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Abstract

Background: Most of our knowledge about the ancient evolutionary history of organisms has been derived from data
associated with specific known organisms (i.e., organisms that we can study directly such as plants, metazoans, and
culturable microbes). Recently, however, a new source of data for such studies has arrived: DNA sequence data generated
directly from environmental samples. Such metagenomic data has enormous potential in a variety of areas including, as we
argue here, in studies of very early events in the evolution of gene families and of species.

Methodology/Principal Findings: We designed and implemented new methods for analyzing metagenomic data and used
them to search the Global Ocean Sampling (GOS) Expedition data set for novel lineages in three gene families commonly
used in phylogenetic studies of known and unknown organisms: small subunit rRNA and the recA and rpoB superfamilies.
Though the methods available could not accurately identify very deeply branched ss-rRNAs (largely due to difficulties in
making robust sequence alignments for novel rRNA fragments), our analysis revealed the existence of multiple novel
branches in the recA and rpoB gene families. Analysis of available sequence data likely from the same genomes as these
novel recA and rpoB homologs was then used to further characterize the possible organismal source of the novel sequences.

Conclusions/Significance: Of the novel recA and rpoB homologs identified in the metagenomic data, some likely come from
uncharacterized viruses while others may represent ancient paralogs not yet seen in any cultured organism. A third
possibility is that some come from novel cellular lineages that are only distantly related to any organisms for which
sequence data is currently available. If there exist any major, but so-far-undiscovered, deeply branching lineages in the tree
of life, we suggest that methods such as those described herein currently offer the best way to search for them.
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Introduction

During the last 30 years, technological advances in nucleic acid

sequencing have led to revolutionary changes in our perception of

the evolutionary relationships among all species as visualized in the

tree of life. The first revolution was spawned by the work of Carl

Woese and colleagues who, through sequencing and phylogenetic

analysis of fragments of rRNA molecules, demonstrated how the

diverse kinds of known cellular organisms could be placed on a

single tree of life [1,2,3]. Most significantly, their analyses revealed

the existence of a third major branch on the tree; the Archaea

(then referred to as Archaebacteria) took their place along with the

Bacteria and the Eukaryota [2]. Several factors make rRNA genes

exceptionally powerful for this purpose, the most important being

perhaps that highly conserved, homologous rRNA genes are

present in all cellular lineages. To this day, analyses of rRNA genes

continue to clarify and extend our knowledge of the evolutionary

relationships among all life forms [4,5].

For microbial organisms, this approach was restricted to the

minority that could be grown in pure culture in the laboratory

until Norm Pace and colleagues showed that one could sequence

rRNAs directly from environmental samples [6,7]. Initially, the

methodology was cumbersome. However, this changed with the

development of the polymerase chain reaction (PCR) methodology

[8]. PCR generates many copies of a target segment of DNA,

which in turn facilitates cloning and sequencing of that segment.

However, delineation of the segment to be amplified requires

primers, i.e., short segments of DNA whose nucleotide sequence is

complementary to the DNA flanking the target. Because rRNA

genes contain regions that are very highly conserved, ‘‘universal

primers’’ can be used for PCR amplification of those genes even in

environmental samples [9,10]. Thus, in principle, one can use
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PCR to amplify the rRNA genes from all organisms in a sample in

a culture-independent manner.

PCR-based studies have now characterized microbes from

diverse habitats and have provided many fundamental new

insights into microbial diversity. For example, we now realize

that, in most environments, the culturable microbes represent but

a small fraction of those present. Furthermore, phylogenetic

analysis of the rRNA genes thus found enables one to assign those

sequences to groups within the bacterial, archaeal, or eukaryotic

domains of life (or to viral groups), a process known as phylotyping.

This has revealed the presence of dozens of major, but previously

undiscovered, lineages that have no cultured members [5]. With

the development of considerably improved sequencing technolo-

gies, rRNA PCR surveys have become a routine tool for

characterization of microbial communities.

Although rRNA PCR studies have provided a major foundation

for today’s environmental microbiology, this approach is not

without its limitations. Notably, the ‘‘universal’’ primers are not

truly universal. Even the best-designed ones fail to amplify the

targeted genes in some lineages while preferentially amplifying

those in others [11]. Furthermore, phylogenetic trees based on

rRNA sequences may not accurately reflect the evolutionary

history of the source organisms due to the occurrence of lateral

gene transfer, different rates of evolution in different lineages, or

similarities produced by the convergent evolution of rRNA

sequences from distantly related species [12,13,14,15]. Generating

alignments of rRNA genes can sometimes be challenging.

Furthermore, because the copy number of rRNA genes varies in

different species [16,17], the number of sequences observed in an

environment cannot be used to directly infer the number of cells of

any particular type [18] [19]. For these and other reasons, it is

generally considered to be important to combine conclusions

derived from rRNA sequence analysis with other types of

information (e.g., microscopy, analysis of other macromolecules,

etc). In terms of sequence information, this would mean generating

data for other genes. This can be readily achieved for culturable

organisms; phylogenetic analysis of protein coding genes, and even

phylogenomic analysis of whole genomes, has become a standard

procedure [20] [21,22]. But unfortunately, despite considerable

effort, no one has developed a robust PCR-based method for

cloning and sequencing protein-coding genes from unknown

uncultured organisms. Note – if you know reasonably detailed

information about the taxonomy of the targeted uncultured

organisms, one can get PCR of protein coding genes to work

reasonably well. A major inherent obstacle in PCR of protein

coding genes from unknown organisms is the degenerate nature of

the genetic code. Even if the amino acid sequence of a highly

conserved protein domain were identical across species, the

primers for PCR amplification would have to be degenerate.

