) were aligned and a new model

ERK2NEts-1 (1–138) derived by retaining residues 1–39 and 40–

138 from the two models, respectively.

Results

Modeling the ERK2NEts-1 complex
A considerable amount of experimental data suggests that

activated ERK2, is a monomer in vitro, and forms a 1:1 complex

with residues 1–138 of Ets-1 where two docking interactions

contribute to the stability of the complex [11] (Fig. 2). The SAM

domain of Ets-1 mediates one of the docking interactions, while

the second involves its intrinsically disordered N-terminus [13].

Recently, using a molecular dynamics approach, we built a model

(Model A) for the complex formed between residues 29–138 of

Ets-1 and ERK2, which reveals how the SAM domain may bind

ERK2 [13]. However, this model does not address the role of the

disordered N-terminus of Ets-1. To address how the N-terminus

binds ERK2 we have used a combination of computational and

experimental approaches to define the general topology of the

ERK2NEts complex and to identify a possible catalytic function for

the docking interaction.

As residues 1–40 of Ets-1 are intrinsically disordered a two-step

strategy was adopted to build the final model for the ERK2NEts

complex. First, Model B was built which describes the binding of

residues 1-40 of Ets-1 to ERK2 using the docking program GOLD

4.1 (The Cambridge Crystallographic Data Centre (8, 9)).

Following the strategy previously adopted to build Model A, the

Thr-38/Pro-39 motif of Ets was restricted to the active site of

ERK2 [13]. These restraints were imposed to reflect the

orientation of the Thr-38/Pro-39 motif at the transition state for

phosphoryl transfer. Under these distance restraints the remaining

residues were then allowed to dock onto the surface of ERK2 (see

Experimental Methods for details). The five top ranked solutions

for Model B (one from each independent docking run) were found

to possess similar binding modes, in which the N-terminus adopts a

disordered conformation, with a stretch of seven residues,
10TLTIIKT16, loosely engaging the hydrophobic groove of the

DRS of ERK2 (Fig. 3A). To build the final model the two models

(A and B) were combined by first aligning them and then

combining residues 1-39 from the best ranked Model B with

residues 40-138 from Model A (Fig. 3B).

The resulting model of the ERK2NEts complex represents the

first structural model of a MAPKNsubstrate complex in an active

conformation. The modeling predicts a ‘loose’ complex with a

high degree of conformational flexibility. Significantly, it shows

how both recruiting sites of ERK2 simultaneously engage Ets-1

through non-modular docking interactions to place the phos-

phorylation site, Thr-38, at the active site. Thus, as noted

previously, the modeling predicts that the aG helix and the
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a2L14 helix of the FRS of ERK2 interact with the Helix 4–loop–

Helix 5 motif of the SAM domain of Ets-1 to orient the Thr-38

towards the active site [13]. Interestingly, residues 41–51 of Helix

1 are predicted to unwind upon binding ERK2, to facilitate the

formation of a new interface and to allow Thr-38 to attain

proximity to the active site (Fig. 3C). What we learn from this

Figure 3. Model of ERK2NEts Complex. A) Modeling Residues 1–42 of Ets-1 onto the Surface of ERK2 showing four of the top five ranked solutions
binding to the DRS of ERK2. Coulombic surface representation was performed in Chimera using default parameters. B) A model of the activated
ERK2NEts complex determined by molecular modeling (See Experimental Procedures). The ATP molecule is superimposed on the structure following
alignment with PKA (PDB ID: 1ATP). C) Predicted unwinding of residues 41–51 of Helix 1 upon the binding of Ets to ERK2. Structure of residues Ser-
402Lys-138 free (green) and predicted structure in complex (yellow) with ERK2. D) Chemical shift perturbations (Dd) induced in inactive ERK2 in the
presence of an excess of Ets. The perturbations are indicated using a red (smallest) to blue (largest) gradient on a ribbon representation of ERK2.
Residues that display significant scaled chemical shifts (Dd.0.08 ppm) values are labeled. Residues for which resonances that are broadened beyond
the threshold of detection, in the presence of Ets, are colored cyan and labeled. The overall pattern of chemical shift perturbations coincides quite
well with the predicted structure of the complex of Ets with active ERK2 with the largest Dd values are seen near the DRS and the FRS (indicated by
the dotted ovals). The gatekeeper residue (Gln-103, in red) shows a small but significant perturbation. The residues Leu-11, Ile-13 and Ile-14 from the
disordered N-terminus of Ets (green) that are predicted to be important for the ERK2/Ets interaction from modeling and mutagenesis studies (see
main text), are indicated. Chemical shift perturbations were calculated using a TROSY-based HNCO experiment using the following equation:

Dd~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:46Dd13C’ ,i{1ð Þ2z 0:17Dd15Ni

� �2

z Dd1Hi

� �2
r

where the chemical shift changes for 13C’i-1, amide 15Ni and 1Hi nuclei are given by Dd13C’ ,i{1,

Dd15Ni and Dd1Hi respectively. The chemical shift range has been rescaled to maximize contrast and aid visualization.

doi:10.1371/journal.pone.0018594.g003
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new model is that the positioning of Thr-38 at the active site may

be augmented further by the binding of residues 10–16 of the N-

terminus of Ets along the hydrophobic groove of the DRS of

ERK2. We also see that many residues in the N-terminus of Ets

appear to play no direct role in the binding. This model explains

why the phosphorylation of Ets-1 is insensitive to mutation of the

common docking domain of ERK2 (e.g. D316/D319A) [11],

because according to the model neither Asp-316 nor Asp-319

contribute to Ets-1 recognition. While this model must be

considered to be a low-resolution approximation of the ERK2NEts

complex, it is nevertheless of significant value, because it provides

an important framework from which to begin to understand the

specificity and mechanism of ERK2 towards Ets-1 and potentially

towards other substrates also. Significantly, when we examine

which amino acids undergo perturbations in their NMR chemical

shifts in inactive ERK2 in the presence of an excess of Ets we see

good agreement with our model (Fig. 3D). Indeed, no chemical

shift perturbations (see legend to Fig. 3D) are seen for the ERK2

common docking residues Asp-316 and Asp-319 as predicted by

the model. On the other hand, significant perturbations (.0.1

ppm) were seen for several residues that constitute the

hydrophobic patch on the DRS and form critical contacts with

WA and WB residues of a canonical D-site, notably Leu-113 (0.13

ppm), His-123 (0.14 ppm), Tyr-126 (0.1 ppm) and Cys-159

(0.21 ppm). Additionally at the FRS, for residues where chemical

shift assignments are available, large perturbations are seen for

Asn-260 (0.17 ppm) and Leu-262 (0.14 ppm) on a2L14 helix of

the MAPK insert. This suggests that the topology of the model is

accurate with Ets engaging both the DRS and the FRS in both

inactive and activated ERK2. A more comprehensive listing of

residues that undergo significant chemical shift changes is shown

in Fig. 3D. Further details about the interactions of inactive

ERK2 with a range of ligands bearing canonical and non-

canonical docking motifs, determined by solution NMR tech-

niques, will be presented in details in a separate publication

(Piserchio et. al. submitted).

Assessing the role of the FRS
To assess the importance of the interaction between the SAM

domain of Ets and the FRS of ERK2 we designed a modular

peptide ligand for the hydrophobic binding pocket of the FRS

formed by the P+1 site, the aF helix, and the MAP kinase insert

[9,23] (Fig. 1A). This peptide called Lig-F contains an F-site,

which is defined as YXYP, where Y is an aromatic residue

[26,27,28,29]. To model the binding of Lig-F to the FRS, Leu-

144–Leu153, Phe-183–Asn-199 and Phe-226–Leu-262 of ERK2

were set as the search regions for the FXFP binding motif of

Lig-F. Compared to the docking model proposed by Lee et al.

for a related F-site containing peptide, which seeks to

accommodate all four residues of the motif into the hydrophobic

pocket [23], our model shows the Phe residues buried deeply

within the pocket, with the Pro more exposed to solvent

(Fig. 4A). This mode of interaction is consistent with an earlier

positional screening study, where little selectivity for proline was

observed [9]. A comparison of the top 15 ranked structures,

suggests that the N-terminus of Lig-F has conformational

flexibility and can adopt a number of binding modes with the

surface of ERK2.

