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Abstract

The vast landscape of environmental chemicals has motivated the need for alternative methods to traditional whole-animal
bioassays in toxicity testing. Embryonic stem (ES) cells provide an in vitro model of embryonic development and an
alternative method for assessing developmental toxicity. Here, we evaluated 309 environmental chemicals, mostly food-use
pesticides, from the ToxCastTM chemical library using a mouse ES cell platform. ES cells were cultured in the absence of
pluripotency factors to promote spontaneous differentiation and in the presence of DMSO-solubilized chemicals at different
concentrations to test the effects of exposure on differentiation and cytotoxicity. Cardiomyocyte differentiation (a,b myosin
heavy chain; MYH6/MYH7) and cytotoxicity (DRAQ5TM/Sapphire700TM) were measured by In-Cell WesternTM analysis. Half-
maximal activity concentration (AC50) values for differentiation and cytotoxicity endpoints were determined, with 18% of
the chemical library showing significant activity on either endpoint. Mining these effects against the ToxCast Phase I assays
(,500) revealed significant associations for a subset of chemicals (26) that perturbed transcription-based activities and
impaired ES cell differentiation. Increased transcriptional activity of several critical developmental genes including BMPR2,
PAX6 and OCT1 were strongly associated with decreased ES cell differentiation. Multiple genes involved in reactive oxygen
species signaling pathways (NRF2, ABCG2, GSTA2, HIF1A) were strongly associated with decreased ES cell differentiation as
well. A multivariate model built from these data revealed alterations in ABCG2 transporter was a strong predictor of
impaired ES cell differentiation. Taken together, these results provide an initial characterization of metabolic and regulatory
pathways by which some environmental chemicals may act to disrupt ES cell growth and differentiation.

Citation: Chandler KJ, Barrier M, Jeffay S, Nichols HP, Kleinstreuer NC, et al. (2011) Evaluation of 309 Environmental Chemicals Using a Mouse Embryonic Stem
Cell Adherent Cell Differentiation and Cytotoxicity Assay. PLoS ONE 6(6): e18540. doi:10.1371/journal.pone.0018540

Editor: Austin John Cooney, Baylor College of Medicine, United States of America

Received October 26, 2010; Accepted March 2, 2011; Published June 7, 2011

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: The U.S. EPA, through its Office of Research and Development, Human Health, Cross-ORD, and CompTox funded and managed the research described
here. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Lockheed Martin is a contractor
to the EPA. The work performed by Lockheed Martin on this study is funded by the US EPA through Information Technology (IT-ESE) contract No.: 68-W-04-005,
Task Order No. 058: Technical Support for Development of Developmental Systems Toxicity Network (DevToxNet). This work statement includes contributing
activities to the present study for text-mining and data visualization.

Competing Interests: Lockheed Martin is a contractor to the EPA. This does not alter the authors’ or Lockheed Martin’s adherence to all the PLoS ONE policies
on sharing data and materials.

* E-mail: chandler.kelly@epa.gov

Introduction

Over 82,000 chemicals are currently in commerce or in the

environment, yet little is known about their potential toxicity to

humans [1]. The data gaps between the environmental chemical

landscape and chemical toxicity information is largely due to the

low-throughput nature of traditional toxicity testing that relies on

whole-animal studies and relatively high-dose exposure. These tests

can be slow, costly, and ultimately provide only a gross estimation of

the human response to chemicals. In an effort to bridge the gap

between chemical space and toxicity information, the National

Research Council released a report calling for a paradigm shift in

toxicity testing [1]. Four primary objectives are outlined in

‘‘Toxicity Testing in the 21st Century: A Vision and a Strategy’’:

1) broad assessment of chemicals, 2) faster, more cost-effective

approaches, 3) reduce animal use, and 4) reflect mechanism and

dose in risk assessment [1]. Towards this end, in vitro and in silico

methods are being implemented and evaluated with respect to their

predictivity and relevance to in vivo toxicity pathways.

In vitro assays provide multiple benefits for pathways-based risk

assessment. First, in vitro assays are amenable to high-throughput

formats and thus can be scaled to the evaluation of thousands of

chemicals across diverse cellular responses in a relatively short

amount of time. Second, chemicals can be tested across a wide

range of concentrations allowing the half-maximal activity

concentration (AC50) to be calculated and considered in the

context of environmentally realistic exposures. Third, human in

vitro model systems provide a glimpse into the potential human

cellular responses to chemical insult and may illuminate species-

specific differences in toxicity. Finally, in vitro approaches allow us
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to interrogate the mechanism of chemical toxicity and assess

pathway-based chemical perturbation by employing biochemical,

molecular, and genetic techniques.

The US Environmental Protection Agency (EPA), in collabo-

ration with the National Institutes of Environmental Health

Sciences (NIEHS), the National Chemical Genomics Center

(NCGC) and the Food and Drug Administration (FDA) are

working together to establish alternative chemical testing methods

that will characterize toxicity pathways [2]. Many of the EPA’s

ToxCastTM chemical library of 309 unique compounds, mostly

well-characterized food-use pesticides, have been previously

tested under the traditional in vivo toxicology testing paradigm.

