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Abstract

Rapid movement is challenging for elongate, soft-bodied animals with short or no legs. Leaping is known for only a few
animals with this ‘‘worm-like’’ morphology. Wheel locomotion, in which the animal’s entire body rolls forward along a
central axis, has been reported for only a handful of animals worldwide. Here we present the first documented case of wind-
powered wheel locomotion, in larvae of the coastal tiger beetle Cicindela dorsalis media. When removed from their shallow
burrows, larvae easily can be induced to enter a behavioral sequence that starts with leaping; while airborne, larvae loop
their body into a rotating wheel and usually either ‘‘hit the ground rolling’’ or leap again. The direction larvae wheel is
closely related to the direction in which winds are blowing; thus, all our larvae wheeled up-slope, as winds at our study site
consistently blew from sea to land. Stronger winds increased both the proportion of larvae wheeling, and the distance
traveled, exceeding 60 m in some cases. In addition, the proportion of larvae that wheel and the distance traveled by
wheeling larvae are significantly greater on smooth sandy beaches than on beach surfaces made rough and irregular by
pedestrian, equestrian, and vehicular traffic. Like other coastal species of tiger beetles, C. dorsalis media has suffered major
declines in recent years that are clearly correlated with increased human impacts. The present study suggests that the
negative effects of beach traffic may be indirect, preventing larvae from escaping from predators using wheel locomotion
by disrupting the flat, hard surface necessary for efficient wheeling.
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Introduction

To move rapidly on land, animals need to generate and release

sufficient energy while minimizing the friction generated as their

moving body contacts the substrate. This is a formidable challenge

for most crawling terrestrial animals, particularly for those short-

legged crawlers with an elongate, flexible body [1,2]. Leaping can

propel animals for short distances at relatively high speeds, but

among animals with worm-like builds, it has been reported to date

only for the larvae of a number of fly species [3,4,5], and for

juveniles of certain entomophagous nematodes [6,7].

Wheel locomotion is a means by which animals can cover larger

distances quickly. In wheel locomotion, the animal’s entire body

rotates forward around a single axis, propelled by either the passive

force of gravity or the active force of the animal’s movements.

Although wheel locomotion is one of the most efficient forms of

travel, it also faces significant limitations that probably account for

its near-absence in nature. Wheels lose most of their efficiency in

any but smooth, hard surfaces, have difficulty clearing all but the

lowest obstacles, and are less maneuverable than other forms of

locomotion [8,9]. Few environments meet the first two conditions,

and few motives for efficient locomotion are free from the need for

maneuverability [10].

Gravity-driven wheel locomotion is known in the wheel spiders

(Carparachne spp.), which live on the steep sand dunes of the Namib

Desert in Africa [11]; these spiders cartwheel; that is, their body is

centered on the axis of rotation, with their legs projecting at angles

to form spokes and bent distally to form a rim. Active wheel

locomotion has been documented in the tropical American mantis

shrimp Nannosquilla decemspinosa and in caterpillars of the moths

Pleurotya ruralis and Cacoecimorpha pronubana [12,13]. These species

have elongate, flexible, short-legged bodies; they form wheels by

coiling their bodies, dorsal-side-out, bringing the head and tail

ends together and then actively rolling themselves along the

substrate.

Adult tiger beetles are among the fastest running insects, but

larvae are soft-bodied, sedentary burrow-dwellers that essentially

never leave their burrows until they emerge as adults [14]. Rapid

locomotion would seem to be irrelevant for a fossorial lifestyle and

difficult to achieve with a ‘‘worm-like’’ morphology; nonetheless,

we discovered that larvae of the southeastern beach tiger beetle,

Cicindela dorsalis media, were able to travel considerable distances

quickly. In this study, we documented the mechanisms and

performance capacity of this mode of locomotion, and investigated

the effects of surface irregularities in beach topography caused by

pedestrian and vehicular traffic.
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Methods

Study sites
We conducted field studies during the summer of 2007 and then

again in the summer of 2010. Our study area was the southeastern

shore of Cumberland Island National Seashore (CINS), St.

