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Abstract

The human immunodeficiency virus (HIV) can be suppressed by highly active anti-retroviral therapy (HAART) in the majority
of infected patients. Nevertheless, treatment interruptions inevitably result in viral rebounds from persistent, latently
infected cells, necessitating lifelong treatment. Virological failure due to resistance development is a frequent event and the
major threat to treatment success. Currently, it is recommended to change treatment after the confirmation of virological
failure. However, at the moment virological failure is detected, drug resistant mutants already replicate in great numbers.
They infect numerous cells, many of which will turn into latently infected cells. This pool of cells represents an archive of
resistance, which has the potential of limiting future treatment options. The objective of this study was to design a
treatment strategy for treatment-naive patients that decreases the likelihood of early treatment failure and preserves future
treatment options. We propose to apply a single, pro-active treatment switch, following a period of treatment with an
induction regimen. The main goal of the induction regimen is to decrease the abundance of randomly generated mutants
that confer resistance to the maintenance regimen, thereby increasing subsequent treatment success. Treatment is switched
before the overgrowth and archiving of mutant strains that carry resistance against the induction regimen and would limit its
future re-use. In silico modelling shows that an optimal trade-off is achieved by switching treatment at &80 days after the
initiation of antiviral therapy. Evaluation of the proposed treatment strategy demonstrated significant improvements in
terms of resistance archiving and virological response, as compared to conventional HAART. While continuous pro-active
treatment alternation improved the clinical outcome in a randomized trial, our results indicate that a similar improvement
might also be reached after a single pro-active treatment switch. The clinical validity of this finding, however, remains to be
shown by a corresponding trial.

Citation: von Kleist M, Menz S, Stocker H, Arasteh K, Schütte C, et al. (2011) HIV Quasispecies Dynamics during Pro-Active Treatment Switching: Impact on Multi-
Drug Resistance and Resistance Archiving in Latent Reservoirs. PLoS ONE 6(3): e18204. doi:10.1371/journal.pone.0018204

Editor: Art Poon, British Columbia Centre for Excellence in HIV/AIDS, Canada

Received November 4, 2010; Accepted February 27, 2011; Published March 24, 2011

Copyright: � 2011 von Kleist et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MvK acknowledges financial support by BMBF funding. SM acknowledges financial support by DFG funding, provided through the Dahlem Research
School of Freie Universität Berlin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vkleist@zedat.fu-berlin.de

Introduction

In 1996, the tremendous clinical success of highly active

antiretroviral therapy had led many researchers to believe that the

eradication of HIV would be feasible. However, it was soon

realized that inducible pro-virus persists in latently infected cells

despite ongoing therapy and that the latent reservoir prevents HIV

eradication within the patients lifetime [1]–[6].

Latent infection is established when CD4z T-lymphoblasts

containing integrated provirus [5,7] escape both immune effector

mechanisms and the cytopathic effects of the virus and revert to a

resting memory state [8]. Besides preventing eradication of HIV,

the latent reservoir also serves as a memory of any virus species

replicating during the course of HIV infection [9,10], including

drug resistant variants. The contents of this archive of resistance

are strong predictors of future treatment failure [9,11].

Despite the impressive improvement of antiviral therapy, many

patients still experience virological failure caused by the selection

of drug resistant virus populations. Current guidelines recommend

changing treatment after the confirmation of virological failure.

However, in the face of the rapid viral turnover this approach

could be sub-optimal [12]. Changing therapy after the appearance

of drug resistant mutants will (i) allow the resistant viral population

size to expand and evolve and (ii) lead to an archivation of resistant

viral strains. An optimal treatment strategy should therefore

prevent viral relapse with drug resistant strains and, more

importantly, prevent drug resistant mutants from establishing

latent infection.

Induction-maintenance (IM) approaches are used for the

treatment of a growing number of infectious- and neoplastic

diseases [13–15]. Typically, patients start with an intensified

induction regimen (composed of a number of potent and

potentially toxic drugs), which will subsequently be replaced by a

maintenance regimen (composed of a smaller number of less toxic

drugs) [16]. However, patients treated with a large number of

drugs are particularly vulnerable to drug interactions [17] and
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adverse side effects that complicate HIV therapy and seriously

undermine the success of clinical management [18].

Another approach to overcome the development of resistance is

to alternate antiretroviral therapy [19]. This strategy has been

shown to significantly delay virological failure [20,21], yet it is

flawed by its high psychological and physical burden [22].

We propose an approach that combines the advantages of

conventional IM- and treatment alternation strategies, but

minimizes their inherent disadvantages. We suggest a single,

pro-active treatment switch from an inducer drug combination to

a maintenance combination. The inducer drug combination

should rapidly lower the viral population size and eliminate

resistant mutants. Subsequently, it will be replaced by a

maintenance drug regimen with a completely different resistance

profile, before drug resistant strains are archived.

We have previously introduced a novel model of virus dynamics

and adaptation [23], which allows us to consider the distinct

molecular effects of all novel (and some developmental) HIV

drugs. In this article, we present a novel mathematical concept,

which prevents the emergence of drug resistance in each

individual realization (virtual patient) of the model by switching

between therapies. Utilizing this concept, we deduce a distribution

of (individual) switching-times, which we use to determine a single

fixed duration for the induction therapy, which increases the

treatment success probability in the whole virtual patient

population and which minimizes the risk for resistance to become

archived in the latent reservoir. Finally, the performance of this

novel induction-maintenance-strategy is evaluated against con-

ventional HAART therapy.

Results

Virus dynamics model
We have extended the existing viral dynamics model, described

in [23], for the compartment of very long lived, latently infected T-

cells TL (Fig. 1 and Materials and Methods section), which are

believed to prevent eradication of HIV [24] and to lead to the

archiving of drug resistance [9,10].

Briefly, the virus dynamics model (Fig. 1) comprises T-cells,

macrophages, free non-infectious virus (TU,MU,VNI, respectively),

free infectious virus of mutant strain i,VI(i), and five types of

infected cells belonging to mutant strain i: infected T-cells and

macrophages prior to proviral genomic integration (T1(i) and

M1(i), respectively) and infected T-cells and macrophages after

proviral genomic integration (T2(i),TL(i) and M2(i), respectively).

