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Abstract

Background: We investigate the accuracy of different similarity approaches for clustering over two million biomedical
documents. Clustering large sets of text documents is important for a variety of information needs and applications such as
collection management and navigation, summary and analysis. The few comparisons of clustering results from different
similarity approaches have focused on small literature sets and have given conflicting results. Our study was designed to
seek a robust answer to the question of which similarity approach would generate the most coherent clusters of a
biomedical literature set of over two million documents.

Methodology: We used a corpus of 2.15 million recent (2004-2008) records from MEDLINE, and generated nine different
document-document similarity matrices from information extracted from their bibliographic records, including titles,
abstracts and subject headings. The nine approaches were comprised of five different analytical techniques with two data
sources. The five analytical techniques are cosine similarity using term frequency-inverse document frequency vectors (tf-idf
cosine), latent semantic analysis (LSA), topic modeling, and two Poisson-based language models – BM25 and PMRA
(PubMed Related Articles). The two data sources were a) MeSH subject headings, and b) words from titles and abstracts.
Each similarity matrix was filtered to keep the top-n highest similarities per document and then clustered using a
combination of graph layout and average-link clustering. Cluster results from the nine similarity approaches were compared
using (1) within-cluster textual coherence based on the Jensen-Shannon divergence, and (2) two concentration measures
based on grant-to-article linkages indexed in MEDLINE.

Conclusions: PubMed’s own related article approach (PMRA) generated the most coherent and most concentrated cluster
solution of the nine text-based similarity approaches tested, followed closely by the BM25 approach using titles and
abstracts. Approaches using only MeSH subject headings were not competitive with those based on titles and abstracts.
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Introduction

Document clustering is important for a variety of information

needs and applications such as collection management, summary

and analysis. For example, funding agencies continually need to

analyze collections of grant proposals for research portfolio

analysis. Document clustering algorithms use and require some

definition of distance or similarity between pairs of documents.

Different document similarity approaches have been investigated

in the context of information retrieval, which defines similarity as a

relevance or ranking function [1,2,3,4] typically optimized to

maximize precision and/or recall. Despite early efforts showing

that document retrieval and document clustering are highly linked

topics [5,6,7], most recent work using similarity measures is

focused on improving the relevancy and ranking of search results

[8,9,10] with little or no reference to the important task of

clustering.

This focus on information retrieval is not surprising given the

overwhelming increase in the number and variety of documents

available over the Internet, and through portals to scholarly

literature such as the Web of Science, Scopus, and MEDLINE.

The use of search engines is far more a part of our lives than is the
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use of clustered document sets. This is as true in the world of

biomedical literature as it is for any other literature; most studies

related to enhancing the results of MEDLINE searches are very

similar in nature to those being done in the broader information

retrieval community [11,12,13]. The TREC conferences with

their associated tasks and test collections have been a significant

part of this effort [14]. Clustering and the accuracy of clusters

remain secondary issues to that of relevance when similarity

approaches are explored in the context of biomedical literature

[15,16,17].

There are an increasing number of practical applications

involving document sets where retrieval of a small set of relevant

documents does not suffice but the entire dataset must be

examined for inherent structures, e.g., clusters of similar

documents. For example, portfolio analysis by agencies, compa-

nies, and universities requires partitioning of their portfolios (e.g.

grants, publications, patents) into coherent and organizationally

meaningful groups prior to the computation and reporting of

metrics for each group. The same similarity approaches (known as

relevance and ranking functions in the context of search and

retrieval) that are being used to rank search results can also be used

to cluster document sets.

Although different similarity approaches have been explored in

a search context as referenced above, such comparisons in a

clustering context have only started to appear in the literature.

Some studies compare different textual similarity approaches to

email classification for spam detection [18,19]. Other studies using

scientific articles compare citation-based approaches (e.g., co-

citation analysis, bibliographic coupling), text-based approaches

(e.g., tf-idf, latent semantic analysis) and hybrid measures, all on

relatively small scales (one study used only 43 documents [20,21],

others just thousands of documents [22,23,24,25]). Results have

been mixed [26], with citation-based approaches performing best

in some studies, text-based approaches in others, and hybrids in

yet others. There is no particular pattern in the conflicting results,

other than that the differences are likely field-specific. Given the

mixed results to date, we consider the clustering accuracies of

different similarity approaches to be an open and unanswered

research question, especially at large scale.

Our study was thus designed to seek a robust answer to the

question of which similarity approach would provide the most

accurate cluster solution of a large biomedical literature set of over

two million documents. We equate accuracy with the notion of

cluster quality; clusters in which the contents are all very similar to

each other are of higher quality than clusters where the contents

are different from each other. We measure cluster quality using a

textual coherence measure based on the Jensen-Shannon diver-

gence [27], and using concentration measures based on the grant-

to-article linkages indexed in MEDLINE. The full study compared

three citation-based approaches, nine text-based approaches, and

one text-citation hybrid approach. Due to the size and wide scope

of this study, the citation and hybrid approaches are reported in

another article [26]; results of the text-based approaches are

reported here. Among the text-based approaches, two stood out as

superior to the others: PubMed’s own related article approach

(PMRA) and the BM25 approach using titles and abstracts.