Mary’s, Georgia, USA. Cumberland Island, the largest barrier

island off of Georgia’s coast, is characterized by shallow sloping

beaches with prevailing winds from the east and northeast in

spring (March – May) and from the north in summer (June – July)

[15]. Although most of CINS is federally protected, there is still

considerable disturbance on the beach, primarily due to human

recreational activity and feral animals. CINS is a popular tourist

destination with 45,000 visitors annually. A major attraction of the

island is a population of about 200 feral horses that frequently

roam the beach. There are also 200–300 feral hogs that may visit

the beach during turtle nesting season. Vehicle traffic on the beach

is limited to residents and park staff, but plans for vehicle tours on

the north side of the island were approved in 2009 [16].

Study organism
The southeastern beach tiger beetle, Cicindela dorsalis media, is

found along the Atlantic Coast from New Jersey to Florida on wide

sandy beaches [17]. Although its numbers have been declining

precipitously over the last couple of decades [18,19,20], it is

considerably more common than its federally endangered

conspecific C. d. dorsalis [21]. Whereas C. dorsalis larvae have been

reported to be found between the upper intertidal and the low

dunes and to be primarily nocturnal [17], we have found that C. d.

media larvae at CINS are found primarily in the mid to upper

intertidal zone, and are as active by day as by night (pers. observ.).

We located larvae of Cicindela dorsalis media on the beaches by

surveying the mid to upper intertidal zone for burrows visually.

Larvae were collected one at a time by approaching a larva at

the mouth of its burrow carefully, plunging a trowel suddenly into

the soil in front of the burrow at a roughly 45u angle to block the

larva’s retreat, and then lifting the entire clump of sand out of the

ground. Each larva was used promptly and in only a single trial,

and then returned unharmed to the sand. Some larvae were

videotaped at normal speed using a Sony DCR-TRV22 digital

camcorder (2007) or at 300 fps using a Casio Exilim EX-F1 (2010).

Behavioral observations
Our basic approach was to place a larva on the surface of the

sand and probe it gently with a thin twig or grass blade for one

minute or until the larva exhibited wheeling behavior. We

qualitatively recorded the response of the larva to the probing

(i.e., death feign, crawl, leap). For leaping larvae, we recorded

whether they also wheeled. For wheeling larvae, we recorded the

distance and direction traveled; in 2007, we recorded this data for

leaping larvae as well. In 2007 we estimated wind direction with a

compass and windsock, and measured wind speed with a Kestrel

3000 Pocket Weather Meter. In 2010 we used a vane-mounted

Kestrel 4500 Pocket Weather Tracker to more precisely record

wind speed and direction. We recorded head capsule width as an

indicator of larval size (in 2007 we also recorded total body length).

Trials were conducted on a smooth section of sand in the midst of

the larval burrow zone.

In 2010, we examined the effect of beach surface roughness on

wheeling behavior. To determine whether beach surface regularity

affected the ability of larvae to initiate and maintain wheeling, we

conducted the above tests in two adjacent locations on the beach: a

smooth, intertidal section and an adjacent, higher region where

the surface was much more uneven due to considerable human,

vehicular, and horse traffic. To minimize potential confounding

effects of changing winds or temperatures during the course of a

day’s trials, we alternated between smooth and rough sites after

every three to five tests.

Data analysis
We used simple x2 continency tests to assess the effect of beach

substrate on the likelihood that a larva would leap during a trial

(Fig. 5A), and to assess the effect of beach substrate on the

likelihood that a leaping larva would subsequently wheel (Fig. 5B).

Table 1. Effects of larval behavior and wind speed on
distance traveled by C. dorsalis media larvae.

Source DF F p

Behavior 1 102.40 ,.0001***

Wind speed 1 22.13 ,.0001***

Behavior*wind speed 1 10.54 0.0015**

Note: Behavior refers to whether or not larva wheeled in response to prodding.
Distance traveled log-transformed for analysis. 2007 data on smooth surfaces.
doi:10.1371/journal.pone.0017746.t001

Table 2. Effects of beach roughness and wind speed on
proportion of C. dorsalis media larvae that wheeled.

Source DF x2 p

Roughness 1 27.27 ,.0001***

Wind speed 1 5.00 0.025*

Roughness*wind speed 1 1.35 0.244 N.S.