To examine the ability of Lig-F to inhibit the phosphorylation of

Ets-1 the effect of varying the concentration of Ets at several fixed

concentrations of Lig-F was assessed. When the kinetic data were

plotted in double reciprocal form a mechanism of competitive

inhibition was revealed (Fig. 5B). Analysis of the secondary slope

plot (Fig. 5C) shows the mechanism to be a linear competitive

mechanism of inhibition. Thus, the kinetic experiment provides

support for the model and the notion that the docking interaction

at the FRS is critical for the formation of a complex between

ERK2 and Ets.

Exploring the catalytic function of docking at the DRS
The prediction that residues 10–16 of Ets engage the DRS of

ERK2 is intriguing. To understand this further we sought to

selectively compete out this interaction using an exogenous

Figure 4. Molecular Models of Peptide Ligands bound to ERK2. A. Lig-F (YAPRAPAKLAFQFPSR) bound to the FRS of ERK2. The Y-X-Y motif
of Lig-F binds the FRS. B. Lig-D (FQRKTLQRRNLKGLNLNL) bound to the DRS of ERK2. Residues important for binding are indicated. The WA and WB

leucines of Lig-D occupy the hydrophobic Ø1 and Ø2 sites of ERK2. The conserved arginines bind the CD-domain.
doi:10.1371/journal.pone.0018594.g004
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peptide. Previously, we have shown that a peptide that binds the

DRS can displace Ets from ERK2 [11]. Our modeling suggests

it occurs through competition with residues 10–16 of Ets, which

presumably stabilize the complex. We decided to examine this

further using a related peptide termed Lig-D, which we first

modeled onto the surface of ERK2 using a molecular docking

approach (Fig. 4B). The modeling of the binding of Lig-D to

ERK2 was guided by the structure of its complex with the yeast

MAP kinase Fus3 [18] as described early. In addition, distance

restraints were employed, based on the known structures of

several other D-siteNMAPK complexes [22,30,31,32,33]. The

top 15 ranked structures were found to conform to a similar

binding mode, providing a high degree of confidence in the

general locus and conformation. The top ranked structure is

shown in Fig. 4B and supports the notion that it will compete

with Ets for binding to the DRS of ERK2. A comparison of the

structures suggests that the conformation of the N-terminal

segment is not highly restricted in the complex and may adopt

several conformations.

Thus, based on the modeling Lig-D is predicted to block the

binding of residues 10–16 of Ets-1 to the DRS of ERK2. To test

this prediction kinetic studies were performed by varying the

concentration of Ets at several fixed concentrations of Lig-D in

the presence of 1 mM ATP. A double reciprocal plot of the data

revealed a competitive mechanism of inhibition (See Fig. 5D)

consistent with the notion that Lig-D competes with Ets for

Figure 5. Inhibition of Ets phosphorylation. A) kobs for the phosphorylation of Ets (6.4 mM) in the presence of Lig-D (0–400 mM, open circles) or
Lig-F (0–400 mM, closed squares) and 1 mM MgATP. The line through the open circles (Lig-D, #) corresponds to the best fit to eqn. 6 for a dose-
response curve to a partial competitive inhibitor where K50 = 7.360.8 mM, k0 = 8.060.2 s21, and k’ = 2.160.1 s21. The line through the closed
squares (Lig-F, &) corresponds to the best fit to eqn. 5 for a dose-response curve for a full competitive inhibitor where K50 = 33.561.9 mM, and
k0 = 10.360.2 s21. B) Double reciprocal plot of 1/kobs vs 1/[Ets] at varied fixed concentrations of Lig-F (0–200 mM) and 1 mM MgATP. Initial velocities
were measured using various (2–12 mM) concentrations of Ets. The data were fitted to a model of competitive full inhibition according to eqn. 3
where Kapp

m = 5.660.7 mM, k
app
cat = 14.960.8 s21, and K

app
ic = 2261.9 mM. C) Linear secondary plot of slope vs Lig-D for the plot in Fig. 5B. The line

represents the best fit through the data according to the calculated parameters and the following equation; Slope~ Kapp
m