Methods

In this study we used the following process:

1) define a corpus of documents,

2) extract and pre-process the relevant textual information

from the corpus,

3) calculate pairwise document-document similarities using

nine different similarity approaches,

4) create similarity matrices keeping only the top-n similarities

per document,

5) cluster the documents based on this similarity matrix, and

6) assess each cluster solution using coherence and concentra-

tion metrics.

Each of these process steps is described in detail here.

Study corpus
Given that our study investigated both text-based and citation-

based techniques, we needed a corpus of documents that could be

used to compare the two. This required both textual and citation

information for each individual record. We also included MeSH

terms (PubMed’s medical subject headings) given the widespread

use of these descriptors among the biomedical community and the

NIH. No single database contains all of this information. Thus, to

build a corpus with titles, abstracts, MeSH terms, and reference

lists, we matched and combined data from the MEDLINE

and Scopus (Elsevier) databases. The resulting set was then limited

to those documents published from 2004-2008 that contained

abstracts, at least five MeSH terms, and at least five references in

their bibliographies, resulting in a corpus comprised of 2,153,769

unique scientific documents (Supporting Information S1).

Text extraction and pre-processing
MeSH terms and words from titles and abstracts were extracted

from a version of MEDLINE dated September 1, 2009 for all

documents in the corpus. PubMed IDs (PMID) were used as the

unique document identifiers.

For MeSH terms, qualifiers were ignored and all Class 3 (check

tags) and Class 4 (geographical locations) terms were removed. In

addition, all leading ‘*’ characters were stripped. MeSH terms

were then used verbatim without any further tokenization; those

that occurred in fewer than four documents were ignored. The

result of this processing was a MeSH-document matrix consisting

of 23,347 unique MeSH terms and 2,153,769 documents with

25,901,212 MeSH-document pairs.

Titles and abstracts (TA) were processed differently. After

concatenating the title and abstract for each document, all

punctuation characters except apostrophes were removed from

the text and replaced with a single space. The resulting text was

converted to lower case and split on whitespace, leaving only

tokens with no whitespace, and no empty tokens. Each token with

a standard contraction was then separated into a root and a

contraction (e.g., don’t – do not). Contractions were then

removed since all such suffixes are forms of words found on

standard stopword lists or are possessive forms of other words.

Tokens appearing on our stopword list (the official MEDLINE

stopword list of 132 words plus a list of 300+ words commonly

used at NIH, available at http://sts.cns.iu.edu) were removed, as

were tokens consisting of a sequence of digits. To maintain

consistency with the MeSH data, tokens that were listed for fewer

than 4 documents were removed from the vocabulary. The result

of this processing was a word-document matrix consisting of

272,926 unique textual tokens and 2,153,769 documents with

175,412,213 word-document pairs. Since some tokens appear

multiple times in a document, this matrix was not populated

solely with ‘ones’, as was the MeSH matrix, but contained the

numbers of times each token appeared in each document. The

sum over the entire matrix of occurrences (i.e. the total count of

all kept terms in all documents) was 277,008,604. Distributions of

Clustering Accuracy of Similarity Approaches
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MeSH terms and words over documents are available in Suppor-

ting Information S1.

Similarity approaches
This study used five different analytical techniques with two

different data sources, and the nine realized combinations

(similarity approaches) are shown in Table 1. Four of the five

analytical techniques were used with MeSH terms: standard term

frequency-inverse document frequency (tf-idf cosine), latent

semantic analysis (LSA), a Poisson-based language model for

ranking (BM25), and a self-organizing map (SOM). The MeSH-

document matrix described above was used as the input to all four

of these approaches. Five different analytical techniques were used

with title and abstract words: tf-idf cosine, LSA, topic modeling,

and two Poisson-based techniques – BM25 and PMRA. The

word-document matrix described above was used as the input to

all five TA-based similarity approaches. The PMRA approach

used ranked lists of PubMed Related Articles (PMRA) downloaded

from MEDLINE. Due to the scale of the calculations, and given

that our team is comprised of people with expertise in different

approaches, the work was distributed as shown in Table 1. The

SOM method was applied only to the MeSH-document matrix in

consideration of both the computing resources required and the

higher dimensionality of the TA-based data.

The six unique analytical techniques from Table 1 – tf-idf

cosine, LSA, topic modeling, SOM, BM25, and PMRA – are each

briefly described here. More detailed descriptions of each process

step, including methodologies implemented to use these tech-

niques at the scale of two million documents, are available in

Supporting Information S1.

tf-idf cosine. A standard term frequency-inverse document

frequency approach [3] was used. tf-idf coefficients were calculated

for each non-zero cell in the matrix as:

tfidfi,j~tfi,j � idfi

where inverse document frequency is calculated as idfi = log(D/di)

for each term i, D is the total number of documents in the corpus, d

is the number of documents in which term i occurs. Term

frequency is calculated as tfi,j = ni,j/gnk,j, for each term i and

document j where nk,j is the number of occurrences of term k in

document j. Document-document similarity values are calculated

as the cosine similarity between term vectors as cosA,B = A N B/

||A|| ||B|| where A and B are the term vectors for documents

A and B.