Note: Roughness refers to substrate surface (smooth vs. roughened by prior foot
or vehicular traffic).
doi:10.1371/journal.pone.0017746.t002

Table 3. Effects of beach surface properties and wind speed
on distance traveled by C. dorsalis media larvae.

Source DF F p

Roughness 1 5.74 0.008**

Wind speed 1 0.97 0.47 N.S.

Roughness*Wind speed 1 4.89 0.13 N.S.

Note: Roughness refers to substrate surface (smooth vs. roughened by prior foot
or vehicular traffic). Distance traveled log-transformed for analysis.
doi:10.1371/journal.pone.0017746.t003

Table 4. Effects of beach roughness and wind direction on
direction wheeled by C. dorsalis media larvae.

Source DF F p

Roughness 1 0.18 0.677 N.S.

Wind direction 1 25.00 ,.0001***

Roughness*Wind direction 1 1.39 0.248 N.S.

Note: Roughness refers to substrate surface (smooth vs. roughened by prior foot
or vehicular traffic).
doi:10.1371/journal.pone.0017746.t004
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We use nominal logistic regression to assess the effects of wind

speed and beach roughness on the probability that leaping larvae

would wheel (Table 2; Fig. 4). Wheeling distances were not

normally distributed (2007 data: Shapiro-Wilk W = 0.48,

p,0.001; 2010 data: W = 0.51, p,0.001), and so were log-

transformed for statistical analyses (2007 data: W = 0.98, p = 0.15;

2010 data: W = 0.97, p = 0.07). We used separate slopes analysis of

covariance, with wind speed as the covariate, to assess the effect of

larval behavior (i.e., leaping vs. wheeling) on distance traveled

(Table 1, Fig. 3) and the effects of beach roughness on distance

wheeled (Table 3, Fig. 6) and direction wheeled (Table 4, Fig. 8).

We used correlation analysis to assess the relation ship between

larval length and head capsule width.

Results

Behavioral observations/description of wheeling
Larval tiger beetles unambiguously use wheel locomotion as a

response to disturbance. Without benefit of high-speed video,

however, a typical wheeling event looks like a brief and violent

bout of thrashing on the sand, interspersed with an occasional

leap, after which the larva suddenly and rapidly zips along the

surface of the sand in a more or less straight line (Video S1). Most

of the detailed descriptions that follow were obtained through

careful frame-by-frame inspection of 48 high-speed video clips.

When a larva is touched on the head, thorax, or anterior

abdomen, it typically jerks or crawls away, threatens with open

jaws without arching backwards, contracts its body into a sinuate

death-feigning pose, or regurgitates. Death-feigning and regurgi-

tation are known in adult tiger beetles [14], but to our knowledge

have not been previously reported in larvae.

However, when a larva is touched on the posterior part of the

abdomen (i.e., from the fifth abdominal segment to the tail), it

vigorously arches its body backwards so that its head snaps

upwards and backwards and its tail (if not pinned to the substrate)

arches upwards and forwards (Fig. 1a–b). Although this motion

brings the head with its open mandibles towards the disturbing

agent (in our case the poking twig), larvae usually did not bite the

stick. Rather, the larva arches its head over and past its abdomen

until its head and tail ends meet, resulting in the animal’s body

forming a ‘‘ventral side out’’ loop. It is not clear whether the

animal holds the head and tail ends together: sometimes the two

ends seem in direct contact, sometimes the head end contacts the

abdomen between the tail and the fifth abdominal segment,

sometimes the tail contacts the thoracic region posterior to the

head capsule. The momentum of the head end coiling backwards

causes the entire animal to roll backwards until the tail of the now-

coiled animal contacts the substrate (Fig. 1c).

As soon as its tail contacts the sand, the larva attempts to launch

itself off the sand by arching its body suddenly in the opposite

direction, using its tail as an anchor. The larva now forms a dorsal-

side-out loop that rotates forward while in the air, often

completing one to several rotations while airborne (Fig. 1d; Video

S2). When a larva lands on the sand, it typically will either fall over

on its side or else start to roll. In the latter case it will either

continue to wheel or else relaunch (Fig. 1f) once its tail (or less

commonly head) contacts the sand (Fig. 1e). In this fashion larvae

rapidly and repeatedly alternate between dorsal-side-out and

ventral-side-out positions up to five times after a single poke before

either wheeling or ceasing activity (Video S3). The specific

trajectory of each leap was clearly influenced by the velocity of the

rolling larvae and that of the wind. In addition, slight variations in

the timing of the leap during a roll, as well as fine-scale surface

irregularities, had apparent but difficult-to-quantify effects on leap

trajectories. The net result is that in the absence of high-speed

video, larvae appear to be wildly flipping and thrashing on the

surface.