Therefore, these data-rich pesticides have been subjected to a

variety of whole-animal tests including sub-chronic and chronic

rodent bioassays, developmental toxicity, and multi-generation

reproductive studies representing over 30 years of in vivo toxicity

experiments assembled into a searchable database, ToxRefDB

[3,4,5]. In Phase I of ToxCast, all 309 chemicals were tested over a

wide-range of concentrations across a collection of ,500 bioassays

[6,7,8]. These include cell-free biochemical, cell-based activity,

and embryonic stem cell screening platforms (described here). The

power of ToxRefDB and ToxCast is the ability to develop

predictive signatures of toxicity via in silico modeling, with the

ultimate goal of using predictive signatures to interrogate the vast

chemical space which currently lacks toxicity profiles. Chemicals

that perturb toxicity pathways could then be prioritized for more

in-depth testing.

Embryonic stem (ES) cells are potentially informative in the

context of toxicity testing due to their reliance on many key

pathways in morphogenesis and differentiation. ES cells are

isolated from the inner cell mass of blastula-stage embryos and

retain the ability to differentiate into all three germ layers of the

embryo proper when cultured in the absence of pluripotent

factors. Components of the three primary germ layers (ectoderm,

endoderm, mesoderm) interact to contribute to all cell lineages of

the adult mouse [9,10]. Pluripotent ES cells have the ability to self-

renew indefinitely when maintained in pluripotent culture

conditions [11]. Given the dynamic potential of ES cells, this

platform harbors key signaling pathways and biological networks

that govern their pluripotency and/or differentiation. In addition,

ES cells have been shown to mimic many aspects of early

embryonic development [12] and are amenable to systems-level

analysis utilizing high-throughput screening (HTS) and high-

content screening (HCS) methods.

Taking advantage of the developmental potential of ES cells, the

embryonic stem cell test (EST) was established over a decade ago

as an alternative method for assessing chemical embryotoxicity

[13]. The EST uses three separate endpoints (cardiomyocyte

differentiation, ES cell viability, fibroblast viability) in a prediction

model to evaluate chemical toxicity and affords up to 78%

accuracy [14,15,16]. In spite of this predictive attribute, there are

drawbacks to the EST assay: 1) subjective nature of measuring

cardiomyocyte differentiation based on qualitative observations, 2)

viability and differentiation measures are collected from separate

cultures, and 3) limited throughput. Others have expanded on the

original foundation of the EST using transcriptomics in mouse ES

cells or metabolomics of pluripotent human ES cells to identify

developmental toxicants [17,18].

Here, we utilize a modification to deliver a high-throughput,

sensitive method for quantitatively measuring cytotoxicity and

cardiomyocyte differentiation. Furthermore, we have introduced

this platform to the ToxCast portfolio for in vitro profiling of 309

environmental chemical compounds across ,500 different assays.

This confers a unique platform to the ToxCast portfolio for

chemical screening as a complex cell culture system that mimics

early mammalian embryonic development and maintains relevant

signaling networks required for primary germ layer formation. We

hypothesize that the ES cell assay may identify toxicity pathways

in ES cell differentiation that are predictive of developmental

activity of chemicals. Towards this end, concentration-response

relationships for 309 environmental chemicals were measured in

the ES cell assay. A subset of 56 of these chemicals showed a

statistically significant response across one or more of the following

four parameters: increased cytotoxicity, decreased cytotoxicity,

decreased differentiation,m and increased differentiation. For each

chemical-by-endpoint combination showing significant activity, we

calculate an AC50 (concentration at which activity is 50% of

maximal change). This report describes the results of these

experiments and provides the first computational (in silico) model of

a toxicity-related pathway underlying ES-based developmental

bioactivity across the chemical library.

Materials and Methods

ES cell maintenance and differentiation
J1 male murine ES cells from the 129S4/SvJae strain were

obtained from ATCC (www.atcc.org) and maintained according

to their recommendations for propagation and subculturing

(ATCC, SCRC-1010TM). In brief, J1 cells were cultured on

Mitomycin C-treated primary mouse embryo fibroblasts (MEFs,

Millipore, Cat. No. PMEF-CF) on 0.1% gelatin (Millipore, Cat.

No. SF008) in ES cell media containing Knockout DMEM

(Invitrogen, Cat. No. 10829), 15% ES cell-qualified fetal bovine

serum (Invitrogen, Cat. No. 10439), 2 mM GlutaMAX (Invitro-

gen, Cat. No. 35050), 0.1 mM non-essential amino acids (Invitro-

gen, Cat. No. 11140), 50 U/50 ug/mL Pen/Strep (Invitrogen,

Cat. No. 15140), b-mercaptoethanol (Gibco, Cat. No. 21985), and

1000 U/mL mouse leukemia inhibitory factor (mLIF, Millipore,

Cat. No. ESG1107). Prior to evaluating the effects of chemicals,

MEFs were removed from cultures prior to an experiment by

passing ES cells onto 0.1% gelatin-coated flasks in MEF-

conditioned media with mLIF to maintain pluripotency. On

day 0, pluripotent MEF-depleted ES cells were collected and

cell counts were determined with a NucleoCounterH NC-100

(ChemoMetec). Cells were seeded at a density of 1000 cells/well

onto 0.1% gelatin-coated 96-well plates (Costar, Cat. No. 3596) in

ES cell media without mLIF (differentiation conditions) and

allowed to adhere to the plates overnight. ToxCast chemicals were

introduced on day 1 and subsequently refreshed on days 6–8.