LSA. Latent semantic analysis [28] was introduced in 1990. In

its original implementation, singular value decomposition (SVD)

was used with a raw term-by-document matrix X (containing

D documents and N terms) to compute the singular value matrix S
using X = T S DT. T is a matrix composed of N terms and

k singular vectors (or concepts onto which the documents load to

varying degrees), S is a singular value matrix with k singular values

along its diagonal, and D is a reduced document matrix composed

of D documents and k singular vectors. Normalized term-by-

document matrices have been used in place of the raw term-by-

document matrix in many LSA studies to good effect [29,30,31].

We choose to use the tf-idf [32] matrix (from above) as input

matrix X.

SVD is not practical when the input matrix X is large. Instead,

we use a Generalized Hebbian Algorithm [33] to approximate

matrix S. For the LSA TA calculation S was limited to the top 100

singular values, and for the LSA MeSH calculation S was limited

to the top 200 singular values. Once matrix S has been calculated,

we compute the reduced document matrix D = (S21 TT X)T.

Document-document similarity values are calculated as dot

products between pairs of rows in matrix D.

BM25. BM25, also called Okapi BM25, is a ranking function

that is widely used by search engines to rank matching documents

according to their relevance to a query [34,35]. Although rarely

used in clustering applications, it is usually used instead of tf-idf for

information retrieval, and is very well suited to use with large

document sets. The BM25 similarity between a document q and

another document d is calculated as:

s q,dð Þ~
Xn

i~1

IDFi
ni k1z1ð Þ

nizk1 1{bzb Dj j=�DD
� �

0
@

1
A,

where ni is the frequency of term i in document d. Note that ni = 0

for terms that are in document q but not in d. Typical values were

chosen for the constants k1 and b (2.0 and 0.75, respectively).

Document length |D| was estimated by adding the term

frequencies ni per document. Average document length Dj j is

computed over the entire document set. The IDF value for a

particular term i was computed as:

IDFi~log
N{niz0:5

niz0:5
,

where N is the total number of documents in the dataset and di is

the number of documents containing term i. Each individual term

in the summation in the first formula is independent of document

q. For the TA calculation, all IDF scores below 2.0 were discarded,

effectively limiting the set of terms used in the calculation to those

with ni,21,324 (i.e., present in less than 0.99% of the documents).

Table 1. Listing of text-based similarity approaches and locations where the similarity calculations were performed.

Similarity approach Data source

MeSH terms Title/abstract words

tf-idf cosine tf-idf MeSH (Indiana U.) tf-idf TA (Indiana U.)

Latent semantic analysis LSA MeSH (Indiana U.) LSA TA (Indiana U.)

Topic modeling Topics TA (UC Irvine)

Self-organizing map SOM MeSH (SDSU/Indiana U.)

Poisson-based BM25 MeSH (Collexis) BM25 TA (Collexis) PMRA (UC Irvine/SciTech)

doi:10.1371/journal.pone.0018029.t001
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For the MeSH calculation, the IDF threshold was set to 1.5 (or

ni,66,020) rather than 2.0.

SOM. The self-organizing map (SOM) method is a form of

artificial neural network that generates a low-dimensional

geometric model from high-dimensional data [36]. The map

itself is a grid of neurons, each having a vector corresponding to a

position in the term space. Each neuron has a numeric, continuous

weight for each of the terms, as opposed to the discrete counts

contained in the input vectors. All of the neuron weights are

initially randomly seeded. During training, one repeatedly (1)

presents individual MeSH-document vectors to the neuron grid

and identifies the neuron vector to which it is most similar (using

cosine similarity), and then (2) pulls that best-matching neuron and

its neighboring neurons even closer towards the input document

vector. This adjustment is proportional to the grid distance

between the best-matching neuron and its neighbors, within a

certain neighborhood diameter. Early during training that

diameter will be large, extending across most of the map, while

at the later training stages only a small range around the most

similar neuron is affected. The effect of the resulting self-

organization is that topological structures existing in the high-

dimensional input space will tend to be replicated in the low-

dimensional (here 2-D) model.

The SOM use in this study aimed for a balance between the

amount of geometric/topological distinctions (i.e., number of

neurons) and the semantic depth (i.e., number of dimensions).

Initial experiments with SOM PAK [37] (a standard implemen-

tation) indicated that use of the full set of 23,347 dimensions from

the MeSH-by-document dataset was computationally unfeasible.

Thus, we reduced the dimensionality of the input data by keeping

the 2,300 most frequent MeSH terms, which allowed us to

construct a SOM of 75,625 neurons (2756275). The resulting

model can itself be the basis of visualization, without involving the

document vectors as such (Supporting Information S1).

In order to allow some comparison to the other methods, the

full set of MeSH-based document vectors was then mapped on the

SOM by assigning each document to the best-matching neuron.

Since the number of neurons was roughly double the number of

clusters in the other solutions, adjacent neurons containing few

documents were combined into clusters until each such cluster

contained at least 25 documents. Together with those neurons

already containing 25 documents, this resulted in 29,941 clusters

partitioning the document set.