�
k

app
cat

� �
1zi

�
K

app
ic

� �
which is

derived from eqn. 3. D) Double reciprocal plot of 1=kobs vs 1/[Ets] at varied fixed concentrations of Lig-D (0–80 mM) and 1 mM MgATP. Initial velocities
were measured using various (3–59 mM) concentrations of Ets. The data were fitted to a model of partial competitive inhibition according to eqn. 4
where k

app
cat = 14.161.3 s21, Kapp

m = 6.361.7 mM, K
app
i = 3.060.4 mM, aKapp

m = 2260.2, a = 7.360.6 and b = 1. E) Non-linear secondary plot of slope vs
[Lig-D] for the plot in Fig. 5D. The line represents the best fit through the data according to the calculated parameters and the following equation;
Slope~ Kapp

m

�
k

app
cat

� �
1zi

�
K

app
ic

� ��
1zbi

�
aK
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� �
which is derived from eqn. 4.

doi:10.1371/journal.pone.0018594.g005
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binding. However, an analysis of the secondary slope plot

(Fig. 5E) revealed a hyperbolic mechanism of inhibition,

suggesting that Lig-D does not completely inhibit the ability of

ERK2 to phosphorylate Ets. The non-linear nature of the

inhibition is further apparent when kobs (determined at a fixed

concentration (6.4 mM) of Ets) is plotted against the concentra-

tion of Lig-D (0–400 mM) (Fig. 5A, open circles). As the

concentration of Lig-D approaches 400 mM, kobs clearly decreas-

es to a plateau corresponding to approximately 26% of its value

in the absence of Lig-D. To understand this further the kinetic

data were assessed in terms of the general mechanism for

hyperbolic mixed inhibition (Fig. 6). The best fit to the data

corresponds to a mechanism of competitive partial inhibition,

which is described by eqn. 4 where a = 8 and b = 1. Thus,

according to this mechanism Lig-D competes with Ets-1 for

binding to ERK2, but it does not completely displace it.

Surprisingly, while the ERK2NLig-D complex is predicted to

have a lower affinity for Ets compared to ERK2, the best fit to

the kinetic data predicts that it phosphorylates Ets at an equal

rate. This suggests that the docking interaction at the DRS plays

no role in facilitating the phosphorylation of Thr-38 once the

complex is formed.

The analysis above is intriguing and suggests that the N-

terminus of Ets promotes the formation of the ERK2NEts

complex, but has a limited influence on kcat. Based on this

observation we predicted that deletion of the docking site would

lead to an enzyme-substrate complex that is weaker but

undergoes phosphorylation at substantially the same rate as the

ERK2NEts complex. Thus, the first 23 amino acids were deleted

from Ets to produce D23N-Ets. In line with our prediction ERK2

was found to phosphorylate D23N-Ets with a 14-fold higher Km

(Fig. 7A) but with a kcat comparable to the kcat for the

phosphorylation of Ets. A further prediction of the model is

that, unless induced conformational changes are important,

Lig-D should have little influence on the phosphorylation of

D23N-Ets. Indeed, as the model predicts Fig. 7A (N) shows that

Lig-D exhibits little propensity to inhibit the phosphorylation of

D23N-Ets.

Fig. 1C shows how a typical docking site (which contains the

consensus (g)2-3-X2-6-WA-X-WB where W is an aliphatic hydro-

phobic and g is basic) binds to the DRS of ERK2. A notable

feature of the N-terminus of Ets-1 is that while it does not contain

such a consensus sequence residues 10-16 contain a potential WA-

X-WB motif. Interestingly, the modeling placed Leu-11 and Ile-13

in the Whyd subsite in the proximity of the Ø1 and Ø2 pockets

respectively, suggesting that this motif may contribute to the

association of the N-terminus of Ets-1 with ERK2. To further

examine the model several mutations were introduced into the N-

terminus of Ets-1 that were predicted to destabilize the interaction

of the putative 11WA-X-WB
13 motif. Specifically, the following

mutants of Ets, Asp11, Asp13, Ala13/Ala14 and Asp13/Asp14

were prepared. The introduction of these mutations resulted in

small yet significant effects on the steady-state kinetic parameters

that are generally consistent with the notion that Leu-11 and Ile-

13 (or Ile-14) interacts loosely with the DRS of ERK2 to promote

binding (See Table 1). For example, substitution of Leu-11 for Asp

resulted in a 3-fold increase in Km with little effect on kcat. The

double mutant I13D/I14D exhibited a similar increase in Km.