Thus, although PCR surveys of protein-coding genes have

revealed interesting findings, they are clearly limited somewhat

in scope (e.g., [23]).

Due to these factors, the community has faced a bit of a

quandary regarding the characterization of uncultured organisms.

Although rRNA analysis is extraordinarily powerful, the window it

provides into the microbial world is clearly imperfect. It is possible

that additional major branches in the tree of life might exist,

branches that have been missed due to the limitations of rRNA

PCR. To resolve this required ways to clone rRNA genes without

the biases introduced by PCR, as well as unbiased methods for

obtaining data on other genes from uncultured species. Fortu-

nately, both are now provided by metagenomic analysis.

Metagenomics, broadly defined, is the sequencing of portions of

the genomes of all organisms present in an environmental sample

[24] [25]. It generates sequence data not only for rRNA genes, but

for all sequences from the genomes of all organisms present, in a

relatively unbiased manner (or at least with a different bias than

that inherent in PCR) [26].

The application of metagenomic analysis has accelerated the

rapid rate of advancement in the study of uncultured microbes

that began with the advent of rRNA analysis (e.g.,

[19,27,28,29,30,31]). Metagenomics has now enabled the phylo-

genetic characterization of many entire communities. For

example, our analysis of the Sargasso Sea metagenomic data

effectively used both protein-coding and rRNA sequences for

phylotyping, in much the same way as had been done with rRNA

PCR data [19]. Furthermore, by including protein-coding genes,

metagenomics can more accurately predict the biology of the

organisms sampled, thus disclosing not only who is out there, but

also what they are doing [32,33,34].

Previous usage of metagenomic data for phylogenetic typing of

organisms focused primarily on assigning metagenomic sequences

to specific known groups of organisms (e.g., see [22]). Here we

report our exploration of the potential use of metagenomic data to

answer a simpler, but perhaps more fundamental, question: Can we

identify novel rRNAs or protein-coding genes that suggest the existence of

additional major branches on the tree of life? The answer, surprisingly, is

yes. We present here our findings, along with some likely

explanations—including the possibility that there are indeed other

major branches on the tree of life yet to be characterized.

Results and Discussion

Note: Much of the analysis reported in this paper was initially

done during 2004–2007 using the data sets available at that time.

Some subsequent follow-up analyses included datasets released

since 2007 but not all currently available datasets were analyzed.

Searching for novel branches in the rRNA tree
We sought here to address a single question: Are there small-subunit

rRNAs (ss-rRNAs) encoded by this metagenomic data set that represent novel

lineages that branch closer to the base of the tree of life than any known ss-rRNAs?

Since the largest metagenomic data sets available when this

work was begun came from the Sorcerer II Global Ocean

Sampling Expedition (GOS) [35,36], we focused on the GOS

data. We realized that there were too many ss-rRNA genes in this

data set for manual analysis, and the automated methods available

at that time were designed to assign rRNA genes to known

phylogenetic groups, not to detect novel rRNA genes [37,38].

Therefore, we developed an automated screening system (STAP)

for detecting ss-rRNA genes that branch very deeply in the tree of

life (see Methods). In summary, this automated system: (1)

identifies ss-rRNA coding sequences in the metagenomic data

set; (2) generates an alignment of each of those ss-rRNA gene

sequences against a prealigned set of representative ss-rRNA

sequences from the three domains of life; (3) builds phylogenetic

trees from each of these alignments; and (4) identifies those trees in

which the environmental sequence branches very deeply, i.e.,

either between the three domains or as one of the deepest

branches within a domain (assuming that each domain is a

monophyletic group) [39].

Using this approach, we examined the entire GOS data set of

14,689 putative ss-rRNA sequences and identified 18 sequences

that met our multiple criteria for potentially being deep branching

(JCVI reads: 1098241, 1092963341190, 1091140405652, 318,

1105333456790, 1103242712700, 1105499913772, 1103242587147,

1108829508267, 1092959443067, 1092405960359, 1092402545613,

1093018267888, 1095522122248, 1093018199876, 1092351161318,
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1092381601933, 1095527007809). Most importantly, these 18

could not be assigned to any of the three domains by STAP and

they are each positioned near a domain separation point in a

maximum likelihood tree that includes representatives from all

three domains. However, more detailed examination of those

alignments and trees disclosed problems in the alignments for all of

the candidate novel sequences. Some alignments were of low

quality due to the insertion of too many gaps in the novel sequence.

Alignment quality is critical to phylogenetic analysis because the

alignment is a hypothesis concerning the homology (common

ancestry) of the residues at the same position in each of the aligned

sequences (positional homology). A tree built from a flawed alignment

may not reflect actual evolutionary relationships. Additionally,

many of the novel rRNA gene sequences aligned well only for very

short regions (,300 bp). It seems plausible that none of these novel

sequences are actual ss-rRNA genes.

These difficulties served to confirm that the methods available (or

at least the ones we were using for this high throughput approach)

were not robust enough to identify novel ss-rRNA genes in an

automated manner. Most of our problems were inherent in

attempting to generate high quality alignments of short sequences

that are only distantly related to known ss-rRNA genes. Further-

more, alignment of novel rRNA sequences can be challenging

because often it is the secondary and tertiary structure of the

molecule, rather than the primary sequence, that is highly

conserved. Our attempts to improve the alignments based on de

novo prediction of folding for the novel ss-rRNAs also fell short, likely

because most of the novel ss-rRNA sequences were fragments and

the folding algorithms work best on complete sequences.