Topic modeling. The topic model – a recently-developed

Bayesian model for text document collections [38] – is considered

a state-of-the-art algorithm for extracting semantic structure from

text collections. The topic model automatically learns a set of

thematic topics (in the form of lists of words) that describe a

collection, and assigns a small number of these topics to each and

every document in the collection. The topic model evolved from

earlier dimensionality reduction techniques such as LSA, and

could be considered [39] as a probabilistic version of LSA [40].

Some additional preprocessing was done before the word-

document matrix was topic modeled. First, 131 topically

uninteresting but frequently occurring words were removed from

the data (e.g., ‘study’, ‘result’, etc.). All terms that occurred fewer

than 50 times across the entire corpus were also removed. This

reduced word-document set retained all 2,153,769 documents, but

reduced the number of unique tokens from 272,926 to 65,776.

The sum of the word-document triples was 243,724,698 (88% of

the original number).

Three separate Gibbs-sampled topic models were learned at the

following topic resolutions: T = 500, T = 1000 and T = 2000

topics. These topic models were run for: 1600, 1500 and 1200

iterations (one iteration is one entire sweep through the corpus),

respectively. Dirichlet prior hyperparameter settings of b= 0.01

and a= 0.05N/(D.T) were used, where N is the total number of

word tokens, D is the number of documents and T is the number

of topics.

From the results of these three models, the top-20 most similar

documents for each of the 2,153,769 documents in the corpus

were computed. A topic-based similarity metric was calculated,

using an equal weighting of the T = 500, T = 1000 and T = 2000

topic models. Specifically, the similarity between documents A and

B were calculated as:

sim(A,B)~1{(L1(A500{B500)zL1(A1000{B1000)

zL1(A2000{B2000))=6

where L1 is the L1 norm (the sum of the absolute values of the

vector entries), and A500, etc. are the probabilities for the T = 500,

etc. topics of document A.

PMRA. The PMRA ranking measure [41] is used to calculate

‘Related Articles’ in the PubMed interface. We consider it the

de facto standard since it has been through sufficient testing and

review to have been accepted by NIH for use in PubMed. PMRA

shares a theoretical basis with BM25 in that both use Poisson

distributions to model term frequencies. The PMRA implemen-

tation used in PubMed uses title and abstract words as well as

MeSH headings. In addition, title words are weighted twice as

much as abstract words.

We queried PubMed to retrieve the pre-calculated PMRA

matches for each document in our corpus. This script did not

return PMRA similarity values, but instead returned a rank-

ordered list. We post-processed to limit the related articles lists to

documents that were in our corpus. Since we did not have actual

similarity values, we converted the rank-ordered lists of relation-

ships into similarity values. We created our own proxy for the

PMRA similarity as

PMRAA,B~0:02 � (51{rankA,B)

for all articles B related by rankA,B to article A. Thus, for any article

A, the first ranked Related Article was assigned a similarity value of

1.00, the second a similarity value of 0.98, etc. We emphasize

that these are not the internal similarity values calculated using

the PMRA method (which are unknown to us), but are rather

our proxy for these values computed from rank orders. This

approach is thus fundamentally different from the other app-

roaches tested.

Similarity filtering
We applied an additional filtering step to each of the nine

similarity matrices to reduce the number of nonzero entries.

Similarity matrices with over 25 million similarity pairs (approx-

imately top-12 similar documents for each document) are too large

for our clustering routine (a graph layout algorithm) to handle

efficiently. Despite the reduction in information from filtering out

some less important similarity values, we have previously found

that this filtering reduces noise, and actually increases the accuracy

of a cluster solution [42,43].

For this filter we generate a top-n similarity file from each of the

larger similarity matrices. The premise behind this is that

documents that contribute more overall similarity to the solution

space should contribute more similarity pairs to the clustering

Clustering Accuracy of Similarity Approaches
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input. Documents with small similarities should not contribute as

much because they are not very similar to any other documents in

the corpus. We sum the top-15 similarity values per document,

and then scale the number of edges (or pairs) each document

should contribute to the similarity file to between 5 and 15 edges

using log(avg(top15 sim)). Each document thus contributes between

5 and 15 edges to the similarity file. We de-duplicate all (A:B –

B:A) pairs for efficiency, and save the top-n similarity files to use as

input to the clustering step.

Clustering
We compute a clustering or partitioning of the document

collection using the aforementioned similarity data. Clustering is

performed for each similarity file using the detailed multi-step

process from [26]. DrL (now called OpenOrd) [44] is a graph

layout algorithm that calculates an (x,y) position for each

document in a collection using an input set of weighted edges.

DrL employs edge cutting, reducing the number of edges by

preferentially cutting them based on degree and distance. An

average-link clustering routine is then used to assign each

document to a cluster based on proximity and remaining edges.