Although these effects are subtle it should be noted that they

correspond to a significant proportion of the total 10-fold increase

in Km that results from the deletion of the entire N-terminal 23

residues of Ets.

In contrast to these mutations that led to a decrease in the

specificity of the ERK2-Ets interaction, the modeling also allows

for a prediction of potential mutants that might improve

specificity. To this end an Arg residue was introduced in place

of Leu-7 to create a R/K-(X)2-WA-X-WB motif with potential to

interact at the Wchg site. This mutant exhibits a 1.7-fold improved

specificity (as determined by comparing kcat/Km) over Ets, which

is largely due to the 3-fold decrease in Km. While the introduction

of a second Arg at residue position 6 had no additional effect it

was interesting to note that when the N-terminus was exchanged

for the corresponding docking sites of Elk-1 and MKK1 (which

conform to R/K-(X)5-WA-X-WB and R/K-(X)3-WA-X-WB consen-

sus sequence respectively) the resulting proteins were also better

substrate than Ets by a factor of approximately 2-fold. Taken

Figure 6. Mechanism of ERK2 Inhibition by Lig-D. Lig-D exhibits competitive partial inhibition of the phosphorylation of Ets by ERK2, which is
described by eqn. 4 where a = 8 and b = 1.
doi:10.1371/journal.pone.0018594.g006
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together, the mutagenesis studies support the notion that the N-

terminus of Ets serves as a weak ligand for the Whyd site of the

DRS of ERK2. A conclusion supported by the NMR studies

(Fig. 3D).

Discussion

MAPKs must overcome several challenges. For example, they

need to rapidly find and recognize protein substrates in the

cellular milieu, while discriminating against Ser/Thr residues

located at incorrect positions on a protein, as well as on the

wrong protein. Rather than view these as challenges for the

MAPK alone however, it is reasonable to view them as

challenges of an entire MAPK signaling network, especially the

substrates. For example, because there are so many MAPK

substrates of varied structure each one may be viewed as having

to meet the challenge of evolving to adopt features that facilitate

its efficient phosphorylation by a particular MAPK at one or

more sites. For its part, each MAPK must evolve to be able to

activate bound ATP, in such a manner that a suitably positioned

hydroxyl group placed at the active site may be readily

phosphorylated. The MAPK ERK2 possesses two sites called

recruitment sites, the DRS and the FRS, which are frequently

associated with substrate binding through what have been

termed docking interactions (Fig. 1). Precisely how these

recruitment sites facilitate the phosphorylation of a substrate

has not been established, because no structure of a substrate

bound to an active MAPK has been reported. Key questions

regarding the mechanism of substrate phosphorylation address

our understanding of how docking interactions control the rate

of access of phosphorylation sites to the active site, what steps

control and limit catalysis and what, if any, general features do

substrates possess? To address these questions we previously

studied the mechanism of phosphorylation of the transcription

factor Ets-1, which is phosphorylated by ERK2 on Thr-38

exclusively [15]. Kinetic studies revealed an efficient mechanism

of catalysis where both phosphorylation and product release are

rate-limiting, with both phospho-Ets and ADP dissociating with

similar rate constants [13,15]. In addition, to the interesting

kinetic characteristics of the catalytic reaction we discovered that

Ets possesses two docking sites, which both contribute to the

recognition of ERK2 [11] (Fig. 2).

To understand the molecular recognition in more detail we built

the model shown in Fig. 3B, which was achieved using a combined

molecular mechanics and docking approach. This model repre-

sents a conformation of the complex in which the Thr-Pro motif is

primed for phosphorylation in the active site. Critically this model

allows us to perform the first structure-function analysis of a

MAPK-substrate interaction. The model suggests that both

recruiting sites of ERK2 simultaneously participate in docking

interactions, which may serve to restrain Thr-38 near to the active

site. While the FRS is known to bind modular YXYP motifs [9],

the model predicts that it adopts a different mode of interaction

with Ets-1, where instead it mediates a domain-domain interaction

with the SAM domain of Ets-1. Thus, a region defined by Helix 4–

loop–Helix 5 of the SAM domain is predicted to interact with the

aG helix and a2L14 helix of ERK2 (Fig. 3B). A further feature of

this model is that part of Helix 1 (residues 41-51) unwinds upon

binding ERK2 (Fig. 3C), which may serve to allow Thr-38 to

extend towards the active site of ERK2, as well as to facilitate the

formation of a new binding interface. Recent studies suggest that

mutation of both His-230 of ERK2 [11] and Phe-120 [14] of Ets-

1, two residues predicted to be close to this interface, disrupt the

stability of the complex. The model also suggests that residues 1–

40 of Ets-1, which are intrinsically disordered in solution [21],

remain predominantly disordered while bound to the surface of

ERK2, with a short sequence corresponding to residues 10–16

engaging the hydrophobic groove of the DRS.