Even when one has high quality rRNA gene sequence align-

ments, phylogenetic analysis involving very deep branches in the

tree of life can still be difficult due to inherent complications, such

as convergent evolution due to GC content effects [40,41,42].

Thus if there exist phylogenetically very deeply branching rRNA

genes in metagenomic data sets, our methods were not ideally

suited for finding them. (We note that since we conducted this

original analysis, new alignment methods for rRNA genes have

been developed that may eventually help to resolve some of these

issues. [43])

Analysis of the RecA superfamily
Due to the difficulties discussed above, we turned to protein-

coding genes in our search for novel branches in the tree of life. To

take the place of the ss-rRNA genes, we needed a protein-coding

gene that was both universal and widely studied. For our initial test

we chose the recA superfamily that includes the genes encoding a

diversity of recombinases that effect homologous recombination of

DNA (e.g., RecA in Bacteria, RadA and RadB in Archaea, Rad51,

Rad57 in Eukaryota and UvsX in phage). This is a nearly

universal gene family; homologs are found in almost all species of

Bacteria, Archaea, and Eukaryotes, and even in some viruses. The

few bacterial groups that lack homologs have greatly reduced

genomes (e.g., some endosymbionts [44,45], some mycoplasmas

[46]). In addition, it is one of the most widely sequenced protein-

coding gene families due to its importance in recombination, DNA

repair, and sex, and because of its usefulness as a phylogenetic

marker in studies of the Bacteria [19,47,48], Archaea [23], and

Eukaryota [49] [50].

Our question became: Does the GOS metagenomic data set encode any

new classes of proteins within the RecA superfamily? To answer this, our

first step was to retrieve representative sequences encoding known

subfamilies of the RecA superfamily including the bacterial RecA,

the archaeal RadA and RadB, the viral UvsX, and the eukaryotic

DMC1, Rad51, Rad51B, Rad51C, and Rad51D subfamilies. The

gene sequences of representatives of these known RecA super-

families, as well as other RecA homologs, were then used to query

the predicted proteins from the GOS metagenomic environmental

data to identify homologs. In addition, we used HMM searches to

identify as many RecA superfamily members as possible in

Genbank and complete genome data sets.

In total, 4677 RecA superfamily members were identified from

published microbial genomes [51], the NRAA database, and the

GOS metagenomic data set (4125 of these were from the GOS

data). At the time this analysis was done, our assessment was that

there were no reliable methods capable of robustly both aligning

and inferring phylogenetic trees for this many sequences.

Therefore, we used an alternative approach by first partitioning

the superfamily into subgroups. This partitioning was carried out

at the protein level using a Lek clustering method (see Methods)

previously employed for protein superfamily classification [52]. In

essence, the goal here was to first subdivide the superfamily into

subgroups – and to then select representatives of each subgroup for

further analysis. Such ‘‘pre-clustering’’ is a common approach to

analysis of large protein superfamilies though this is perhaps the

first use of the Lek method for these purposes.

Using this method, 23 clusters containing more than two

protein sequences were identified (Table 1). A few of these clusters

included only short fragmentary peptides. Though these clusters

might truly include phylogenetically novel sequences, we consid-

ered it likely that their apparent novelty was an artifact of the

fragmentary nature of these peptides. Thus these were omitted

from further analysis. Of the remaining clusters it was important to

determine whether each corresponded to a phylogenetic group

(since some clustering methods can produce groupings that are not

consistent with phylogenetic relationships). To investigate this, we

selected representative samples from each Lek-generated cluster

and then built phylogenetic trees for these representatives

(Figure 1). Overall, comparison of the trees with the Lek-generated

clusters indicates that the Lek clustering reflects phylogenetic

relationships. Specifically, the clusters are almost perfectly

congruent with the tree. Within the tree, each cluster appears to

be a monophyletic grouping, thus demonstrating that the cluster-

ing algorithm is robust at this level. In addition, our clusters are

virtually identical to the groupings identified by Lin et al. [53], with

the exception of new clades in our results that contain only GOS

metagenome sequences (they did not analyze metagenomic data)

(see below).

Based on the clusters and the tree structure, we divided the

RecA superfamily into the 15 major grouping labeled in the tree

(Figure 1). We refer to these as subfamilies of the RecA superfamily.

Each subfamily contains sequences from one or more of the Lek

clusters. At the time of the initial analysis, all sequences in five of

these subfamilies (RecA-like SAR1, Phage SAR2, Phage
SAR1, Unknown 1, and Unknown 2) had been found only in

environmental metagenomic data. These potentially represented

novel previously unknown RecA-related subfamilies. The other 10

groups corresponded to known RecA subfamilies (Table 1). We

note, though there is not a perfect one to one mapping of RecA

clusters to subfamilies all five of the novel RecA subfamilies

included sequences from only one cluster each (RecA-like
SAR1 = cluster 11, Phage SAR2 = cluster 5, Phage SAR1 = clus-

ter2, Unknown 1 = cluster 15, and Unknown 2 = cluster 9).

What do these novel RecA-related subfamilies and sequences

represent? Given their high degree of sequence similarity to

proteins in the RecA superfamily, all of which are known to play

some role in homologous recombination, it is likely that the

members of these new subfamilies are also involved in homologous

recombination.
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What can we say about the organisms that were the sources of

these novel sequences? Two of the five novel subfamilies (Phage
SAR1 and Phage SAR2) are reasonably closely related to

known phage UvsX proteins (Figure 1) and thus we conclude

that the sequences in these groups are likely of phage origin.