The latently infected cell type TL does not express viral genes, but

can become activated with rate a, transforming this cell into a

virus producing post-integration infected T-cell T2. The average

rates of change of the different species are displayed in the Materials

and Methods section. All parameter values have been chosen

Figure 1. Extended virus dynamics-, mutation- and drug interference model. Target cells (TU,MU) can become successfully infected by
infective virus VI with infection rate constants bT and bM, respectively, creating early infected cells T1 and M1 . Infection can also be unsuccessful
after the step of viral fusion (rate constant CLT and CLM), eliminating the virus and rendering the cell uninfected. Early infected cells T1 and M1 can
also destroy essential viral proteins or DNA prior to integration, returning the cell to an uninfected stage. The genomic viral DNA can become
integrated with rate constants kT and kM creating post-integration, infected cells T2,TL and M2 . The latently infected cell type TL does not express
viral genes, but can become activated with rate a, transforming this cell into a productively infected T-cell T2 . Virus producing cells T2,M2 release

new infectious- and non infectious virus VI and VNI with rate constants NT, cNTNT{NT

� �
and NM, dNMNM{NM

� �
, respectively. Phenotypic mutation

occurs at the stage of viral genomic integration kT,kM (see [23]). All cellular compartments x can get destroyed by the immune system with
respective rate constants dx and the free virus (infectious and non-infectious) gets cleared with rate constant CL (not shown in the illustration). The
site of drug interference with the replicative cycle of HIV is indicated by blue bars for the respective drug classes (NRTIs, NNRTIs, FIs, CCR5-inhibitors,
INIs, PIs, and maturation inhibitors).
doi:10.1371/journal.pone.0018204.g001
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according to previous studies and are displayed in Table 1. Since

some viral strains are present only in very low copy numbers, we

used a hybrid stochastic-deterministic approach [25] to perform

simulations (see Materials and Methods section for details).

Treatment change before virological failure
Currently, changes of antiretroviral treatment regimes are

largely triggered by virological failure or toxicity. In Fig. 2A, we

show the simulated viral load in the case of first line treatment

failure. The corresponding population dynamics of HIV are

shown in Fig. 2B. During first line treatment failure, resistant

mutants (green- and cyan colored lines in Fig. 2B) are selected

from the quasi-species population and quickly evolve into the

dominant virus population, leading to viral rebound. While the

total virus population is temporarily shrinking, mutants that confer

resistance against a potential follow-up treatment (red line, dark

grey shaded area in Fig. 2B) are depleted (possibly eradicated).

However, during viral rebound the total viral population re-

expands and consequently erroneous reverse transcription gener-

ates novel mutants that can confer resistance against a second line

therapy. Once the viral population size has been restored, the

second line therapy, although composed of entirely different drugs,

is as likely to fail as before the initiation of first line therapy.

Furthermore, it is likely that drug resistant viral strains become

archived while they dominate the viral population (light grey

shaded area in Fig. 2B).

In Fig. 2C, we show the viral load dynamics during the

proposed induction-maintenance therapy. The corresponding

population dynamics of HIV are shown in Fig. 2D. The inducer

combination reduces the viral load (see Fig. 2C). However,

treatment is changed (vertical dashed black line) to the

maintenance combination, before resistant strains (green and cyan

line in Fig. 2D) can become more abundant than the wildtype

(magenta line in Fig. 2D). Therefore, at the time of treatment

change (vertical dashed black line in Fig. 2D), total virus has been

decreased and mutants that confer resistance to the maintenance

therapy (red line, dark grey shaded area in Fig. 2D) are likely to be

eradicated, which improves the probability to achieve durable

virological suppression with the maintenance therapy. With this

strategy, the abundance of the wildtype is larger than the

abundance of drug-resistant mutants, which lowers the probability

that drug resistance enters the latent reservoir (light grey shaded

area is absent in Fig. 2D).

In order to determine the optimal time point for switching from

inducer- to maintenance- drug combinations, tswitch, we first

determined relevant sets of parameters for (i) the in vivo efficacy

g(wt,j) of each utilized drug j against the wildtype wt and (ii) the in

vivo fitness loss that is associated with resistance development s(i)
(shown in Table S1), since the corresponding in vivo parameters are

known to vary substantially between different patients, e.g. [26]. For

simulation purposes, we assumed that a single point mutation is

sufficient to create high-level resistance (99%) to a single drug. This

is somewhat a worst-case assumption, but is justified for a number of

drugs, see e.g. [27,28]. Relevant clinical failure rates after one year

in previously treatment-naive patients, who receive HAART in a

clinical trial setting, are &15{25% [29], (see Table S1).

We then use an algorithm that automatically switches from

inducer- to maintenance drug combination, minimizing virological

failure for each realization (virtual patient), respectively. A

histogram of the derived (individual) switching times from a total

of 6000 simulations is shown in Fig. 3. Based on the histogram, we

finally chose a fixed time tswitch for changing from induction- to

maintenance therapy. In the sequel, we evaluate, if the chosen

time tswitch to change from inducer- to maintenance combination

leads to a general improvement compared to conventional

HAART therapy, in terms of treatment success and drug

resistance archiving.

Determination of treatment changing time
In [23] we introduced the ‘reproductive capacity’ Rcap(j). For

the extended model used herein, we have provided the derivation

of Rcap(j) in the Materials and Methods section. The reproductive

capacity Rcap(j) can be envisaged as the amount of offspring that

the whole viral population is expected to produce under some

treatment j during one round of replication. It can be calculated

from any model simulation and enables to evaluate each state of

the infection from the perspective of any potential treatment j. As

the viral population adapts to some currently applied treatment,

Rcap(j) changes accordingly: Rcap(j) is large initially and decreases

subsequently until drug resistant strains develop and render the

treatment j inefficient. We want to assess the point in time, when

some inducer- drug combination stops to provide any benefits (in

terms of the viral population) for the next drug combination

(maintenance combination). We therefore evaluate Rcap(j) for

j~maintenance combination while the induction combination is

applied and change from the induction- to the maintenance

therapy when Rcap(j) reaches its minimum;

switch if :
d

dt
Rcap(j)~0: ð1Þ

The derived switch-times are displayed in Fig. 3. We chose the

0.5th percentile at tswitch~80 days as a fixed time for treatment

change in the forthcoming evaluation of the proposed induction-

maintenance-strategy.