Chemical Library
This study used the ToxCast Phase I, version 1 chemical

library which contains 320 total chemicals with the following

breakdown: 309 unique chemical structures, 5 independently

sourced duplicates, and 3 triplicates that serve as plating

replicates for internal quality control [6]. The majority of these

chemicals had bioassay data available from ToxRefDB guideline

animal studies (rat, mouse, rabbit), 97.5% are soluble in DMSO,

90% have a molecular weight between 250–1000, and 98.1% are

commercially available with .90% purity. Information on the

chemical library is publically available (http://www.epa.gov/

NCCT/dsstox/sdf_toxcst.html). Chemical procurement and

stock preparation was outsourced to BioFocus DPI (South San

Francisco, CA) and certificates of analysis were provided with

plated chemicals. Plated chemicals were subjected to a QC check

and the results are publically available (http://www.epa.gov/

ncct/toxcast). Due to the effects of DMSO on the ES cells and

the maximum concentrations of chemicals plated by BioFocus

Chemical Activity in an ES Cell Platform

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e18540



DPI (20 mM), we were limited to 12.5 mM as the highest

concentration evaluated.

Cytotoxicity and Differentiation Measurements
In-Cell WesternTM (Li-Cor Biosciences) assays were initiated on

cell culture day 9 and performed according to the manufacturer’s

protocol. In brief, cells were fixed in the assay plate, incubated

with primary antibody, secondary antibody, and DNA/cell stains,

then assay plates were scanned on a Li-Cor OdysseyH Infrared

Imaging System. This system allows for detection of two endpoints

in each well by measuring signal intensity in two infrared channels.

Cardiomyocyte differentiation was measured using a primary

mouse antibody that recognizes a,b cardiac Myosin Heavy Chain

(MYH6/MYH7)(Abcam, Cat. No. ab15; 1:1000). Cells were

incubated in primary antibody overnight at 4uC with gentle

agitation. A goat a-mouse secondary antibody conjugated to

IRDyeH 800CW (Li-Cor, Cat. No. 926-32210; 1:2000) was

detected at 800 nm. Cytotoxicity was assessed using Sapphir-

e700TM (1:2000) relative cell and DRAQ5TM (1:16,000) DNA

stains (Li-Cor, Cat. No. 948-40022) were detected at 680 nm. Cell

stain and MYH6/MYH7 intensities are corrected for background

signal using intensity values from control wells, which were

incubated without primary antibody or cell stains. Quality control

checks were performed by visual inspection of the plate images

and removal of obvious outlier data due to technical issues.

MYH6/MYH7 signal was normalized to relative cell number

(cytotoxicity) by dividing MYH6/MYH7 intensity by Sapphir-

e700TM/DRAQ5TM intensity from the same wells. Cytotoxicity

and cytotoxicity-corrected cardiomyocyte differentiation values

were made relative to the zero dose control.

Dose-response curves and AC50 calculations
Relative cytotoxicity and cardiomyocyte differentiation values

were analyzed to detect statistically significant concentration-

dependent behavior. Concentration-response analysis used soft-

ware developed in-house in the R language, run using R version

2.8.1 (software available upon request). First, the variation of 0-

concentration control (i.e. DMSO vehicle) values was assessed for

all experiments by calculation of the mean and standard deviation.

Then, a cutoff was established by taking the mean of the 0-

concentration controls +/22 standard deviations. Values that fell

outside the cutoff were considered different from control. If all

values for a treatment fell within the established 0-concentration

control variation, the treatment was said to have no effect, a curve

fit was not performed, and a default AC50 value of 1 M was

assigned to that combination. If there was a significant change

from baseline, the concentration-response data were fit to a four-

parameter Hill curve using nonlinear least-squares regression. The

AC50 was then assigned as the dose along the curve that produced

a 50% change from the mean of the 0-concentration control.

Separate analyses were performed for curves that exhibited an

upward trend versus a downward trend. For data that exhibited a

downward trend, the 0-concentration control value of 1 was set at

the top (100%) and complete reduction of signal was the bottom

(0%). For the upward trend analysis, data were adjusted by

subtracting 1 which made the 0-concentration equal to the bottom

(0%). A 100% increase from the 0-concentration control

represented the top and was set to 1 (100%). ACF were calculated

using the AC50 values in the context of the following equation

(Eq.1), where ACF is the concentration at which there was F

percent change in activity relative to the 0-concentration. F is the

chosen percentage of change to be evaluated and Hillslope is the

calculated slope of the non-linear regression curve fit from the R

analysis:

ACF ~ AC50X
F

100{F

� � 1=Hillslope

� �
ð1Þ

Heatmaps were produced with Partek Genomic Suite 6.4 software

(Partek, Inc., St. Louis MO). Unsupervised, two-dimensional

hierarchical clustering was performed using Euclidean distance for

measure and Ward’s method for linkage analysis.