This DrL/average-link combination is run 10 separate times with

different starting points to generate 10 unique, but highly

overlapping solutions. The results are then re-clustered using only

those document pairs that are clustered together in at least 4 of the

10 preliminary solutions. Clusters can only be joined together in

the final solution by document pairs that are clustered together in

7 of the 10 preliminary solutions. Using this method and criteria

the clusters are extremely well defined and one can use single link

clustering without experiencing chaining effects. Finally, we

require a minimum cluster size of 25 documents; thus, clusters

with fewer than 25 documents are merged with the cluster which is

most similar (based on similarities between cluster members) until

no clusters with fewer than 25 members remain.

This clustering methodology will not necessarily assign all

documents to a cluster. If a document is not paired with any other

single document in the corpus in at least 4 of the 10 preliminary

solutions, it is dropped from the cluster solution. If a document is

dropped from the solution, it is an indication that the document

could not be assigned to a cluster. If a large fraction of documents

are dropped from a particular solution, it is an indication that the

similarity approach has a high level of ambiguity. Coverage, or the

fraction of documents retained in a cluster solution, is thus an

important metric in judging similarity approaches.

Validation measures
Many studies that compare cluster solutions do so using pre-

defined document sets based on expert opinion, such as those used

in TREC [14]. Others use the ratio of within-cluster similarity to

between-cluster similarity, with higher ratios denoting a better

cluster solution [45], often times using the same feature upon

which the clustering was based. Given the corpus size used in this

study, comparison with expert opinion was not an option. We

chose to assess and compare cluster solutions using two different

types of validation measures: (1) within-cluster textual coherence

based on the Jensen-Shannon divergence, and (2) concentra-

tion measures based on grant-to-article linkages indexed in

MEDLINE.

Textual coherence. We measure textual coherence using the

Jensen-Shannon divergence (JSD) [27], which computes the

distance between two probability distributions. JSD is calculated

for each document from the word probability vector for that

document, and from the word probability vector for the cluster in

which the document resides as:

JSD(p,q)~1=2DKL(p,m)z1=2DKL(q,m)

where m = (p+q)/2, p is the probability of a word in a document, q

is the probability of the same word in the cluster of documents,

and DKL is the Kullback-Leibler divergence

DKL(p,m)~
X

(pilog(pi=mi))

JSD is calculated for each cluster as the average JSD value over all

documents in the cluster.

JSD is a divergence measure, meaning that if the documents in

a cluster are very different from each other, using different sets of

words, the JSD value will be very high. Clusters of documents with

similar sets of words – a less diverse set of words – will have a lower

divergence. JSD also varies with cluster size – larger clusters will

naturally be more divergent than smaller clusters. We normalize

by calculating JSD for random clusters of different sizes drawn

from the corpus [26]. For example, JSD(rand) for cluster size 20 is

based on the average JSD of 5,000 clusters of size 20 drawn

randomly from the corpus. Coherence is calculated from diver-

gence values for each cluster i as:

Cohi~JSD(rand)i{JSD(actual)i

where JSD(rand) is the random divergence for the particular

cluster size. The average coherence value for an entire cluster

solution is then calculated as a weighted average:

Coh~
X

(niCohi)=
X

ni

summed over all clusters i where ni is the size of cluster i.

Although textual coherence does distinguish between the textual

similarity approaches as will be shown below, we note that use of

this measure may not be unbiased, simply because the validation

inputs (title and abstract words) are not independent of the

clustering inputs (title and abstract words or MeSH terms). In

addition, we note that articles with titles and abstracts that do not

adequately reflect the content of the article are unlikely to be well

clustered using any method.

Concentration. In addition to textual coherence as a useful

measure of cluster quality, we included a second measure to

compare cluster solutions. We created a metric based on grant

acknowledgements from MEDLINE, using a grant-to-article

linkage dataset from a previous study [46].

The premise for using grant-to-article linkages as a metric for

measuring the accuracy of a cluster solution is the assumption that

the articles acknowledging a single grant should be highly related,

and should be concentrated in a cluster solution of the document

space. Using this approach, a cluster solution giving a higher

concentration of grants is more accurate than one with a lower

concentration value. Grant acknowledgements are unrelated to

the textual similarity approach and thus provide an independent

and unbiased metric for cluster quality.

To measure concentration, we must limit to those grants that

can show a concentrated solution. For example, grants that have

only produced one article cannot differentiate between cluster

solutions. Thus, we limited the grant-to-article linkage set to those

grants that have produced a minimum of four articles. The

resulting basis set consisted of 571,405 separate links between

Clustering Accuracy of Similarity Approaches
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262,959 unique articles (over 12% of the corpus) and 43,442 NIH

grants.

We calculate two different concentration measures based on

grant-to-article linkages: a standard concentration (or Herfindahl)

index and precision-recall. The Herfindahl index is calculated for

each grant i as

Hi~
X

(ni,j=ni)
2

where ni,j is the number of articles acknowledging grant i in cluster

j, and ni is the total number of articles acknowledging grant i. An

overall value for each cluster solution is then calculated as the

weighted average over all grants, H = ni Hi/(gni).