Implementation of conventional vs. proposed induction-
maintenance-strategy

In order to reflect the clinical practice of HIV care, we have

implemented the following routine for assessing the efficacy of the

applied treatment combinations.

Table 1. Model parameters generally used in simulations.

Param. Value Ref. Param. Value Ref.

lT 2:109 [64] lM 6:9:107 [65]

dT,dT1
0.02 [65] dM,dM1

0.0069 [65]

dT2
1 [36] dM2

0.09 [23]

CL 23 [36] dL 10{4 [16,66]

dPIC,T 0.35 [67,68] dPIC,M 0.0035 [23]

a 10{3 [66] p 8:10{6 [66]

m 2:2:10{5 [42] rrev 0.33 [68,69]

kT(wt,w) 0.35 [68] kM(wt,w) 0.07 [23]

bT(wt,w) 8:10{12 [49] bM(wt,w) 10{14 [23]

bNNT
1000 [65] bNNM

100 [65]

b:q:rPR 0.67 [23] - - -

All parameters refer to the wildtype 0wt’ in the absence of drug treatment w. All
parameters in units [1/day], except p, rrev , b:q:rPR (unit less) and m in

½1=(rev:trans::base)�. CLT=M(wt,w)~
1

rrev

{1

� �
:bT=M(wt,w),

NT=M(wt,w)~b:q:rPR
:bNNT=M [23].

doi:10.1371/journal.pone.0018204.t001
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Our virtual patients are monitored every month for efficacy

assessment until virus levels fall below the limit of detection (50 HIV

RNA/mL plasma). Thereafter, they are monitored every other

month. Virological failure has been defined according to treatment

guidelines [24]: At the first efficacy assessment (one month after

treatment initiation), viral load should have fallen by at least 2 logs

[HIV RNA/mL plasma]. Each consecutive measurement should be

below the previous assessment. By month 4, viral load should be

below the level of detection (50 HIV RNA/mL plasma). After that,

detectable virus is defined as virological failure.

We implemented conventional HAART in the following way:

The virtual patients are initially treated with a drug combination

consisting of two nucleoside reverse transcriptase inhibitors

(NRTIs) and one non-nucleoside reverse transcriptase inhibitor

(NNRTI) (e.g. tenofovir (TDF) + emtricitabine (FTC) + efavirenz

(EFV)), until virological failure is detected, in which case treatment

is changed to a second line regimen consisting of a protease

inhibitor (PI), an integrase inhibitor (InI) and an entry inhibitor

(EI) (e.g. ritonavir (RTV) -boosted PI + raltegravir (RLV) +
maraviroc (MVR)).

In the proposed induction-maintenance-strategy, patients are

initially treated with a combination consisting of a PI, an InI and

an EI, until tswitch~80 days. After that, a treatment consisting of

two NRTIs and one NNRTI is applied. If failure is detected at any

efficacy assessment time point, treatment change is applied.

In the following, we performed 1000 hybrid stochastic-determin-

istic simulations for each relevant parameter set (deduced from Table

S1) and counted the number of realizations, in which virological

failure occurred. Furthermore, we assessed, if the number of drug

resistant mutants in the very long-lived infected cells TL was higher

at the end of the simulation than upon initiation of treatment. In this

case we recorded ‘‘archiving’’ of drug resistance. The results of our

simulations are discussed in the next section.

Proposed induction-maintenance-strategy improves
success rate and minimizes archiving of drug-resistance

Fig. 4A shows that the proposed induction-maintenance-

strategy (blue line) with a fixed treatment switch time of

tswitch~80 days leads to a significant reduction in the probability

to experience virological failure compared to the conventional

treatment strategy (red line). This observation holds true for a wide

range of parameters (see Table 2, second column). In only two

cases, where failure rarely occurs during conventional therapy, we

do not get significant differences at the p = 0.05 level.

Fig. 4B shows that virological failure and the average number of

archived drug resistance mutations are strongly correlated (spearman’s

correlation coefficient rSw0:99, pv0:001). This indicates that vi-

rological failure is a strong predictor for drug resistance archiving.

Tables 2 (third–fifth column) show the number of cases in which

archiving of multi-drug resistant viral strains (with §2, §3 and

Figure 2. Abundance of viral mutants during first-line treatment failure and during proposed induction-maintenance strategy.
A: Plasma virus load during first line treatment failure (blue line). B: Total abundance of distinct viral mutants during first-line treatment failure.
C: Plasma virus load (blue line) during proposed induction-maintenance strategy with switch between induction- and maintenance treatment at 80
days (vertical dashed line). D: Total abundance of distinct viral mutants during proposed induction-maintenance strategy. The magenta line denotes
the abundance of wildtype virus. Green- and cyan lines denote the abundance of mutants that are part-resistant against the first line regimen
(resistant against two out of three drugs) and mutants that are fully resistant against the first line regimen, respectively. The red lines denote the
abundance of all mutants, which are part-resistant against a second line treatment. The area under the red line is highlighted by the dark grey shaded
area, to stress the negative impact of these mutants on the success of a second line regimen. The light shaded area in panel B indicates that resistant
mutants are more abundant than the wildtype and therefore highlights when drug resistance archiving in latently infected cells takes place. The
simulations were performed by assuming 70% drug efficacy g(wt,j) and a fitness loss s of 20% per drug resistance mutation. Furthermore, it was
assumed that a single point mutation can confer absolute resistance to a single drug.
doi:10.1371/journal.pone.0018204.g002
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§5 drug resistance mutations) occurred in the latent reservoir,

under the proposed induction-maintenance strategy and conven-

tional HAART, respectively. It can be seen that the proposed

treatment strategy leads to a significant reduction in multi-drug

resistance archiving for the majority of parameters evaluated. This

indicates, that although two treatment lines have been used for the

novel therapy, more therapeutic options are on average available

in the follow-up period, compared to conventional therapy.