A careful analysis of the kinetic mechanism of inhibition by

Lig-D reveals that it inhibits Ets phosphorylation through a

mechanism of partial competitive inhibition (Fig. 6). A

reasonable interpretation of the data is that Lig-D displaces the

N-terminus of Ets-1 from the DRS of ERK2, thereby leading to

a weakening of the complex. Alternatively, the binding of the

peptide could promote a conformational change in ERK2

that leads to a weakening of the complex. We do not favor this

latter explanation, however because the peptide exhibits little

ability to displace the truncated form of Ets, D23N-Ets (Fig. 7A).

Furthermore, a significant conformational change is not sup-

ported by the NMR experiments on inactive ERK2 (Piserchio et

al. submitted). It is intriguing that despite the loss of the N-terminal

interaction, kcat for the phosphorylation of D23N-Ets is almost

Figure 7. Inhibition of ERK2. A. kobs for the phosphorylation of
D23N-Ets (50 mM) in the presence of Lig-D (0–200 mM, (N) or Lig-F (0–
400 mM, (&) and 1 mM MgATP. The line through the circles (Lig-D)
corresponds to the best fit to eqn. 6 for a dose-response curve to a
partial competitive inhibitor where K50 = 2.060.5 mM, k0 = 5.560.1 s21,
k’ = 4.460.1 s21. The line through the squares (Lig-F) corresponds to
the best fit to a dose-response curve for a full competitive inhibitor
(eqn. 5) where K50 = 4362 mM, k0 = 5.460.1 s21. B. Specificity constant,
k

app
cat

�
Kapp

m for the phosphorylation of Ets mutants compared to Ets.

doi:10.1371/journal.pone.0018594.g007
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identical to that for the phosphorylation of Ets, suggesting that

the tether does not significantly influence steps associated with

turnover once the complex is formed. Consistent with this is the

observation that mutations in the DRS have little influence on

kcat, see Table 2 in Abramczyk et al. [12].

A notable feature of the N-terminus of Ets-1 is that while it

does not contain a conventional consensus sequence for binding

to the DRS of ERK2 it contains a potential WA-X-WB motif.

Interestingly, 4 out of the top 5 structures from 5 independent

virtual docking runs suggested that Ile-13 of Ets-1 binds the Ø2

site of the DRS (Fig. 3A). Recently we completed a cysteine-foot-

printing study that supported the notion that Ets-1 binds this

pocket. We mutated several sites in the N-terminus, which were

predicted by the modeling to either increase or decrease the

specificity of Ets for ERK2. Through disruption of the putative

WA-X-WB site we were able to decrease the specificity of Ets for

ERK2. Gratifyingly, by introducing a (RK)-X2-WA-X-WB con-

sensus sequence into the N-terminus we were able to slightly

increase the specificity. Thus, ERK2 exhibits a 7-fold higher

specificity for Ets L7R over Ets L11D. ERK2 is reported to

phosphorylate Ets-2, which is related in sequence to Ets-1 [14].

Interestingly, while the SAM domains of both proteins share high

sequence similarity the N-terminus of Ets-1 possesses little

sequence similarity to the corresponding region of Ets-2 [14].

Thus, it will be interesting to examine both proteins to identify

features that are common to both.

The modeling studies described here suggest that the N-

terminus of Ets-1 remains essentially disordered upon binding to

ERK2 and engages the DRS of ERK2. While the model shows

Thr-38 bound to the active site we believe that given the

disordered nature of the loop it may adopt several alternative

conformations that are similar in energy. A binding study on a

series of Thr-Pro mutants would appear to support the notion that

the binding of the Thr-Pro motif does not contribute to the

stability of the ERK2NEts complex [5]. Thus the docking

interactions identified by the modeling would appear to provide

a topological constraint, which effectively restricts Thr-38 to the

proximity of the active site. Such a mechanism of proximity-

induced catalysis [5] would also allow for proximal sites to be

phosphorylated within the same complex, without a requirement

for a realignment of docking interactions.