Analysis of the flanking regions of these sequences indicates that

the genes encoding proteins the Phage SAR1 subfamily are

located near protein coding genes that are phage- or virus-

related (Table 2). In addition, subsequent sequencing projects

carried out after our initial analysis showed that some of the

sequences in the Phage SAR1 subfamily are in fact from

cyanophages [54,55].

The Unknown 2 subfamily is likely of archaeal origin based

upon two lines of evidence. First, one of its members was found on

a large assembly along with many other protein coding genes,

including some that are generally considered to be useful

phylogenetic markers (Figure 2). Phylogenetic analysis of all of

those genes showed that a majority of them, including the

phylogenetic markers, grouped with Archaea (Table 2). Subse-

quently we found that the RadA-like proteins from the archaeotes

Cenarchaeum symbiosum A [56] and Nitrosopumilus maritimus SCM1

(unpublished) also fall within this major group.

The RecA-like SAR1 subfamily appears be a sister group to

the traditional bacterial RecA proteins (Figure 1) and thus we use

the prefix ‘‘RecA-like’’ for it. We note though this group is only

peripherally related to the bacterial RecAs and is itself quite novel

in terms of sequence patterns.

The Unknown 1 is not particularly closely related to any

known groups.

The RpoB protein superfamily shows qualitatively similar
patterns to the RecA superfamily

The results from the recA superfamily analyses indicated that there

are indeed phylogenetically novel subfamilies of housekeeping genes

in metagenomic data that have not yet been characterized. Is this

finding unique to recA? To answer this, we selected another

housekeeping gene for comparison: rpoB, the gene encoding the

RNA polymerase b-subunit that carries out RNA chain initiation

and elongation steps. rpoB is a universal gene found in all domains of

life, as well as in many viruses. It has been adopted as a phylogenetic

marker for studies of the Bacteria [57], the Archaea [58], and the

Eukaryota [59], as well as for metagenomic studies of phylogenetic

diversity in the Sargasso Sea [19]. Homologs of RpoB were

identified in Genbank, genomes and the GOS metagenomic data

Table 1. RecA superfamily clusters.

Cluster ID
Corresponding
Subfamily (see Figure 1)

Corresponding Group
in Lin et al. [53] Comments GOS Only

Number of GOS
Sequences

1 RecA RecA 2830

11 RecA-like SAR1 n/a Novel + 10

5 Phage SAR2 n/a Novel + 68

4 Phage UvsX n/a 73

2 Phage SAR1 n/a Found in cyanophage by
subsequent sequencing

+ 824

15 Unknown 1 Novel + 6

14 XRCC3/SpB Radb-XRCC3 0

20 XRCC3/SpB Radb-XRCC3 0

22 Rad57 Radb-XRCC2 0

6 Rad51C Radb-Rad51C 1

8 Rad51B Radb-Rad51B 2

10 Rad51D Radb-Rad51D 0

16 RadB Radb-RadB 0

17 RadB Radb-RadB 0

21 RadB Radb-RadB 0

12 RadB Radb-RadB 0

3 RadA/DMC1/Rad51 Rada 101

13 RadA/DMC1/Rad51 Rada 0

**9 Unknown 2 n/a Representatives found in Archaea
by subsequent sequencing

+ 19

18 XRCC2 Radb-XRCC2 0

*7 RecA* RecA RecA fragment + 29

*19 RecA* RecA RecA fragment + 5

*23 RecA* RecA RecA fragment + 3

A Lek protein clustering method was applied to all RecA superfamily members retrieved from the NRAA database, microbial genomes, and the GOS data set. The 23
clusters containing more than two sequences are listed. Clusters that contain only sequences from the GOS data set are noted as ‘‘GOS only.’’ When a cluster can be
mapped to a RecA subfamily identified by Lin et al. [53], the family designation from that paper is shown in column 3.
*These clusters of RecA fragments from the GOS data set were not included in the phylogenetic tree (Figure 1).
**Although cluster 9 contained only GOS sequences at the time of the initial analysis, it was subsequently found to include marine archaeal homologs from more recent
genome sequencing projects.
doi:10.1371/journal.pone.0018011.t001
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Figure 1. Phylogenetic tree of the RecA superfamily. All RecA sequences were grouped into clusters using the Lek algorithm. Representatives
of each cluster that contained .2 members were then selected and aligned using MUSCLE. A phylogenetic tree was built by from this alignment
using PHYML; bootstrap values are based on 100 replicas. The Lek cluster ID precedes each sequence accession ID. Proposed subfamilies in the RecA
superfamily are shaded and given a name on the right. Five of the proposed subfamilies contained only GOS sequences at the time of our initial
analysis (RecA-like SAR, Phage SAR1, Phage SAR2, Unknown 1 and Unknown 2) and are highlighted by colored shading. As noted on the tree and in
the text, sequences from two Archaea that were released after our initial analysis group in the Unknown 2 subfamily.
doi:10.1371/journal.pone.0018011.g001
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Table 2. Genes linked to sequences in the novel RecA subfamilies.