Predictive models
Data (in the form of AC50 values) for the ES assays were

analyzed by comparison with a large number of other in vitro assays

measured in the same chemical library. These comprise the

ToxCast data set described elsewhere [3,4,5,6,7,19]. The complete

data set consists of a matrix of 309 chemicals (rows) by 548 assays

(columns). The values are AC50’s for the chemical-assay

combinations, with a default value of 1 M in cases where no

statistically significant chemical-assay activity was observed.

Pathway, process and disease-based perturbation scores (PS) were

constructed by mapping assays to genes and then to collections of

genes in pathways from KEGG, Ingenuity, Pathway Commons,

Gene Ontology (GO) and OMIM. In brief, a chemical-pathway

PS corresponds to the minimum AC50 for any assay for that

chemical mapping to the pathway. The PS form additional

columns in the data matrix. The details for calculating PS for a

chemical-pathway combination is described elsewhere [6].

In addition to the ToxCast in vitro assays, we also have in vivo

animal-based endpoints for a majority of these chemicals (from

chronic, cancer, reproductive developmental toxicity studies),

extracted from the EPA Toxicity Reference Database (ToxRefDB,

http://www.epa.gov/NCCT/toxrefdb/) [3,4,5]. These data are

quantified as LEL (lowest effective level) values which give the

lowest dose at which an endpoint was observed, and form extra

columns to the data matrix.

We calculated univariate statistical associations between the ES

cell data and both the ToxCast in vitro assays and ToxRefDB in vivo

endpoints. Two statistical tests were used. In the first, the data

matrix was dichotomized so that if activity was seen at any

concentration (assays) or dose (endpoints), a value of 1 was

assigned to the chemical- assay (endpoint) pair. Otherwise a value

of 0 was assigned. Next, one assay was selected as the input

(predictor variable) and another assay (or endpoint) as the output

(predicted variable). A 262 contingency table was created with

value TP (true positive, number of chemicals for which the input

and output were both positive), FP (false positive, number of

chemicals for which the input was positive and output negative),

FN (false negative, number of chemicals for which the input was

negative and the output positive) and TN (true negative, both

input and output negative). The significance of association was

tested using a Fisher’s exact test. In the second statistical method,

the input assay AC50 values were log transformed and scaled:

scoreassayi chemicaljð Þ~{log 10 AC50assayi chemicaljð Þ�
106

� �
ð2Þ

This scaling yields a value of zero for inactive chemical-assay

combinations. The output variable is dichotomized as before. We

then perform a t-test comparing the score distribution for the

output-positive vs. output-negative chemicals.

We also constructed multivariate models to predict activity of

chemicals in the ES assays from data for multiple other in vitro

assays. For this analysis, the original data matrix was log-

transformed (Eq. 2). The model is of the form:

Chemical Activity in an ES Cell Platform
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ModelScore chemicaljð Þ~Cutoff z
XN max

assayi~1

di|

scorei chemicaljð Þ

ð3Þ

where if dis 1, then assay i is included, otherwise it is not. If the

model score for chemical i is .0, the chemical is predicted to be

active in the output assay or endpoint, otherwise it is predicted to

be inactive. Assays are added to the sum in a stepwise fashion, so

that the one with the most significant univariate association (using

either of the statistical tests described above) is added first, the

second most significant is added next and so on. Model

performance is evaluated using a 262 contingency table as

described above where the true activity vector for the output assay

is compared with the predicted activity vector. The model is

implemented using a k-fold cross validation algorithm in which the

data is divided into training (80%) and test (20%) portions and

optimal values of Nmax and Cutoff are found which maximize the

area under the curve (AUC) of the Receiver Operator Charac-

teristic (ROC) curve. In addition to the AUC and Fisher’s exact p-

value, we also calculate the sensitivity, specificity, balanced

accuracy (BA, average of sensitivity and specificity) and other

metrics. The algorithm is implemented in R and is available upon

request (‘‘linmod.R’’ (NCCT, US EPA)). ROC curves are built to

predict the ES assays as outputs and used the ToxCast assays and

pathway perturbation scores as inputs.

Results

Mouse ES cell assay
We evaluated the effects of 309 chemicals in duplicate across four

concentrations on cardiomyocyte differentiation and cell number

in a ten-day, high-throughput mouse ES cell adherent cell

differentiation and cytotoxicity assay (Figure 1). Using a 96-well

format, we tested eight chemicals per plate in duplicate, one per

row, at concentrations ranging from 0.0125 to 12.5 mM (Figure 2A).