Precision and recall are typically computed using responses to a

query where the set of correct responses is known a priori. Recall is

the fraction of all correct responses that are retrieved by the query,

while precision is the fraction of the actual retrieved responses that

belong to the set of correct responses. Since our cluster solutions

do not consist of queries, we must formulate precision and recall in

a different, but analogous, manner. First, we assume that the set of

correct responses is the set of 262,959 unique articles linked to

grants as mentioned above. We calculate precision and recall by

ordering all clusters in a solution by the fraction of correct articles

in the cluster, and then calculating the cumulative fractions of

correct links (recall) and correct articles (precision) as one proceeds

down the list of clusters. Precision decreases as recall increases. A

detailed example is given in Supporting Information S1.

The advantage of the Herfindahl index is that it is calculated on

a grant-by-grant basis and then averaged over grants, thus

ensuring high specificity. The advantage of precision-recall is that

it gives curves that show a distribution of metric values. However,

since articles referencing multiple grants can appear in the same

cluster, precision-recall is a far less specific measure.

Results

Characteristics of cluster solutions
Metrics from the cluster solutions from each of the similarity

approaches are given in Table 2, while cluster size distributions are

shown in Figure 1. Metrics include the numbers of documents that

remained in the cluster solution, along with the numbers of clusters

and maximum cluster sizes.

The clustering results lead to several observations. First, the tf-

idf TA approach has the lowest coverage (fraction of the corpus

that was clustered) at 83.4%. This measure also had the largest

number of similarities in its input file (24.3 million) of all of the

measures tested. These two factors – the large number of input

similarities and the low coverage – are likely related. Although the

filtering method used to generate the top-n similarity files for this

measure was the same as that used for the other text-based

similarities, the distribution of similarities (leading to the top-n

assignment) was quite different, and gave rise to a larger similarity

file. We speculate that this is due to slight variations in similarity

between document sets arising from the high end of the word-

document distribution (those words that occur in a very large

fraction of documents). Other TA approaches (BM25 and Topics)

both applied additional processing to the matrix that would have

mitigated such behavior. The SOM MeSH approach had

extremely high coverage; all but just a few hundred documents

in the set were assigned to a cluster.

Second, the numbers of clusters from nearly all of the

approaches are in a similar range (24,000 – 30,000 clusters), and

thus are suitable for the comparisons that will be reported in a

subsequent section. The tf-idf TA approach has fewer clusters to

go with its lower coverage, but even this is within an acceptable

range for evaluation.

Accuracies of cluster solutions
Coherence. Textual coherence distributions by cluster size

for the nine cluster solutions are shown in Figure 2. Only cluster

bins with 15 or more measurements are shown. Most of the curves

show a similar trend – textual coherence decreases slightly with

increasing cluster size. Two of the MeSH-based measures (tf-idf

and BM25) have relatively flat distributions. The PMRA measure

has the highest coherence values over the entire range of cluster

sizes, followed closely by the BM25 TA measure.

Comparison of the coherence values from the different cluster

solutions leads to some very interesting observations about the

different similarity approaches:

N The BM25 TA approach significantly outperformed the tf-idf

TA approach, even though it was based on the same initial

word-document matrix. The BM25 TA calculation differed

from the tf-idf TA calculation in two major ways: 1) it limited

the word set to those that occur in less than 0.99% of the

documents instead of using the full word-document matrix,

and 2) it used the BM25 similarity approach in place of the

standard tf-idf. The effect of the first change (truncating the

word distribution) was to remove a large amount of noise from

the solution space. The effect of the second change (BM25) was

to use a superior similarity approach, as has been established in

the literature. Combined, these two changes had an enormous

positive effect on the accuracy of the cluster solution.

N The PMRA approach performed slightly better than the

BM25 TA approach. The PMRA approach differs from the

BM25 approach in three main ways: 1) it does not remove all

high frequency words, but rather removes a set of 132 high

frequency, low content words, 2) it counts words in the title

twice rather than once and also uses MeSH terms, 3) it uses the

PMRA similarity measure rather than the BM25 measure.

The original work by Lin and Wilbur showed that the PMRA

measure slightly outperformed BM25 over a range of

conditions [41]. Given these differences, it is likely that the

overall difference in performance between these two ap-

proaches is in the use of the PMRA measure over the BM25

measure, and the double-counting of title words.

Table 2. Characteristics of the cluster solutions for the nine
similarity approaches.

Approach
# Articles
covered % Coverage # Clusters

Max
Cluster Size

tf-idf MeSH 2,062,642 95.77% 24,708 1517

LSA MeSH 2,115,440 98.22% 25,287 1021

BM25 MeSH 2,011,339 93.39% 26,864 1015

SOM MeSH 2,153,169 99.97% 29,941 3576

tf-idf TA 1,796,349 83.41% 21,388 657

LSA TA 1,958,125 90.92% 23,831 1827

BM25 TA 2,022,694 93.91% 28,858 764

Topics TA 2,033,221 94.40% 24,163 1422

PMRA 2,029,564 94.23% 28,963 921

doi:10.1371/journal.pone.0018029.t002
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N The topics TA approach also outperformed the tf-idf TA

approach, but did not do nearly as well as the BM25 TA or

PMRA approaches. The topics TA method was similar to the

PMRA approach in that it removed 132 high frequency, low

content words. However, it also removed all words occurring

in fewer than 50 documents. The major difference between

this approach and the BM25 TA and PMRA approaches is in

the use of the topic modeling algorithm rather than the BM25

or PMRA similarity measures. It appears that BM25 and

PMRA do better than topic modeling for generating a fine

grained cluster solution of a large portion of the scientific

literature.