Subfamily RecA Accession
Accession of
Linked Gene Assembly ID Neighboring Gene Description Taxonomy Assignment

Phage-SAR1 1096700853217 1096700853219 1096627374158 gp43 Viruses/Phages

Phage-SAR1 1096701673303 1096701673301 1096627382978 T4-like DNA polymerase Viruses/Phages

Phage-SAR1 1096701673303 1096701673305 1096627382978 T4-like DNA primase-helicase Viruses/Phages

Phage-SAR2 1096697847133 1096697847135 1096627014936 GDP-mannose 4,6-dehydratase Bacteria

Phage-SAR2 1096697847133 1096697847149 1096627014936 methyltransferase FkbM Bacteria

Unknown2 1096695533559 1096695533561 1096528150039 ATP-dependent helicase Archaea

Unknown2 1096698308433 1096698308421 1096627021375 ATP-dependent RNA helicase Archaea

Unknown2 1096698308433 1096698308423 1096627021375 replication factor A Archaea

Unknown2 1096698308433 1096698308425 1096627021375 S-adenosylmethionine synthetase Bacteria

Unknown2 1096698308433 1096698308427 1096627021375 cobalt-precorrin-6A synthase Archaea

Unknown2 1096698308433 1096698308429 1096627021375 NADH ubiquinone dehydrogenase Bacteria

Unknown2 1096698308433 1096698308431 1096627021375 CbiG protein Bacteria

Unknown2 1096698308433 1096698308443 1096627021375 ATP-binding protein of ABC transporter Bacteria

Unknown2 1096698308433 1096698308435 1096627021375 chaperone protein dnaJ Eukaryota

Unknown2 1096698308433 1096698308445 1096627021375 small nuclear riboprotein protein snRNP Archaea

Unknown2 1096699819041 1096699819039 1096627295379 S-adenosylmethionine synthetase Bacteria

Unknown2 1096699819041 1096699819043 1096627295379 replication factor A Bacteria

Unknown2 1096699819041 1096699819047 1096627295379 snRNP Sm-like protein Archaea

Unknown2 1096686533379 1096686533339 1096627390330 ATP-dependent helicase Archaea

Unknown2 1096686533379 1096686533341 1096627390330 deoxyribodipyrimidine
photolyase-related

Bacteria

Unknown2 1096686533379 1096686533343 1096627390330 Glycyl-tRNA synthetase alpha2 dimer Archaea

Unknown2 1096686533379 1096686533345 1096627390330 RNA-binding protein Bacteria

Unknown2 1096686533379 1096686533347 1096627390330 cobyrinic acid a,c-diamide synthase Archaea

Unknown2 1096686533379 1096686533349 1096627390330 sdoxyribodipyrimidine photolyase Archaea

Unknown2 1096686533379 1096686533351 1096627390330 DNA primase small subunit Archaea

Unknown2 1096686533379 1096686533353 1096627390330 cobalt-precorrin-6A synthase Archaea

Unknown2 1096686533379 1096686533355 1096627390330 cobalamin biosynthesis CbiG Bacteria

Unknown2 1096686533379 1096686533359 1096627390330 DNA primase large subunit Archaea

Unknown2 1096686533379 1096686533361 1096627390330 aldo/keto reductase Bacteria

Unknown2 1096686533379 1096686533365 1096627390330 AP endonuclease Archaea

Unknown2 1096686533379 1096686533369 1096627390330 ATP-dependent helicase Archaea

Unknown2 1096686533379 1096686533371 1096627390330 translation initiation factor 2 alpha subunit Archaea

Unknown2 1096686533379 1096686533373 1096627390330 translation initiation factor 2 alpha subunit Archaea

Unknown2 1096686533379 1096686533375 1096627390330 sirohydrochlorin cobaltochelatase CbiXL Bacteria

Unknown2 1096686533379 1096686533377 1096627390330 glutamate racemase Bacteria

Unknown2 1096686533379 1096686533383 1096627390330 glycosyl transferase Eukaryota

Unknown2 1096686533379 1096686533387 1096627390330 deoxyribodipyrimidine photolyase Bacteria

Unknown2 1096686533379 1096686533389 1096627390330 AP endonuclease Archaea

Unknown2 1096686533379 1096686533393 1096627390330 cbiC protein Archaea

Unknown2 1096686533379 1096686533399 1096627390330 deoxyribodipyrimidine photolyase Bacteria

Unknown2 1096686533379 1096686533405 1096627390330 cob(I)alamin adenosyltransferase Bacteria

Unknown2 1096686533379 1096686533407 1096627390330 Phosphohydrolase Bacteria

Unknown2 1096686533379 1096686533409 1096627390330 glycyl-tRNA synthetase Archaea

Unknown2 1096686533379 1096686533415 1096627390330 30S ribosomal protein S6 Archaea

Unknown2 1096686533379 1096686533421 1096627390330 nuclease Archaea

Unknown2 1096686533379 1096686533423 1096627390330 phosphohydrolase Bacteria

Unknown2 1096686533379 1096686533427 1096627390330 cobalt-precorrin-3 methylase Archaea

Unknown2 1096686533379 1096686533429 1096627390330 universal stress family protein Bacteria
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Subfamily RecA Accession
Accession of
Linked Gene Assembly ID Neighboring Gene Description Taxonomy Assignment

Unknown2 1096686533379 1096686533473 1096627390330 aryl-alcohol dehydrogenases related
oxidoreductases

Eukaryota

Unknown2 1096686533379 1096686533505 1096627390330 snRNP Sm-like protein Chain A Eukaryota

Unknown2 1096689280551 1096689280549 1096627650434 S-adenosylmethionine synthetase Bacteria

RecA-like SAR1 1096683378299 1096683378297 1096627289467 DNA polymerase III alpha subunit Bacteria