Curves generated from the concentration-responses of the chemical

library indicate that under the conditions employed here, the assay

was responsive to a subset of 309 chemicals. For example,

Rimsulfuron had no measurable biological activity in the ES cell

system (Figure 2B). Spiroxamine was a potent inhibitor of

cardiomyocyte differentiation, yet had no significant effect on

cytotoxicity (Figure 2B). Other chemicals, such as Paclobutrazol and

Picaridin, began to show effects on differentiation, but not enough

to calculate an AC50 (Figure 2B). A small number of chemicals

(n = 5) produced effects on cytotoxicity or differentiation that did

not resemble traditional upward or downward curves. Instead, these

chemicals generated a U-shaped or inverse U-shaped trend. All 320

concentration response curves are provided (Figure S1). Overall,

these results show the assay is capable of detecting chemical effects

on number and differentiation of ES cells.

Eighteen percent of the chemical library (56/309 chemicals)

produced effects permitting AC50 values to be calculated for the

ES cell assay (Table 1). Of the AC50 values calculated, 25%

(18/69) exhibited chemical potencies below one micromole. The

most potent chemical in our cytotoxicity assay was Captafol

(AC50 = 0.017 mM), while the chemical with the most pronounced

effect on decreased cardiomyocyte differentiation was Rotenone

(AC50 = 0.13 mM) (Table 1). Thirty-two percent of AC50 values

(22/69) were greater than 10 mM. The least potent chemical

of those which produced a 50% change in the cytotoxicity

and differentiation assays was Difenoconazole (AC50(Cytotoxici-

ty) = 17 mM, AC50(Differentiation) = 18 mM) (Table 1). Most AC50

values were calculated from decreased cell number and/or

decreased differentiation (82.6%, 57/69). However, four chemicals

increased differentiation and eight chemicals increased cell

number in our assay. Dicrotophos increased cardiomyocyte

differentiation (AC50 = 0.45 mM). Likewise, Mancozeb increased

cell number with similar potency (AC50 = 0.43 mM).

The chemical library included three chemicals run in triplicate to

assess assay replicability. The coefficient of variation for the replicates

on both cytotoxicity and differentiation measurements at each dose

including vehicle controls was less than 22%, indicating good

replicability. In addition, a global view of the chemical library

demonstrated varied activity of chemicals across concentration

(Figure 3). The most potent chemicals killed all of the cells as

indicated by the white block in the top left corner of the heat map

(Figure 3). The highest concentrations clustered together while the

vehicle dose formed a separate cluster indicating their similar activity

profiles (Figure 3A). Averages for cytotoxicity and differentiation

measurements clustered the doses in order from lowest concentration

to highest concentration for both parameters (Figure 3B).

Univariate associations between ES cell assay endpoints
and ToxCast assays

The ToxCast data set includes over 500 assays run using cell-

free and cell-based format in nine separate technologies. The cell-

based assays use a variety of primary cell types and cell lines [6].

Data from all 309 chemicals across these assays (as well as the

derived pathway-based perturbation scores and whole animal

toxicity endpoints) was used to build univariate and multivariate

models using the ES cell assay as both input and output variables.

We used the ES cell endpoints as inputs to mine the assay space

for significant correlations (Figure 4). The ES cell cytotoxicity

endpoint (decreased relative cell number) associated with 98

endpoints in the ToxCast assay suite (p#0.1). The majority of

endpoints that correlated with ES cell cytotoxicity were from human

cell-based platforms that reveal disruption of cell-cell signaling (e.g.

BioSeek) and cellular features (e.g. Cellumen) (Figure 4). Many of

the former endpoints represented immune system responses or

components such as cytokines (Figure S2). The latter endpoints that

associated significantly with ES cell cytotoxicity were general

measures of cytotoxicity such as apoptosis or DNA damage (Figure

S2), indicating the cell number endpoint in the ES cell assay was

consistent with other cell-based cytotoxicity endpoints. In addition,

ES cell cytotoxicity had significant correlations to mouse, rat and

Figure 1. ES cell assay overview. ES cells are seeded onto gelatin-
coated 96-well plates at Day 0 in the absence of pluripotent factors.
Eight chemicals (color outlined circles) are introduced on Day 1 at four
concentrations (yellowRred; 0.0125, 0.125, 1.25, 12.5 uM) and are
subsequently refreshed on Days 6–8. In-Cell WesternTM analysis is
initiated on Day 9 to assess differentiation (MYH6/MYH7) and
cytotoxicity (DRAQ5/Sapphire700). Vehicle (grey outlined circles) and
antibody controls (black outlined wells, Day 9–10) are included on each
plate.
doi:10.1371/journal.pone.0018540.g001
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rabbit ToxRefDB in vivo endpoints (Figure 4), including delayed

pubertal development in multigenerational rat studies and cranial

malformations in prenatal rabbit studies.

Decreased cardiomyocyte differentiation associated with slightly

fewer endpoints than did cytotoxicity (k = 88, p#0.1) (Figure 4).