Discussion

We have presented and tested (in terms of a mathematical

model) a very simple treatment strategy that can lead to significant

reductions in virological failure in comparison to conventional

HAART treatment. A unique drug combination (inducer

combination) is used for a short time (80 days) and pro-actively

switched to a maintenance combination. The purpose of the

inducer combination is to decrease viral population size and

thereby increase the likelihood that the subsequent therapy

(maintenance) will achieve durable suppression. Clinical imple-

mentation of this novel treatment strategy requires only one

additional clinical visit at 80 days in comparison with the

conventional HAART therapy. The important finding of our

study is, that although two drug combinations are always utilized

during the proposed induction-maintenance strategy, less archiv-

ing of drug resistance occurs in comparison with a conventional

treatment strategy, where a second treatment line would be

applied only in the case of virological failure or toxicity. Less drug

resistance archiving implies that more treatment options will be

available for the follow-up and long-term management of HIV-

infected patients when the proposed induction-maintenance

treatment strategy is used (see Table 2, third–fifth column).

Fig. S1 shows that only a few archiving events (§40 fully

resistant mutants) are sufficient to eliminate treatment options

permanently. The number of circulating latently infected cells is

small [2,7,30,31]. Detecting a small subset of mutants within the

circulating latently infected cells is experimentally not feasible,

because standard sequencing technology will detect the major

strains [32], while novel, second generation methods require large

samples [33]. Hence, mathematical modelling is a reasonable tool

to investigate drug resistance archiving following treatment

application.

The time for switching between combinations tswitch ( = 80 days)

is the most critical parameter for the success of the proposed

strategy. The following two considerations have to be taken into

account: (i) The inducer combination should be applied only for a

Figure 3. Histogram of optimal, individual treatment switching
times. Switching times for changing from inducer- to maintenance
therapy were automatically determined and carried out (using eq. (1)).
The 0.5th percentile, marked by the red line, was determined and the
corresponding time tswitch~80 days was used as a fixed value in the
suggested strategy to switch from inducer- to maintenance therapy.
Hybrid deterministic-stochastic simulations were performed at clinically
relevant parameter sets (see Table S1). Drug switches occurred in a total
of 5478 out of 6000 simulations.
doi:10.1371/journal.pone.0018204.g003

Figure 4. Kaplan-Meier estimates for treatment success, and correlation between virological failure and archiving of drug
resistance. The plots summarize the results trough the whole simulated parameter space from Table 2 (12000 simulations in total). A: Probability of
no virological failure (%) for the IM-strategy (blue line) and the conventional therapy (red line), respectively. Dashed lines are the 95% confidence
ranges, calculated using Greenwood’s formula. Virological failure was defined according to [24] and is summarized in section ‘‘Implementation of
conventional vs. proposed induction-maintenance-strategy’’. B: The probability to virological failure vs. the average number of drug resistance
archiving in the latent reservoir. A strong positive correlation (pv0:001) between virological failure and drug resistance archiving exists, as indicated
by spearman’s non-parametric rank correlation coefficient rSw0:99.
doi:10.1371/journal.pone.0018204.g004
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short time, to prevent the selection and archiving of mutants,

which are resistant to the current drug combination and would limit

the further use of this drug combination (risk of the strategy), (ii)

while at the same time, it has to be applied long enough to possibly

eradicate viral mutants, which are resistant to the next drug

combination (the benefit of the strategy).

The time required for resistant mutants to emerge, depends on

their abundance before the initiation of therapy (if they pre-exist

and are selected from the population) and also on their genetic

distance to the wildtype (if resistance is de novo developed). As

discussed above, we determine the abundance of mutants at the

time of therapy initiation by utilizing the deterministic fix-point as

starting condition for our simulations. We have shown the non-

inferiority of our approach in Fig. 5, if drug resistant mutants are

more abundant than expected. We have assumed the shortest

genetic distance possible between wildtype and fully drug resistant

mutants (one mutation is sufficient to create full resistance against

a single drug, three distinct mutations are required for full

resistance against a triple-drug combination). For some drugs,

however, subsequent accumulation of mutations creates fully drug

resistant mutants [34]. In our model, drug resistance might

therefore develop more rapidly than in vivo for drugs with a large

genetic barrier [35]. This implies that in vivo the inducer

combination could possibly be applied for a longer time frame

than the 80 days utilized in our model, if the genetic distance

between wildtype and fully drug resistant mutant was greater than

considered here (greater than one point mutation). However, our

results demonstrate that even a very short time (80 days) in which

the inducer combination is applied, can improve the clinical

outcome significantly (see Fig. 4 and Table 2). This short time

already minimizes the probability that drug resistance emerges

and can, in that sense, be considered safer than a longer induction

phase.

Eradication of viral mutants depends critically on their

abundance prior to the initiation of therapy and on the rate at

which viral compartments (and therefore resistant mutants) are

cleared in vivo. The elimination of viral compartments in vivo has

been quantified and validated in a number of clinical studies [36–

38]. We used the expected abundance of viral mutants (the

deterministic fix-point of the model) to estimate the abundance of

different viral mutants at the time of treatment initiation. In Fig. 5

we show non-inferiority of our approach in the case, where an

unexpectedly high abundance of drug resistant mutants is present

(1% of the wildtype; detection limit of second generation

sequencing technologies [33,39,40]), which would require longer

time for eradication.

One limitation of the proposed induction-maintenance strategy

is the potential inability to eliminate viral strains, that carry

resistance to the maintenance therapy. This is particularly the

case, if viral mutants, which carry resistance against all (or at least

the majority of) drugs in the maintenance combination, are

archived in the latent reservoir prior to treatment initiation. In Fig.

S1B, we have quantified that § 40 fully resistant viral mutants in

the latent reservoir eliminate treatment options permanently.

However, the likelihood for fully resistant archival copies (resistant

against all drugs in the maintenance regimen) in the treatment

naive patient, who was infected with wildtype 0wt’ virus, is

relatively small. Based on quasi-species theory, Ribero et al. [41]

calculated the pre-treatment frequency of viral mutants. According

to [41], the frequency of double mutants (part-resistant) relative to

the wildtype equals

Fdbl::wt~
m2

sdbl:

: 1

s1
z

1

s2
{1

� �
, ð2Þ

where s1,s2 and sdbl: are the selective disadvantages of the strain

Table 2. Probability of virological failure and -archivation of multi-drug resistant virus during suggested induction-maintenance-
(IM) vs. conventional HAART strategy.