Figure 1. Cluster size distributions for the nine similarity approaches.
doi:10.1371/journal.pone.0018029.g001

Figure 2. Textual coherence values by cluster size for the nine similarity approaches. Coherence is a measure of cluster quality. A higher
value of coherence indicates a higher degree of textual similarity between the titles and abstracts within a cluster than does a lower value of
coherence. Data are shown for cluster size bins of at least 15 clusters.
doi:10.1371/journal.pone.0018029.g002

Clustering Accuracy of Similarity Approaches

PLoS ONE | www.plosone.org 7 March 2011 | Volume 6 | Issue 3 | e18029



N A comparison of the BM25 MeSH and BM25 TA results

shows that titles and abstracts are far superior to MeSH terms

as a basis for clustering of documents. In addition, a

comparison of the co-Word MeSH and BM25 MeSH results

suggests that the application of the BM25 algorithm (as

opposed to tf-idf) on MeSH terms makes very little difference

in the outcome. The use of the BM25 algorithm has a far

greater effect when used with words extracted from titles and

abstracts than with MeSH terms, likely because so many more

tokens are available per article.

Concentration. Precision-recall curves were calculated for

each cluster solution using the set of grant-to-article linkages

mentioned above, and are shown in Figure 3. A higher precision

value denotes a higher concentration of papers referencing the set

of grants. The PMRA and BM25 TA curves are significantly

higher than the other curves, with the PMRA solution giving

slightly higher precision than the BM25 TA solution. Curves from

the MeSH-based solutions have higher recall at the end, but only

because they all have greater coverage than the PMRA and TA-

based approaches (Table 2), and thus cover a larger fraction of the

571,405 links overall.

Precision at 80% recall (Pr80) and the maximum value of F1

(the harmonic mean of precision and recall, calculated as 2*P*R/

(P+R)) are reported for each cluster solution in Table 3. The

maximum F1 values for each solution occur at recall values near

0.60 for each of the solutions. Herfindahl index values for the

solutions are also included in Table 3. The rank orders of the

nine approaches across the different concentration measures

listed in Table 3 are relatively constant. For example, PMRA

ranks first and BM25 TA ranks second in all measures, and topic

modeling ranks third in all but one measure (Herfindahl), where it

ranks fourth. The approach with the widest variation in

concentration measures was the SOM, which ranked last in

Herfindahl, and fifth on average for the precision-recall

measures. This suggests that for the SOM approach, there is

far more mixing of different grants (at lower individual

concentrations) in individual clusters than occurs for the other

approaches and a lower Herfindahl value.

Discussion

There are many dimensions to determining the most accurate

similarity approach for clustering a set of over two million

biomedical documents. Although we have already discussed

coverage, coherence and concentration metrics, it is also useful

to consider the computational cost of the different approaches.

Table 4 compiles some results from previous tables and adds

computational cost and average coherence values.

Figure 3. Precision-recall curves for each cluster solution based on grant-to-article linkages. To calculate precision-recall, clusters are first
ordered by the fraction of articles referencing an NIH grant. Precision is the cumulative fraction of articles referencing the NIH grants, while recall is
the cumulative fraction of articles in the cluster solution.
doi:10.1371/journal.pone.0018029.g003

Table 3. Summary of concentration results for the nine
similarity approaches.

Approach Herfindahl Max(F1) Pr80

tf-idf MeSH 0.1631 0.3790 0.2216

LSA MeSH 0.1124 0.3662 0.2127

BM25 MeSH 0.1570 0.3791 0.2167

SOM MeSH 0.1106 0.3796 0.2203

tf-idf TA 0.1299 0.3344 0.1571

LSA TA 0.1255 0.3646 0.2003

BM25 TA 0.2393 0.4281 0.2578

Topics TA 0.1584 0.4011 0.2379

PMRA 0.2410 0.4350 0.2637

doi:10.1371/journal.pone.0018029.t003
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A comparison of the nine similarity approaches shows that there

is a range of computational costs; MeSH-based approaches are less

computationally expensive than TA-based approaches because

there are far fewer tokens to consider. The LSA method needs far

more computation than do the simpler tf-idf and BM25

approaches. The neural network training portion of the SOM

method, as applied here, does as well, though this was largely due

to the goal of a detailed mapping of the document space. The

PMRA approach, if document-document similarities were calcu-

lated from scratch, would have a similar computational cost to the

BM25 approach, but we list the computational cost for PMRA as

low because the coefficients are already calculated by PubMed,

and thus do not need to be recalculated. The PMRA and BM25

TA approaches have the highest values on the coherence and

concentration metrics, and provide sufficient coverage (94%,

Table 2) to make them the most attractive text-based approaches

for clustering extremely large document sets.