Again, more than 80% of associations were to the aforementioned

Figure 2. Dose-response curves generated for cytotoxicity and differentiation. Images of experimental plate show cell number and
differentiation signal for chemicals 17–24 across the concentration range tested (A). Dose-response curves for six chemicals from the above plate as
well as AC50 values are shown (B).
doi:10.1371/journal.pone.0018540.g002
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human cell-based platforms (BioSeek, Cellumen). The ES cell

differentiation endpoint associated with mouse and rat ToxRefDB

in vivo endpoints, including renal defects in developmental rat

studies. However, unlike the increased cytotoxicity and decreased

differentiation endpoints, the decreased cytotoxicity and increased

differentiation endpoints had limited univariate associations across

the ToxCast assay space (cytotoxicity decrease: k = 16, p#0.1;

differentiation increase: k = 1, p#0.1).

Univariate associations between ToxCast assays and ES
cell endpoints

Using the reversed strategy, the ToxCast assay targets (k.500)

were used as inputs to look for associations with the ES cell

endpoints (k = 4). One hundred seven ToxCast assay endpoints

associated with ES cell cytotoxicity. All but two of these associations

were from cell-based assay platforms (Figure 4). A similar number of

ToxCast assay targets associated with ES cell differentiation

(k = 112). We found 21 transcriptional activity-based endpoints

from two different platforms (Attagene, CellzDirect) [6,19] that

correlated with ES cell differentiation. When we looked deeper into

the reporter gene responses, a striking finding emerged that many of

these responses represented critical developmental pathways (Figure

S2). For example, Bone morphogenetic protein receptor type II

(BMPR2) showed a significant association with decreased cardio-

myocyte differentiation in the ES cell assay (p = 0.01). In mice,

Bmpr2 is required for normal mesoderm development [20].

Likewise, Paired box gene 6 (PAX6) had a significant association

with an inhibition on ES cell differentiation (p = 0.12). Pax6

mutations in mice produce a range of phenotypes including eye,

craniofacial and brain defects [21]. Increased transcriptional activity

of OCT1 was significantly associated with decreased cardiomyocyte

differentiation (p = 0.03). Oct1 has recently been shown to be

required for normal trophoblast development in mice [22]. In

addition to associations with developmentally regulated genes,

multiple assay endpoints present in the oxidative stress signaling

pathway were strongly associated with decreased ES cell differen-

tiation. For example, increased transcriptional activity of NRF2

(p = 0.008), a classic oxidative stress-responsive gene [23,24], was

associated with decreased cardiomyocyte differentiation. Likewise,

JUN (p = 0.008), ABCG2 (p = 0.001), GSTA2 (p = 0.05), and HIF1A

(p = 0.06) correlated with decreased ES cell differentiation. Finally,

increased transcriptional activity of EGR1 (p = 0.04) and OCT1

(p = 0.03), which have been shown to play a role in oxidative stress

pathways [25,26,27], are highly correlated with decreased ES cell

Table 1. AC50 values calculated and arranged according to potency.

Cytotoxicity Differentiation Cytotoxicity Differentiation

Chemical Decrease Increase Increase Decrease Chemical Decrease Increase Increase Decrease

Rotenone 0.20 0.13 Thiram 0.11

Nitrapyrin 0.081 0.18 Fluazinam 0.22

Trifloxystrobin 0.72 0.39 Cyromazine 1.3

Fluoxastrobin 0.80 0.99 Dicamba 1.4

Niclosamide 0.32 1.0 Diquat dibromide 2.1

Propargite 1.5 1.2 Imazamox 2.5

Maleic hydrazide 0.39 1.3 Naled 2.5

IPBC 2.2 1.4 Phosalone 2.7

Azoxystrobin 1.7 5.0 Milbemectin 2.9 2.7

Etoxazole 14 6.6 Benomyl 3.0

Folpet 0.65 10 Abamectin 3.4

Fentin 1.3 12 Mepiquat chloride 5.4

Thidiazuron 12 15 TCMTB 6

Difenoconazole 17 18 Fludioxonil 11

Spiroxamine 0.47 Maneb 12

Diniconazole 1.2 Buprofezin 17

Triflumizole 5.8 Dicrotophos 0.45

Methoxyfenozide 6.3 Diuron 9.7

Triadimenol 8.2 Permethrin 15

Propiconazole 9 Mancozeb 0.43

Triclosan 10 Captan 4.6

Endosulfan 11 Cyazofamid 5.1

Imazalil 11 Bensulide 9.1

Prochloraz 12 Oxadiazon 12

Bifenazate 15 Dicofol 13

Butafenacil 16 Profenofos 14

Captafol 0.017 Fluroxypyr-meptyl 15

Acetamiprid 0.019 Sulfentrazone 17

doi:10.1371/journal.pone.0018540.t001
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differentiation. Taken together, these results predict that chemicals

which perturbed cardiomyocyte differentiation in ES cells per-

turbed multiple components involved in reactive oxygen species

signaling pathways in addition to critical developmental pathways.