Parameter set Failure rate Probability of multi-drug resistance archivation

ID (1{g; s) IM, HAART $2 mutations $3 mutations $5 mutations

R1 (0:7; 0:3) 1.7, 4.8%�� 1.8,4.8%�� 1.7,4.8%�� 0,0.1%

R2 (0:7; 0:25) 4.2, 14.2%�� 4.8,14.2%�� 4.2,13.9%�� 0.1,0.2%

R3 (0:7; 0:2) 6.6, 41.8%�� 18.5,42.2%�� 9.6,41.6%�� 0.1,2.9%��

R4 (0:75; 0:25) 0.9, 2.8%� 0.9,2.9%� 0.9,2.8%� 0,0%

R5 (0:75; 0:2) 1.8, 12.5%�� 2.2,12.6%�� 1.8,12.5%�� 0,0.4%

R6 (0:8; 0:2) 0.7, 2.2%� 0.8,2.3%� 0.7,2.2%� 0,0.2%

R7 (0:8; 0:15) 3.1, 21.9% �� 2.8,22.1% �� 3.1,21.9% �� 0.2,0.9% �

R8 (0:8; 0:1) 7.9, 44% �� 9.3,44% �� 8.3,44% �� 0.7,14.6% ��

R9 (0:85; 0:15) 0.6, 0.6% 0.9,1.3% 0.6,0.6% 0,0%

R10 (0:85; 0:1) 2.4,7.1% �� 2.7,8.1% �� 2.4,7.2% �� 0.3,0.4%

R11 (0:85; 0:05) 33.7, 59.1% �� 34.7,59.5% �� 34,59.3% �� 3.4,17.2% ��

R12 (0:9; 0:05) 1.2, 1.8% 2.3,2.5% 1.3,1.8% 0.1,0.1%

Columns 2–5 show the distinct treatment outcome for the suggested induction-maintenance strategy (left entry) and a conventional HAART strategy (right entry) for
different parameter sets R1–R12 in terms of mutation-associated reproductive fitness losses s and different levels of drug efficacy (1{g) (indicated in column 1),
following 1000 simulations respectively. Relevant parameter combinations had been identified beforehand, see Table S1 and section ‘‘Treatment change before
virological failure’’. Column 2: Percentage of virological failure after 2 years of therapy according to the HIV treatment guidelines (summarized in section
‘‘Implementation of conventional vs. suggested induction-maintenance strategy’’). Column 3–5: Probability of multi-drug resistance archiving during the proposed
strategy and during conventional HAART strategy. Cross tab x2 tests of independence between treatment strategy (suggested vs. conventional strategy) and outcome
(virological failure or archivation of multi-drug resistance) are stated. A small p-value indicates that the distinct outcome depends on the treatment strategy and is not
due to random effects (** pv0:001, * pv0:05).
doi:10.1371/journal.pone.0018204.t002
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carrying the first-, the second- and the both drug-resistance

mutations and m~2:16:10{5 is the single point mutation rate [42].

It is reasonable to assume that resistant mutants are, at best, as

likely to enter the latent reservoir as the wildtype in the absence of

any drugs, due to their inherent fitness loss, i.e. P(dbl:jTL)
ƒFdbl::wt. Considering a maintenance combination consisting of

efavirenz (EFV), tenofovir (TDF) and emtricitabine (FTC), with

primary resistance mutations K103N, K65R and M184V and

respective selective disadvantages for the single-point mutants

sK103N~0:125,sK65R§0:8 and sM184V§0:9 [43] and additive

fitness losses in the double mutants sK103N=K65R,sK103N=M184V,

sK65R=M184V (i.e. sdbl:~1{(1{s1):(1{s2)), the probability that

mutants, resistant against two out of three maintenance drugs,

enter the latent reservoir are P(K103N=K65RjTL)ƒ5:10{9,

P(K103N=M184VjTL)ƒ4:10{9 and P(K65R=M184VjTL)ƒ

6:5:10{10 respectively. Using in vivo data, Chun et al. [7]

estimated the average number of latently infected cells with

replication-competent provirus to be TL&1:4:106 cells, so that

the expected number of partly-resistant mutants E(dbl:,TL)~
TL
:P(dbl:jTL) that are archived prior to treatment initiation

is E(K103N=K65R,TL)ƒ0:007,E(K103N=M184V,TL)ƒ0:006
and E(K65R=M184V,TL)ƒ0:0009. In other words, it is very

unlikely that part-resistant mutants are archived in patients prior

to treatment, since E(dbl:,TL)%1. Furthermore, part-resistant

mutants are still susceptible to one out of the three drugs in the

maintenance combination. For triple-drug (fully) resistant strains,

the likelihood of archival copies is even smaller.

Infection with drug resistant strains, mainly against established

drug classes, is a major, growing health concern [44]. During

infection with drug-resistant viral strains, archivation in the latent

reservoir is likely, since this reservoir is established early in the

infection [45]. If the circulating viral population reverses to a drug-

susceptible type, archived resistant mutants from the time of

infection might remain undetected and can complicate subsequent

treatment (see Fig. S1). This particular circumstance applies

equally to the proposed induction-maintenance therapy and

conventional HAART.

For our strategy, we have chosen drugs from novel classes (e.g.

InI, EI) for the inducer-combination, while we selected drugs from

well-established classes for the maintenance combination (NNRTI,

NRTI). This has the following rationale: The inducer combination

will only be applied for a short time (80 days), while the

maintenance combination could possibly be applied for much

longer periods of time (until it fails, or toxicological events occur).

Second or third generation drugs within the established drug-

classes are often more convenient to apply (e.g. once daily dosing)

and are less toxic, which has important implications for the long-

term management of HIV [46]. Secondly, drugs from the novel

drug classes (InI, EI), are currently not available as generic

formulations, whereas low-cost alternative drugs exist for estab-

lished drug classes. Therefore, in order to reduce treatment costs,

it is of advantage to select a strategy, in which inexpensive drugs

can be used for the majority of time, while cost-intensive ones are

only applied for short treatment periods.