Although the PMRA approach performed best on all accuracy

metrics, we note (as was done earlier) that this study used an

estimated similarity for PMRA based on rank order rather than

the actual similarity values. We do not know if the actual PMRA

similarity values would have performed better or worse than the

estimated similarities, and thus our conclusions about PMRA are

not definitive. However, we do conclude that PMRA with

estimated similarities did perform best among all of the approaches

considered here.

For the LSA, SOM, and topic modeling approaches, there are

many variants in terms of parameter space that can be chosen.

This study only investigated one variant in each case. For LSA, the

matrix reduction approach and the number of factors are both

variables. The numbers of factors used in this study were less (100

and 200) than what is considered typical (300–500 factors) for most

studies. It is thus quite possible that the LSA results could be

improved if more factors were used. However, increasing the

number of factors would also increase the computational cost.

Regarding self-organizing maps, the number of input dimen-

sions is a key consideration. Attempting to use all of the original

input tokens proved to be computationally unfeasible, for both

MeSH-based and TA-based data sets (only the former was

ultimately implemented), when combined with the simultaneous

goal of a high-resolution 2-D model of the input space. Given the

filtering of MeSH data down to the 2,300 most prevalent (and thus

least specific) terms, one could not have expected to produce the

most accurate clustering at fine scale, as measured in this study.

Meaningful reduction of dimensions is a key strategy for future

work – for example, the topics resulting from topic modeling could

be used as input dimensions for SOM training. The power of the

SOM method to drive engaging and meaningful visualizations of

top- and medium-scale structures was demonstrated in the study.

For the topic modeling approach, fine tuning of the approach

might increase its accuracy. One obvious step for future study is to

compute a similarity measure that blends BM25 and topic model

distance.

In this study we sought to answer the question as to which text-

based similarity approach would generate the most accurate

cluster solution of a large set of biomedical literature. We did

this using a large corpus (2.15 million MEDLINE articles) and

generated cluster solutions using nine different text-based

approaches.

Three different accuracy measures were used to compare the

results from the nine approaches. The PMRA approach per-

formed best on all measures, followed closely by the BM25 TA

approach. This study used a corpus of over two million

documents, a set two orders of magnitude larger than those used

in previous studies. As mentioned in the introduction, previous

studies at small scale have shown conflicting results that are likely

field-specific. However, given the scale of this study and the large

degree of separation between the PMRA and BM25 approaches

and the other approaches (Table 4), we consider these results to be

relatively robust.

As an example of how results from this study could be used in a

practical manner, Figure 4 shows a two-dimensional map of the

nearly 29,000 clusters in the PMRA solution. Positions for each

cluster were calculated using DrL with cluster-to-cluster similarity

values (summed from the document-document similarity values) as

input. Clusters with related content are proximate to each other on

the map. Each cluster is represented by a colored dot. Colors are

based on journal distributions by cluster using a color scheme

derived from our previous work mapping journals to disciplines

([47], Fig. 2). Labels were added manually based on inspection of

terms and journal distributions associated with the clusters in

different portions of the map. These labels are not intended to be

prescriptive, but merely show in general where various disciplines

and concepts represented in MEDLINE are centered in the map

space.

It is not our purpose to explore this map in detail here, but

rather to mention how such a map could be used. This map gives a

visual overview of the structure and content of MEDLINE, thus

providing a high degree of context as well as content. A map such

as this could easily be used to display the results of traditional

queries to MEDLINE. With an appropriate interface, areas with

concentrated results could be explored more closely. Clusters with

Table 4. Summary of results and decrements in metrics with respect to the PMRA values.

Method Comp Cost Coherence Herf Pr80 Coh vs. PMRA Herf vs. PMRA Pr80 vs. PMRA

tf-idf MeSH Medium 0.0764 0.1631 0.2216 226.3% 232.3% 216.0%

LSA MeSH Very high 0.0519 0.1124 0.2127 249.1% 253.4% 219.3%

BM25 MeSH Medium 0.0765 0.1570 0.2167 226.2% 234.9% 217.8%

SOM MeSH Very high 0.0452 0.1106 0.2203 256.4% 254.1% 216.5%

tf-idf TA High 0.0758 0.1299 0.1571 226.8% 246.1% 240.4%

LSA TA Very high 0.0815 0.1255 0.2003 221.3% 247.9% 224.0%

BM25 TA High 0.0980 0.2393 0.2578 25.4% 20.7% 22.2%

Topics TA High 0.0937 0.1584 0.2379 29.6% 234.3% 29.8%

PMRA Low 0.1036 0.2410 0.2637

doi:10.1371/journal.pone.0018029.t004
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large numbers of hits would be natural areas to explore since each

cluster contains a highly focused set of related documents. We

recommend the use of a visual interface such as this in conjunction

with MEDLINE.

Finally, we note that most of the data from this study, the list of

PMID, titles and abstracts, MeSH-document and word-document

matrices, similarity files, cluster solutions, and coherence results

are available for download at http://sts.cns.iu.edu. We invite

others to use these data to make further comparisons; they should

be very suitable for the development, testing, and comparison of

similarity approaches, clustering algorithms and accuracy mea-

surement approaches.
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