Unknown1 1096694953057 1096694953059 1096520459783 FKBP-type peptidyl-prolyl cis-trans isomerase Archaea

Unknown1 1096665977449 1096665977451 1096627520210 single-stranded DNA binding protein Viruses/Phages

Unknown1 1096682182125 1096682182127 1096628394294 DNA polymerase I Bacteria

Five RecA subfamilies were identified as being novel (i.e., only seen in metagenomic data) in our initial analyses. GOS metagenome assemblies that encode members of
these subfamilies were identified and the genes neighboring the novel RecAs were characterized. The neighboring gene descriptions are based on the top BLASTP hits
against the NRAA database; taxonomy assignments are based on their closest neighbor in phylogenetic trees built from the top NRAA BLASTP hits.
doi:10.1371/journal.pone.0018011.t002

Table 2. Cont.

Figure 2. The largest assembly from the GOS data that encodes a novel RecA subfamily member (a representative of subfamily
Unknown 2). This GOS assembly (ID 1096627390330) encodes 33 annotated genes plus 16 hypothetical proteins, including several with similarity to
known archaeal genes (e.g., DNA primase, translation initiation factor 2, Table 2). The arrow indicates a novel recA homolog from the Unknown 2
subfamily (cluster ID 9).
doi:10.1371/journal.pone.0018011.g002
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using the same approach as for RecA with one significant difference.

The RpoBs are large, multi-domain proteins, a large number of the

rpoB sequences in the GOS data sets encode only partial peptides.

Since this poses special complications for RpoB protein clustering,

we excluded from our analysis RpoB peptides containing ,400

amino acids.

In total, for further analysis we identified 1875 RpoB homologs

from the GOS data set plus 784 known sequences from published

microbial genomes [51] and the NRAA database. These known

sequences included bacterial RpoBs as well as RNA polymerase

subunit II proteins from the Eukaryota, the Archaea, and viruses.

As with the RecA superfamily, RpoB clusters were identified using

the Lek clustering algorithm (see Methods), here creating 17 such

clusters that contain at least two members.

Nine of the 17 clusters contain only GOS sequences. Two of

these (clusters 1 and 11) were determined to correspond to

fragments of bacterial rpoBs and thus were excluded from further

analysis. Four clusters (clusters 9, 10, 15, 16) correspond to peptides

that only align to one end of known RNA polymerases and appear

to be most closely related to eukaryotic RNA polymerases. These

potentially could represent single exons of larger sequences and

thus were excluded from further analysis. One cluster (cluster 5)

contains only two sequences and though they appear to be full

length, this family was excluded from further analysis because we

chose to analyze only clusters with at least three sequences.

Representatives were then selected from the remaining clusters

and used to build the RpoB superfamily tree (Figure 3). Based on

the clusters and the tree structure, we divided the RpoB superfamily

into the nine proposed subfamilies labeled in the tree. As with the

RecA superfamily, there is a good correspondence between the Lek

clusters and the tree suggesting that the Lek clustering did a

reasonable job of identifying major RpoB groupings.

The largest number of homologs from the GOS data (1602

sequences) map to the Bacteria and Plastids RpoB clade, while the

second largest number (181 sequences) group with the archaeal

and eukaryotic clades. The relatedness of archaeal and eukaryotic

RNA polymerases is consistent with previous observations [58].

Two other distinct clades on the tree correspond to RNA

polymerases from yeast linear plasmids, including the toxin-

producing killer plasmids [60], and the Rpo2s from viruses such as

poxviruses [61].

Two of the RpoB subfamilies include only GOS sequences:

Unknown 2 which corresponds to Lek cluster 3 and Unknown
1, which corresponds to Lek cluster 8. These can be considered

likely novel, previously unknown RpoB subfamilies. Both subfam-

ilies are shown as deeply branching lineages in the phylogenetic

tree (Figure 3) though we note the rooting of the tree is somewhat

arbitrary. In terms of the organismal origin of the sequences in

these subfamilies, we do not have a lot of information. The

Unknown 2 is peripherally related to the RpoB homolog from

the giant Mimivirus (data not shown) and thus may represent

uncharacterized relatives of mimivirus [80]. We have no useful

information relating to the origin of the sequences in the

Unknown 1 subfamily.

That comparable results were obtained from both our recA and

rpoB studies demonstrates the capability of our clustering and

phylogenetic analysis methods to potentially identify deeply

branching organisms from environmental metagenomic sequences.

What do these novel groups represent?
The ultimate question concerning the novel subfamilies that we

found is what is their origin? Lacking both visual observation and/

or complete genomes, we do not currently have an answer. One

trivial possibility is that they are artifacts of some kind (see [81] for

a theoretical discussion of issues with artifacts in searching for

phylogenetically novel organisms). In theory the novel sequences

could represent chimeras, created in vitro from recombination

between DNA pieces of different origins. We note that we focused

our analysis on assembled contigs from the GOS data in a large

part because annotation is more reliable for longer DNA segments.

However, assembling metagenomic data has the potential to

create artificial chimeras (much like in vitro recombination) and

thus some assemblies may not represent real DNA sequences. We

purposefully restricted our analysis to those subfamilies that have

multiple members in order to avoid misleading results from rare

chimeras or assembly artifacts; thus we think they likely represent

real sequences.