Since the seminal paper by Wright [34] the role of intrinsically

disordered regions of proteins has been a topic of great interest.

For example, it has been suggested that on average intrinsically

disordered proteins bind and dissociate 2-3 fold faster than

ordered proteins [35]. There is some evidence to suggest that the

recognition of MAPKs by proteins containing intrinsically

disordered regions may be quite common. In fact, many docking

sites for the DRS of a MAPK are found at the extreme termini

of MAPK ligands, such as the upstream activators the MKKs,

and may be disordered. For example, the C-terminus of the

protein kinase MK2 contains a docking site for the DRS of its

activator p38MAPKa [33,36]. The structure of the complex

between unactivated p38MAPKa and MK2 suggests that at least

part of the region responsible for binding the DRS has a

propensity to be disordered. We have used stopped-flow analysis

to assess the rate of binding of phospho Ets to ERK2 and found

that it binds with a rate that exceeds the rate of diffusion for the

association of two proteins, with a rate constant for association of

kon = 56106 M-1s-1 and with rate constant for dissociation of

k .100 s-1 [13]. It will be interesting to determine whether the

disordered docking sites found at the extreme termini of

signaling partners facilitate the rapid formation of signaling

complexes within the MAPK pathways.

Conclusion
The structural model of the ERK2NEts complex suggests that

Ets-1 simultaneously binds both the DRS and the FRS of ERK2 to

position the phosphorylation site, Thr-38, in the proximity of the

active site. Previous stopped-flow studies, which suggest that the

association between ERK2 and Ets is both rapid and transient,

raise intriguing questions about the role of the two docking sites.

As cell signaling is a dynamic process, where proteins at low

concentrations must often interact and dissociate rapidly and yet

bind with high specificity, highly evolved protein-protein interac-

tions are expected, to facilitate efficient recognition. The new

model allows us to begin to examine the mechanism of binding as

well as the conformational dynamics associated with phosphory-

lation once the enzyme substrate complex is formed. With further

NMR studies on the horizon we hope to further refine the

structure using a combination of computational and experimental

approaches.

Supporting Information

Table S1 Distance constraints between Lig-D and ERK2
were set based on the known interactions of the two
motifs (RR and WA-X-WB) with phosphatase (PDB ID:

Table 1. Effect of mutations in the N-terminus of Ets on the steady-state parameters for Ets phosphorylation.

Mutations in the N-terminus of Ets kcat Km kcat/Km

1XXXXXXXXXXWXWX14 s21 mM 6106 M21s21

Ets 1MKAAVDLKPTLTII14 18.062.0 17.064.0 1.0

D11 MKAAVDLKPTDTII 14.061.0 5465.0 0.3

D13 MKAAVDLKPTLTDI 12.061.0 15.061.0 0.8

13AA14 MKAAVDLKPTLTAA 21.061.5 32.065.0 0.7

13DD14 MKAAVDLKPTLTDD 23.062.0 50.065.0 0.5

R7 MKAAVDRKPTLTII 13.061.0 5.061.0 2.2

6RR7 MKAAVRRKPTLTII 10.061.0 6.062.0 1.7

Elk-1 (312–324) KGRKPRDLELPLS 11.061.0 7.062.0 1.7

MKK1 (1–13) MPKKKPTPIQLN 12.060.3 5.060.6 2.4

doi:10.1371/journal.pone.0018594.t001
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2GPH). Distance constraints between Lig-F and ERK2 were set

to make the Phe-Xaa-Phe motif (DEF motif) binding a

hydrophobic pocket formed between the P+1 site, the aF helix

and the MAP kinase insert. The binding constraints for Ets(1-42)

were imposed to enforce the hydrogen bonding interactions

between Thr residue in the Thr-Pro motif with Asp-147 and Lys-

149 of ERK2. In addition, the proline in the Thr-Pro motif was

restrained to adopt a similar binding mode to that in Ser-Pro motif

of HHASPRK bound to the cyclin-dependent kinase (CDK2)

(PDB ID: 1QMZ).
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