Multivariate associations
In an effort to identify more complex patterns between the

ToxCast assay collection and cytotoxicity and/or differentiation in

our ES cell assay, machine learning algorithms were applied to

generate multivariate models that allowed us to develop

hypotheses for future testing. The predictors in the best model

of ES cell cytotoxicity comprise a collection of cell-based assays

that measured general cytotoxicity perturbations and decreased

immune system components (Figure 5A). This model had a

balanced accuracy of 0.78, indicating its strength. The top feature

that arose from the predictive model of ES cell cytotoxicity was the

Figure 3. ToxCastTMPhase I chemical activity across cytotoxicity and differentiation ES cell assay endpoints. Heatmaps depict chemical
effects on cytotoxicity and differentiation across dose. Unsupervised, two-dimensional hierarchical clustering of 320 ToxCast chemicals across four ES cell
assay endpoints (cytotoxicity increase, cytotoxicity decrease, differentiation increase, differentiation decrease) and 4 doses each using Euclidean distance
for measure and Ward’s method for linkage analysis (A). Two-dimensional individual clusters for averaged dose normalized to controls for cytotoxicity
and differentiation endpoints (B). Heatmap scales represent relative activity based on AC50 = 2log10(M), ranging from 0 (white) to 2 (yellow).
doi:10.1371/journal.pone.0018540.g003

Chemical Activity in an ES Cell Platform

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e18540



activation of p53, the canonical DNA damage and oxidative stress

response [28]. We also assessed the ability of the ToxCast assays to

generate a model which predicted decreased cardiomyocyte

differentiation in the ES cell assay. Although the predictive assays

for this model also included several measuring general cytotoxicity,

a significant feature was the gene expression-based assay for ATP-

binding cassette sub-family G member 2 (Abcg2) (Figure 5B).

Abcg2 is a xenobiotic half-transporter with wide substrate speci-

ficity and expression in multiple sites where protection from

toxicants is critical [29]. In addition, Abcg2 is highly expressed in

the Harderian gland [30], a chronic in vivo endpoint effect highly

correlated with decreased ES cell differentiation (Figure 4).

Discussion

ES cells are an attractive platform to assess developmental

toxicity because they are capable of recapitulating many of the

differentiation states and rely on signaling pathways present in

development. We used a mouse ES cell adherent cell differenti-

ation and cytotoxicity assay to assess the activity of a group of

chemicals (mainly pesticide active ingredients), most of which have

in vivo toxicity data. The results of this study demonstrated the

following: 1) a subset of tested chemicals were active in the ES cell

assay, 2) general cytotoxicity assays from the ToxCast program

were strongly associated with ES cell cytotoxicity assays, 3)

transcriptional activity assays were strongly associated with ES cell

differentiation assays, 4) statistical analysis identified predictive

models of increased ES cell cytotoxicity and decreased ES cell

differentiation for a subset of the tested chemicals.

This study examined the biological activity of 309 environmen-

tal chemicals in a mouse ES cell adherent cell differentiation and

cytotoxicity assay. The AC50 cutoff was used across the entire

ToxCast portfolio, therefore this was also the benchmark cutoff in

the ES cell assay. In addition, we selected the AC50 as an

appropriate level to determine the most potent developmental

toxicants. Based on the magnitude of effects, AC50 values were

calculated for 18% of the environmental chemicals tested. Because

the current study used the same plating library as other assays in

the ToxCast portfolio and because of the requirement to limit the

DMSO vehicle concentration, the present analysis was limited to

Figure 4. Associations between ToxCastTM assays and ES cell endpoints. Univariate associations revealed multiple ToxCast assays correlate
with ES cell cytotoxicity and differentiation. ES cell cytotoxicity and differentiation correlated with limited in vivo endpoints in ToxRefDB.
doi:10.1371/journal.pone.0018540.g004

Figure 5. Multivariate models predict ES cell cytotoxicity and differentiation. ROC curves generated using data from ToxCast assays and ES
cells to drive machine learning algorithms that produced predictive models of ES cell cytotoxicity (A) and differentiation (B).
doi:10.1371/journal.pone.0018540.g005
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testing chemicals at a maximum concentration of 12.5 mM. As

such, the results reported here focus on chemicals that were active

with AC50’s at these relatively low concentrations. Chemicals

that did not achieve a 50% change in cytotoxicity or cardiomy-

ocyte differentiation at the concentration range tested may be

biologically active, but not within this concentration range.

Additionally, because these studies were limited to an assessment

of cardiomyocyte differentiation, effects on ES cell differentiation

to other cell lineages may have been produced but not evaluated.

Other studies have shown a 30-fold change in chemical potency

when tested with two distinct ES cell lineage markers [31]. Finally,

many signaling pathways may be needed to fully evaluate

developmental toxicity in ES cells [32]. Expanding the endpoints

in our ES cell assay to monitor more diverse cell lineages and

signaling pathways as well as assessing alternative cutoff values

would be expected to identify a greater number of chemical

actives.