Assuming the sequences are in fact real, we offer four possible

biological explanations for their phylogenetic novelty. First, they

could represent recombinants of some kind where domains from

different known subfamilies have been mixed together to create a

new form (e.g., perhaps the N-terminus of bacterial RecA was

mixed with the C-terminus of a Rad51D). We consider this

unlikely because the phylogenetic uniqueness for each group

appears to be spread throughout the length of the proteins. A

second possibility is that the novel sequences could represent

paralogs resulting from ancient duplications within these gene

families (and that these genes now reside in otherwise unexcep-

tional, evolutionary lineages). We consider this extremely unlikely.

Given the absence of representatives of these subfamilies from the

sequenced genomes now available from dozens of the Eukaryota

and Archaea and from hundreds of the Bacteria, this non-

parsimonious explanation would require parallel gene loss of such

ancient paralogs in most lineages in the tree of life, with gene

retention in only a few organisms.

A third possibility is that the genes from novel subfamilies come

from novel heretofore uncharacterized viruses. Given that the

known viral world represents but a small fraction of the total

extant diversity, and given some of the unexpected discoveries

coming from viral genomics recently, this is entirely possible. For

example, viruses have been characterized with markedly larger

genomes that contain not only more genes, but genes previously

found only in cellular organisms [62,63]. In some cases, the viral

forms of these genes appear to be phylogenetically novel compared

to those in cellular organisms [62,63].

It has not escaped our notice that the characteristics of these novel

sequences are consistent with the possibility that they come from a

new (i.e., fourth) major branch of cellular organisms on the tree of

life. That is, their phylogenetic novelty could indicate phylogenetic

novelty of the organisms from which they come. Clearly,

confirmation or refutation of this possibility requires follow-up

studies such as determining what is the source of these novel, deeply

branching sequences (e.g., cellular organisms or viruses). Then,

depending on the answers obtained, more targeted metagenomics or

single-cell studies may help determine whether the novelty extends to

all genes in the genome or is just seen for a few gene families.

Whatever the explanation for the novel sequences reported

here, this discovery of new, deeply branching clades of

housekeeping genes suggests that environmental metagenomics

has the potential to provide striking insights into phylogenetic

diversity, insights that complement those derived from rRNA

studies. In the future we plan to explore more metagenomic data

sets using an expanded collection of phylogenetic markers.

Additional gene family classification and analysis tools, such as

Markov clustering (MCL [64,65]) and sequence similarity network

visualization [64,65], will further empower us to identify and

understand these novel, deeply branching lineages—more of

which may be waiting to be unveiled.
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Methods

Identification of deeply-branching ss-rRNA sequences
A data set of 340 representative ss-rRNA sequences from all

three domains was prepared. These sequences represented 134

eukaryotic, 186 bacterial, and 20 archaeal species. Alignments for

these 340 sequences were extracted from the European Ribosomal

RNA database [66] and then manually curated to remove

columns with more than 90% gaps or with poor alignment

quality. Sorcerer II Global Ocean Sampling Expedition (GOS) ss-

rRNA sequences were identified by the PhylOTU pipeline [67].

Using MUSCLE [68,69], each GOS ss-rRNA sequence was

Figure 3. Phylogenetic tree of the RpoB superfamily. All RpoB sequences were grouped into clusters using the Lek algorithm. Representatives
of each cluster that contained .2 members were then selected and aligned using MUSCLE. A phylogenetic tree was built by from this alignment
using PHYML; bootstrap values are based on 100 replicas. The Lek cluster ID precedes each sequence accession ID. Proposed subfamilies in the RpoB
superfamily are shaded and given a name on the right. The two novel RpoB clades that contain only GOS sequences are highlighted by the colored
panels.
doi:10.1371/journal.pone.0018011.g003

Stalking the Fourth Domain

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e18011



aligned with the representative alignments (using the representa-

tives as a profile). A neighbor-joining tree including that sequence

and the representative ss-rRNAs was then built using PHYLIP

[70]. If a GOS sequence branched only one or two nodes away

from the node separating the three domains, it was analyzed by

the automated, phylogenetic tree-based ss-rRNA taxonomy and

alignment pipeline (STAP) [39,71], a protocol that draws upon the

entire greengenes bacterial and archaeal ss-rRNA database

[39,71], as well as the SILVA database for eukaryotic ss-rRNAs

[72].

Identification of RecA and RpoB homologs in the GOS,
microbial, and NRAA data sets

Homologs of RecA and RpoB were retrieved from the Genbank

NRAA database (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz)

and from all complete microbial genomes publicly available in

November, 2009 [51]. Homologs of RecA and RpoB were defined by

HMM profile screening of Pfam profiles (PF00154, PF08423,

PF00562) [73,74] and TIGRfam profiles (TIGR02012, TIGR02013,

TIGR02236, TIGR02237, TIGR02239, TIGR03670) [75], as well

as by BLASTP searches [76] using a diverse collection of known

family members as query sequences. The retrieved sequences

included representatives from the bacterial RecA, the archaeal RadA

and RadB, the viral UvsX, and the eukaryotic DMC1, Rad51,

Rad51B, Rad51C, and Rad51D families, among others. Likewise,

RpoB homologs were identified, including the bacterial RpoB; the

eukaryotic Rpa2, Rpb2, and Rpc2; and both archaeal and viral RNA

polymerase subunit II. Known RecA and RpoB sequences were then

used to query the GOS data set to identify homologs. For RpoB, only

homologs containing .400 amino acids were included.