Some drug classes can cause a distinct viral load decline. In

particular, the only approved InI raltegravir causes a more rapid

viral load decay, compared with other HIV inhibitors [47,48]. It

might therefore seem logical, based on viral load decay, to use

raltegravir in the induction treatment. It has been shown,

however, that the faster viral decay with raltegravir could be a

consequence of the particular site of action of InIs within the viral

life cycle and may not be due to an overall increased removal rate

of replication-competent viral compartments by raltegravir

[23,49]. Long-term studies of raltegravir- versus efavirenz-based

HAART showed equal outcomes with either therapies [50,51],

arguing against the superiority of raltegravir-based drug combi-

nations in removing replication-competent virus; however, further

analysis is required.

Intuitively, it might be more advantageous to use drug

resistance tests to guide treatment switches, instead of using a

fixed time for a pro-active switch from inducer- to maintenance

combination [19]. However, under the considerations discussed

above, a switch from inducer- to maintenance combination should

be applied before any resistant strains become abundant. This

implies that the most frequent viral strain at the time of switch

should be the wildtype. Standard assays fail to detect minority

species [32]. Ultra-deep/pyro-sequencing might provide a more

holistic picture of the quasi-species composition and can pick up

viral mutants that are abundant in &1% of the quasi-species

population and if the sample is large enough [33,39,40]. However,

even in this case, viral mutants are likely to dominate once the

results are available (w1 week), owing to the rapid viral kinetics

[52].

In our in silico study, we considered time-invariant, as well as

anatomically homogeneous average drug efficacy (1{g), for the

ease of modelling. It is also possible to consider drug- and patient-

specific time-varying pharmacokinetics and to study the impact of

compliance on drug resistance development. However, if compli-

ance is identical between the two study arms, the qualitative

difference between the outcome of conventional HAART versus

the proposed induction-maintenance strategy is not expected to

change. As shown in Table 2, the proposed induction-mainte-

nance therapy performs better than conventional HAART for a

wide range of parameter values for (1{g). Furthermore, it was

shown in a clinical study [20,21] that treatment alternation leads

to significantly less virological failure than conventional HAART,

when compliance is imperfect but identical between the two study

arms. However, since the study in [20,21] is not identical to the

Figure 5. Kaplan-Meier estimates of treatment success (prob-
ability of no virological failure) for very high initial abundance
of drug resistant mutants. The figure shows the outcome of 500
simulations for the proposed induction-maintenance strategy (blue
line) and for the conventional HAART therapy (red line), respectively.
Dashed lines indicate the 95% confidence ranges, calculated using
Greenwood’s formula. The initial abundance of drug resistant mutants
was set to 1% of the population. Other parameter values: (1{g) = 0.75,
s = 0.8.
doi:10.1371/journal.pone.0018204.g005
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treatment strategy presented herein, a clinical study should be

performed to fully investigate the potential of the proposed

induction-maintenance strategy. Ideally, this prospective random-

ized trial could evaluate the time to virological failure in patients

taking a single unchanged regimen and patients on induction-

maintenance regimens. Importantly, the trial should be designed

to evaluate whether the induction maintenance strategy affects the

durability of second- and third line regimens. The presence and

relative frequency of viral minority populations as well as their

mutational patterns could be monitored by analyzing proviral

DNA from circulating T-cells using, e.g., next-generation

sequencing. This data could serve to validate our mathematical

model.

Based on a recent, successful pre-exposure prophylaxis (PrEP)

trial, where emtricitabine (FTC) + tenofovir (TDF) were given to

high-risk individuals [53], it could be envisioned that PrEP is used

more broadly. One risk with such a strategy is the selection of

FTC/TDF resistance, which occurred in both subjects with acute

HIV infection at enrolment in the PrEP trial [53]. Furthermore,

there is a high risk for the selection of drug resistance, if subjects

get infected despite PrEP (e.g. due to low adherence; v50% in the

PrEP trial [53]). While FTC/TDF is a core component of first-line

HAART, the long-term epidemiological consequences of drug-

resistance selection are of utmost importance. One interesting

question is whether the proposed induction-maintenance therapy

can re-sensitize those subjects towards FTC/TDF treatment, who

had become infected with HIV despite PrEP. While a thorough

analysis of this question is beyond the scope of the current article,

related scenarios are frequently encountered in the context of

prevention of mother-to-child transmission (MTCT) programs,

when short-course intrapartum nevirapine is used. In the MTCT

context, protease-inhibitor-based induction therapy has been used

for the re-sensitization of pre-exposed children towards nevirapine

[54]. Further analysis, however, is required to elucidate the

potential of induction-maintenance strategies for re-sensitization of

pre-exposed HIV infected individuals.

Materials and Methods

Model Equations
The virus dynamics model (Fig. 1) comprises T-cells, macro-

phages, free non-infectious virus (TU,MU,VNI, respectively), free

infectious virus of mutant strain i,VI(i), and five types of infected

cells belonging to mutant strain i: infected T-cells and macro-

phages prior to proviral genomic integration (T1(i) and M1(i),
respectively) and infected T-cells and macrophages after proviral

genomic integration (T2(i),TL(i) and M2(i), respectively). The

latently infected cell type TL does not express viral genes, but can

become activated with rate a, transforming this cell into a virus

producing post-integration infected T-cell T2. The average rates of

change of the different species are given by the following system of

ODEs:

d

dt
TU~lTzdPIC,T

:T1(i){dT
:TU{

X
i

bT(i,j):VI(i):TU

d

dt
MU~lMzdPIC,M

:M1(i){dM
:MU{

X
i

bM(i,j):VI(i):MU

d

dt
T1(i)~bT(i,j):VI(i):TU{(dT1

zdPIC,TzkT(i,j)):T1(i)

d

dt
M1(i)~bM(i,j):VI(i):MU

{(dM1
zdPIC,MzkM(i,j)):M1(i)

ð3Þ

d

dt
TL(i)~

X
k

p:kT(k,j)T1(k):rk?i{ dLzað Þ:TL(i)

d

dt
T2(i)~

X
k

(1{p):kT(k,j)T1(k):rk?iza:TL(i){dT2
:T2(i)

d

dt
M2(i)~

X
k

kM(k,j)M1(k):rk?i{dM2
:M2(i)

d

dt
VI(i)~NM(i,j):M2(i)zNT(i,j):T2(i){

VI(i):½CLz(CLT(i,j)zbT(i,j))TUz

(CLM(i,j)zbM(i,j))MU�

d

dt
VNI~

X
i

½(bNNT{NT(i,j))T2(i)z

(bNNM{NM(i,j))M2(i)�{CL:VNI,

where lT and lM are the birth rates of uninfected T-cells and

macrophages, and dT and dM denote their death rate constants.