ToxCast enables the unique ability to correlate chemical effects

on the ES cell endpoints with a broader suite of ,500 assays. Such

an analyses revealed many novel relationships with ES cell

cytotoxicity based on their strong correlation for chemicals that

were active in human cell-based cytotoxicity assays. This bolsters

confidence in the use of the cytotoxicity assessment reported here

for evaluation of cytotoxicity between murine-human culture

models and seems to indicate that there are fundamental cellular

processes affected by these chemicals, rather than a developmen-

tally-specific response. Future studies to compare the concentra-

tion-dependent effects between adult and ES cells may identify

unique sensitivity in the ES cells. Additionally, evaluating chemical

agonists and antagonists of known developmental signaling targets

may be useful for determining the ability of the ES cell cytotoxicity

endpoint to identify perturbations in developmental signaling.

A group of transcriptional activity human cell-based assays

exhibited a strong association with decreased ES cell differentia-

tion. This association was specific to chemicals that produced a

50% decrease in cardiomyocyte marker expression, but not

chemicals that produced cytotoxicity. The developmental rele-

vance of several genes that associated with inhibition of

cardiomyocyte differentiation stands without question and fur-

thermore suggests this endpoint does, as anticipated, identify key

targets in mechanisms that are not detected by generic cytotoxic

response.

Each ES cell endpoint was correlated with adverse developmental

effects in vivo. In addition, each ES cell endpoint correlated to unique

developmental effects indicating the strength of using both

endpoints in future predictive models. However, the spectrum of

adverse developmental effects associated with perturbation of ES

cell endpoints was limited and effects on many organ systems were

not correlated. The limited correlation between in vivo and in vitro

surprising given the requirement of three independent assays to

Figure 6. Cartoon depicting chemical targets across multiple components of ROS signaling in ToxCast platforms. Chemicals that
decreased ES cell differentiation by at least 50% also targeted multiple components of ROS signaling. The statistical associations between decreased
ES cell differentiation and ToxCast assay platforms are highlighted (p#0.1).
doi:10.1371/journal.pone.0018540.g006
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achieve predictivity using the EST [13]. By increasing the chemical

concentration range evaluated, broadening the coverage of

differentiation states assessed, and integrating the differentiation

and cytotoxicity endpoints, we may expect to increase the ES cell

assay’s predictivity of in vivo toxicity. Further investigation into

chemicals that produced effects in vivo, but not in the ES cell assay

may provide valuable insight into species-specific toxicities and

allow us to define potential limitations of mouse ES cells in toxicity

testing. It is prudent to identify other assays that, in combination

with the ES cell platform, strengthen the predictive model for in vivo

associations.

The results reported here provide valuable information on the

potential pathway-level responses of ES cells. Univariate and

multivariate associations identified a collection of features that

predict decreased differentiation in ES cells. Many of these

features play a role in reactive oxygen species (ROS) signaling

(Figure 6). For instance, Oct1 has been identified as a critical

regulator of gene transcription during oxidative stress [33] and

knockout mutant mice showed hypersensitivity to oxidative stress

[34]. Bmpr2 is modulated under hypoxic conditions [35] and these

knockout mice are more susceptible to hypoxic pulmonary

hypertension [36]. Hif1a is responsive to oxidative stress [37,38]

and is required for maintenance of normal oxygen levels

throughout development [39]. Jun has been shown to associate

with Nrf2, an oxidative stress responder [40], and enhance

activation of the antioxidant response element (ARE), a binding

motif that plays a role in antioxidant gene regulation

[41,42,43,44,45,46]. Gsta2, an ARE-containing gene, exhibits

significantly reduced expression in Nrf22/2 mice [47]. The top

feature that predicted decreased ES cell differentiation, Abcg2, is

also regulated by hypoxic conditions and contains multiple

putative AREs [48]. Abcg2 promoter constructs were mutated in

putative ARE sites and tested in vitro resulting in decreased

promoter activity suggesting functionality [48]. Furthermore,

electromobility shift assays indicated Hif1a, a transcription factor

assay highly associated with decreased ES cell differentiation

(Figure 4), binds to the ARE sequence proximal to Abcg2 [48]. In

the context of stem cells, Abcg2 is expressed in both mouse [49] and

human [50] ES cells as well as numerous tissue-specific stem cell

side populations [51]. Abcg2 expression is widely used as a marker

of stem cell populations, although its role in stem cells is not

entirely known [52]. Overexpression of Abcg2 inhibits differenti-

ation while lack of Abcg2 expression promotes differentiation of

stem cells [53]. Identification of Abcg2 as a target of Notch

signaling as well as its role in preserving stem cell pluripotency

suggests Abcg2 may function to maintain self-renewing stem cell

populations [53]. It would be interesting to assess gene expression

in the ES cell assay and determine whether: 1) Abcg2 is upregulated

upon exposure to the chemicals driving this predictive model, 2)

ES cells maintained in oxidative stress conditions mimic the gene

expression profile from chemical-treated ES cells, and 3) whether

ES cells exposed to this subset of chemicals exhibit stem-like

features.

Efforts continue towards using ToxCast and ES cell assays to

identify toxicity pathways and predict in vivo toxicity endpoints.

Towards this end, Phase II of ToxCast is underway with the

addition of approximately 700 chemicals including many com-

pounds with toxicity data from failed clinical trials as well as

chemicals used to assess the original EST.
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