Protein clustering
The 522 RecA homologs retrieved from the GenBank NRAA

database (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz) and the

published microbial genomes [51] were combined with 4125

RecA homologs retrieved from the GOS [35,36] data set into one

file. A Lek clustering algorithm was used to cluster the protein

sequences into subfamilies [52] using a BLASTP E-value cutoff of

1e-40 and Lek clustering score cutoff of 0.10. A total of 40 clusters

were generated, 23 of which have more than three members.

The same approach was used to cluster the 784 RpoB homologs

from the NRAA database and published microbial genomes [51]

and the 1875 RpoB homologs from the GOS data set. However,

in this case, a BLASTP E-value cutoff of 1e-70 and Lek clustering

score cutoff of 0.60 used. A total of 1816 GOS sequences and 778

RpoB homologs from NRAA and microbial genomes were

clustered into 17 clusters containing more than two members.

We note that for the novel RpoB clusters, confirmation that they

were homologs of RNA polymerases was done by BLAST searches

against Genbank and by HMM searches against the Pfam

database of protein families.

For both the RecA and RpoB superfamily analysis, the cutoff

values for the BLASTP search and the Lek clustering were chosen

such that the clusters produced were reasonably comparable to the

annotation of the sequences (e.g., RecAs in one cluster, Rad51 in

another).

Phylogenetic tree building
Representative amino acid sequences from each of the RecA

and RpoB clusters were selected manually and then aligned by

MUSCLE [68]. The alignments were examined and manually

Table 3. RpoB subfamilies.

Cluster ID
Corresponding Subfamily
(see Figure 3) Comments GOS Only?

Number of GOS
Sequences

7 Bacteria and Plastids 1602

4 Bacteria and Plastids 0

12 Bacteria and Plastids 0

8 Unknown 1 + 4

6 Killer Plasmids’’ 0

17 Rpa2/Rpb2/Rpc2/Archaea Includes most eukaryotic (nuclear)
and archaeal superfamily members

181

2 Rpa2 0

14 Archaea 0

3 Unknown 2 + 3

13 Pox Viruses 0

*1 n/a Partial sequences likely from bacteria + 6

*11 n/a Partial sequences likely from bacteria + 2

*9 n/a Partial sequences likely from eukaryotes. + 4

*10 n/a Partial sequences likely from eukaryotes. + 4

*15 n/a Partial sequences likely from eukaryotes. + 3

*16 n/a Partial sequences likely from eukaryotes. + 5

**5 n/a Not analyzed further because only two
representatives identified

+ 2

A Lek clustering method was applied to all RpoB superfamily members retrieved from the NRAA database, microbial genome projects, and the GOS data set. Clusters
that contain only sequences from the GOS data set are noted as ‘‘From GOS only.’’
*Clusters 1, 9, 10, 11, 15, and 16 contain only sequence fragments from the GOS data set; though possibly novel they were omitted from further analysis.
**Cluster 5 contains only two sequences. Though both are from the GOS (IDs 1096695464231 and 1096681823525) and may represent a novel RpoB subfamily, this
group was excluded from further analysis because we restricted analyses to groups with three or more sequences.
doi:10.1371/journal.pone.0018011.t003
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trimmed to ensure alignment quality. A maximum likelihood tree

was built from the curated alignments using PHYML [77]. For

phylogenetic tree construction, bootstrap values were based on

100 replicas, the JTT substitution model was applied [78], and

both the proportion of invariable sites and the gamma distribution

parameter were estimated by PHYML.

Analysis of assemblies containing novel RecA sequences
Five RecA subfamilies (corresponding to sequences in clusters 2,

5, 9, 11, and15) contain only GOS sequences (i.e., they were novel

metagenomic only subfamilies) and also contain complete genes

(i.e., they were not made up of only sequence fragments). In total,

these clusters contain 24 metagenomic RecA homologs. We

examined the 24 GOS assemblies that encode these RecA

homologs. From these we retrieved 559 putative protein-encoding

genes. Of these 24 assemblies, 12 contained a combined total of 55

genes with BLASTP hits in the NRAA database (E-value cutoff of

1e-5). We assigned gene functions to the 55 genes based on their

top BLASTP hits. For each of these 55 genes, a phylogenetic tree

was built by QuickTree [79] using the amino acid sequences of

their top 50 BLASTP hits in the NRAA database. A putative

‘‘taxonomy’’ at the domain level was assigned based on their

nearest neighbor in the phylogenetic tree.

Assembly 1096627390330, the largest of the 12 assemblies, was

analyzed further. Translation in all six frames yielded 114

potential ORFs. Functions could be assigned to 33 of the 114

based on similarity to genes in the NRAA database using

BLASTP. A gene map (Figure 2) was built of the entire assembly

including the 33 annotated genes plus 16 hypothetical proteins,

i.e., ORFs without annotation that do not overlap any of the 33

genes. When non-annotated ORFs overlapped, the longest ORF

was used to represent the group on the map.

Data and protocol availability
We’ve made the following data and protocols available for the

public: (1) GOS and reference sequences for RecA and RpoB; (2)

Subfamilies of RecA and RpoB (Table 1,3); (3) Alignments and

Newick format phylogenetic trees of RecA and RpoB (Figure 1,3);

(4) Sequences of the genes that share assemblies with the novel

recAs. (Table 2); (5) GOS ss-rRNA sequence reads; (6) the Lek

clustering program. The data and protocols are available at

http://bobcat.genomecenter.ucdavis.edu/GOSrecA_DATA/index.

html. The data have also been submitted to the Dryad repository

http://datadryad.org/ - http://dx.doi.org/10.5061/dryad.8384.
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