The parameters kT(k,j) and kM(k,j) are the integration rate

constants of mutant strain k under treatment j. The parameters

dT1
,dL,dT2

,dM1
and dM2

are the death rate constants of

T1,TL,T2,M1 and M2 cells, respectively. The free virus (infectious

and non-infectious) gets cleared by the immune system with rate

constant CL. The parameters dPIC,T and dPIC,M refer to the

intracellular degradation of essential components of the pre-

integration complex, e.g., by the host cell proteasome within early

infected T-cells and macrophages, respectively. bNNT and bNNM

denote the total number of released infectious and non-infectious

virus from late infected T-cells and macrophages of mutant strain

i, and NT(i,j) and NM(i,j) are the rates of release of infective virus

under treatment j. The parameters CLT(i,j) and CLM(i,j) denote

the clearance of mutant virus i through unsuccessful infection of T-

cells and macrophages, respectively [23], and the parameters

bT(i,j) and bM(i,j) denote the successful infection rate constants of

mutant virus i under treatment j for T-cells and macrophages,

respectively. In our model, T-cells can become latently infected TL

with probability p. Latent infected cells can undergo apoptosis

with rate dL and can become activated with rate a. Activation of

latent cells by antigen- or other activating stimuli triggers the

production of viral building blocks via positive feedback loops

[55,56] in the late replication cycle of HIV, which turns the cell

into a virus producing cell T2 that becomes susceptible to HIV-

related cytopathic effects and destruction by the immune system.

The parameter rk?i denotes the probability to mutate from

strain k to strain i and is defined by
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rk?i~mh(i,k):(1{m)L{h(i,k), ð4Þ

where m denotes the point mutation probability per base and

reverse transcription process (m&2:16:10{5 [42]), h(i,k) denotes

the hamming distance between strain k and strain i, and L is the

total number of different positions that are considered in our

model (here, L~6 point mutations). In total, the model includes

2L different viral strains i that contain point mutations in any

pattern of the modelled L possible mutations. The phenotype of

each mutant strain i is modelled by introducing a selective

disadvantage s(i), which denotes the loss of functionality (e.g., in

the activity of some viral enzyme that is affected by the mutation)

relative to the wildtype, and a strain specific inhibitory activity

g(i,j) of treatment j against the mutant strain i. For example, the

strain specific infection rate i under a certain treatment j is given

by b(i,j)~(1{g(i,j)):(1{s(i)):b(wt,w), where b(wt,w) denotes the

infection rate constant of the wildtype 0wt’ in the absence of drug

w (parameters listed in Table 1). The strain-specific specific

inhibitory activity is calculated via g(i,j)~g(wt,j):res(i,j), where

the efficacy of the drugs against the wildtype g(wt,j) is generally

stated in the corresponding tables and figures (Fig. 2, Fig. 5 and

Table 2) and the resistance of a particular mutant res(i,j) was

either set to 1 (100% susceptible) or 0.01 (99% resistant), if the

particular mutant iconferred resistance to the particular drug j.

All parameter values have been chosen according to previous

studies (see Table 1). The particular viral decay dynamics after

application of distinct drug classes were validated in [23]. The

model (Fig. 1) with above described parameters reproduces an

average frequency of latently infected cells of 26
�

106 CD4z cells

(reference range: 0:82
�

106 – 205
�

106 CD4z cells [2,7,30,31]), a

total of 4:5:106 latently infected cells (reference: 1:4:106 [7]), with

a halflife of 20.6 month (average of [2,57–60]: 21 month) and a

plasma viremia of &1 HIV RNA/mL [61] from the latent

reservoir.

Realization and Implementation of the Model
The overall virus dynamics in our model comprise different viral

strains with copy numbers that can vary over several orders of

magnitude. For this reason we have chosen a hybrid (stochastic-

deterministic) setting for numerical simulation. This approach (i)

takes into account stochastic fluctuations in the slow reaction

processes; and (ii) reduces the computational costs for the

simulation of the fast (deterministic) system dynamics. We used

the direct hybrid method proposed in [25], where we treated

elementary reactions rj as discrete stochastic processes whenever

their propensity function aj or the quantity of at least one of their

reactants was below a threshold of 20. All other reactions were

approximated as continuous deterministic processes. Elementary

reactions rj with propensity functions aj and their respective net

changes nj can be deduced from eqs. (3). For example, the term

bT
:VI

:TU denotes the infection reaction of T-cells by infectious

virus. The propensity function of this reaction is aj~bT
:VI

:TU.

This reaction changes the species levels as follows: one TU cell and

one VI virus get consumed (the term is once subtracted from each

corresponding ODE), and one T1 cell is produced (the term is

once added to the ODE of T1).

In brief, the hybrid method comprises the following algorithmic

workflow:

(1) Set initial time t~t0 and initial number of molecules X t0ð Þ.
(2) Generate two uniformly distributed pseudo-random variables

j1 and j2 on the open unit interval 0,1ð Þ and determine the

partitioning of reactions into deterministic and stochastic

subsets D and S, respectively. The latter is realized by

comparing the actual propensity and the reactant levels of

every reaction with pre-specified thresholds. If one value is

below the thresholds, a reaction is included in the stochastic

subset S, otherwise it is put in the deterministic subset D.

(3) Set g tjtð Þ~ln j1ð Þ and solve the ODE system for the

deterministic part of the system starting at time t~t

d

dt
X tð Þ~

X
j[D

njaj X tð Þð Þ, ð5Þ

together with

d

dt
g tjtð Þ~

X
j[S

aj X tð Þð Þ, ð6Þ

until time t~s such that g sjtð Þ~0.

(4) Take the integer m satisfying

Xm{1

j~1

aj X tð Þð Þvj2

X
j[S

aj X tð Þð Þ

ƒ

Xm

j~1

aj X tð Þð Þ with j,m [S,

ð7Þ

in order to determine the stochastic reaction rm to be

performed.

(5) Update X sð Þ according to reaction rm, hence set X sð Þ/
X sð Þznm.

(6) Set t/s, and stop the procedure if the final time is reached.

Otherwise go to Step (2).

The above algorithmic scheme requires the use of numerical

integrators that allow to stop integration in step (3) when a

stochastic reaction event is detected at a time t where g sjtð Þ~0.

The utilized integrator is based on numerical differentiation

formulas [62], and uses strategies for event detection and error-

and step size control comparable to ode15s in MATLAB [63]. To

generate the data for Fig. 4, we performed 12000 hybrid

simulations in total. With realization start (t0~0) the effects of

drug treatment were simulated, until t~730 days was reached.

Every numerical calculation was computed with a relative error

tolerance of 1026 and an absolute error tolerance of 1029. Our

simulation code is provided in Source Code S1–S6.

Reproductive Numbers
For the model above (eq. (3)), the reproductive numbers, which

indicate the expected number of offspring in the next generation,

are defined as follows: the reproductive number RV(i,j) of a single

virus of strain i under treatment j is given by

RV(i,j)~

bT(i,j)TU
:kT(i,j) 1{p:

dL

dLza

� �
:NT(i,j)

cu(i,j):cT (i,j):dT2

z

bM(i,j)MU
:kM(i,j):NM(i,j)

cu(i,j):cM (i,j):dM2

,

with constants
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cu(i,j)~CLz CLT(i,j)zbT(i,j)½ �TUz CLM(i,j)zbM(i,j)½ �MU,

cT (i,j)~dTzdPIC,TzkT(i,j),

cM (i,j)~dMzdPIC,MzkM(i,j):

Since infected cells are also pathogens, which can lead to a

rebound of the disease even in the absence of any virus, we also

determined their basic reproductive numbers under a given

treatment j. The basic reproductive numbers RT1
(i,j) and RM1

(i,j)
of the infectious stages T1 and M1, associated with the viral strain

i, are given by

RT1
(i,j)~

kT(i,j) 1{p:
dL

dLza

� �
:NT(i,j)

cT (i,j):dT2

: bT(i,j)TUzbM(i,j)MU

cu(i,j)
,

RM1
(i,j)~

kM(i,j):NM(i,j)

cM (i,j):dM2

: bT(i,j)TUzbM(i,j)MU

cu(i,j)
:

Finally, the reproductive numbers RT2
(i,j),RTL

(i,j) and RM2
(i,j)

of the infectious stages T2,TL and M2, associated with the viral

strain i, are given by

RT2
(i,j)~

NT(i,j)

dT2

: kT(i,j)TU
:bT(i,j)

cu(i,j):cT (i,j)
z

kM(i,j)MU
:bM(i,j)

cu(i,j):cM (i,j)

� �
,

RTL
(i,j)~

a

dLza

NT(i,j)

dT2

: kT(i,j)TU
:bT(i,j)

cu(i,j):cT (i,j)
z

kM(i,j)MU
:bM(i,j)

cu(i,j):cM (i,j)

� �
,

RM2
(i,j)~

NM(i,j)

dM2

: kT(i,j)TU
:bT(i,j)

cu(i,j):cT (i,j)
z

kM(i,j)MU
:bM(i,j)

cu(i,j):cM (i,j)

� �
:

Reproductive Capacity
We have previously introduced the reproductive capacity Rcap(j)

[23], which can be interpreted as the expected total number of

infectious offspring that the infection produces in one round of

replication under a certain treatment j, given the current state of the

infection. In this article, we utilize the reproductive capacity in order

to get individual treatment switching times (see eq. (1), main article),

which are displayed in Fig. 3. The reproductive capacity of the

entire quasi-species ensemble under treatment j is defined as the

weighted sum of the basic reproductive numbers of all pathogenic

stages of mutant strain i, i.e., free virus, infected T-cells and infected

macrophages, weighted by the abundance of the corresponding

pathogenic stage [23]:

Rcap(j)~
X

i

½VI(i)RV(i,j)zT1(i)RT1
(i,j)zM1(i)RM1

(i,j)z

T2(i)RT2
(i,j)zTL(i)RTL

(i,j)zM2(i)RM2
(i,j)�,

where RV(i,j),RT1
(i,j),RM1

(i,j),RT2
(i,j) and RM2

(i,j) are the

strain-specific reproductive numbers of the different infective

compartments (see previous sections).

Supporting Information

Figure S1 Time and probability of virological failure
depends on pool-size of archived drug-resistant virus. A:

The median time until virological failure, in relation to the

number of fully-resistant archived virus (fully = resistant against

all drugs in the triple-drug combination). B: Probability that

virological failure occurs within two years after initiation of

HAART therapy as a function of the number of fully-resistant

archived virus. 500 stochastic-deterministic runs were performed

for each pool size of the latently infected drug-resistant reservoir.

Parameter values used: (1{g) = 0.75, s = 0.8.

(PDF)

Table S1 Determination of relevant parameter space
for further investigation. We assessed virological failure rates

after one year of triple drug therapy for varying values of efficacy

(1{g(wt,j)) of drug j against the wildtype 0wt’ and selective

disadvantage per mutation s. All other parameters have been

taken from Table 1. A parameter combination (in terms of

(1{g(wt,j)) and s) was considered relevant, if it produced realistic

failure rates after one year of therapy [29]. Confidence ranges are

indicated in brackets and were calculated using Greenwood’s

formula. Each condition has been evaluated by 100 stochastic

deterministic simulations.

(PDF)

Source Code S1 The File ‘HAART.m’ can be used to simulate

the kinetics of HIV after application of conventional HAART

treatment in MATLAB.

(M)

Source Code S2 The File ‘HIVmodel.m’ builds the original

HIV model used throughout the manuscript for use in MATLAB.

(M)

Source Code S3 The File ‘InductionMaintenance.m’ can be

used to simulate the kinetics of HIV after under the proposed

induction-maintenance therapy in MATLAB.

(M)

Source Code S4 The File ‘PatientMonitoring.m’ contains the

MATLAB implementation of routine patient monitoring.

(M)

Source Code S5 The File ‘ReadMeFirst.txt’ Contains a

description of all supplied source code files, contact details,

information on runtime and execution and a copy of the GNU

public license.

(TXT)

Source Code S6 The File ‘SpeciesLevelsIndices.pdf’ contains an

interpretation of the output generated by executing the provided

MATLAB Source Code Files (Source Code S1–S4).

(PDF)
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