Larvae were occasionally observed to wheel on the substrate

briefly in a ventral-side-out loop, but only in the dorsal-side-out

position would larvae wheel more than one or two revolutions.

Larvae are equally likely to wheel headfirst or tail-first.

While wheeling, larvae normally maintained a rounded loop.

On smooth sand, their body was more or less continuously in

contact with the sand while rolling, but mild irregularities or low

Figure 1. A generalized leaping and wheel initiation sequence in C. dorsalis media larvae. The number, height, and direction of individual
components vary markedly depending on wind speed and fine-scale surface topography. The two dotted lines (coarse and fine) calibrate the
successive illustrations in two locations as the larva moves along the beach. Sequence of events: a) being prodded; b–c) coiling and rolling backwards
until pygopod (tail) contacts sand; d) straightening out, pushing off sand into the air, rotating forward; e) landing on sand; at this point larva either
begins wheeling, returns to extended position (a), or proceeds to f) when pygopod or head contacts sand, straightening out, pushing off sand into
the air, rotating backward; when larva lands on sand, proceeds to either (a) or (c).
doi:10.1371/journal.pone.0017746.g001

Wheel Locomotion in Tiger Beetle Larvae
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Figure 2. Instantaneous rotational speed of two wheeling C. dorsalis media larvae during separate wheeling events. Each bar
represents a single complete rotation. Missing values indicate intervals of varying length during which the video camera momentarily lost track of the
larva (see, e.g., Video S4).
doi:10.1371/journal.pone.0017746.g002
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sand ridges caused larvae to bounce instead of roll along the shore.

Bouncing wheels appeared to be increasingly common with

increasing wind speed, although we did not measure this

relationship. This irregularity-induced bouncing appeared to be

beyond larval control, although we saw no indication that

bouncing wheels were less effective than rolling wheels. Larvae

would sometimes actively maintain wheeling runs by pushing off

the sand with their tail while rolling. This produced a low,

bouncing leap that continued to propel the larva forward, usually

in the same direction it had been wheeling. However, sometimes

larvae that were obviously decelerating when they pushed off were

seen to change direction by up to 90u (though still heading up-

slope) (Video S4).

During the entire process of leaping and wheeling, the three

pairs of legs extend outward nearly perpendicular to the body

plane; the legs appear to help the larva maintain balance while

wheeling, based on several high-speed video clips in which a

wheeling larva wobbled slightly from side to side without falling

over.

Wheeling bouts ended in one of three ways. Occasionally the

larva would unwind from the loop while still wheeling, which

immediately ended the bout. More typically, wheeling velocity

would slow to the point that the larva would fall over on its side

still looped. At our study site, the most common cause for such

reduced velocities was an encounter with a mild obstacle, such as a

low sand ridge, loose clump of sand, or rough patches caused by

footsteps or hoof prints. Sometimes these obstacles were severe

enough to bring wheeling to an immediate halt. In any case, once

a larva stopped wheeling, it completely uncoiled, dorsal-side-up,

and began to either crawl away or else burrow into the sand,

sometimes after a brief pause (Video S4).

Wheeling speeds and rotation rates are clearly dependent on

fine scale changes in wind speed and surface topology during a

run, rendering mean values of questionable utility (Fig. 2). Winds

at the time of the video trials ranged from approximately 3.5–

5.5 m/s. During most runs larvae maintained rotational rates of

20–30 Hz (hertz, or rotations per second), peaking at 37.5 Hz. For

our video trials we recorded larvae that were approximately

15 mm long. This translates to a typical speed of 0.30–0.56 m/s),

assuming a larva travels one body length per rotation. Under the

high winds of 2007 (.12.5 m/s), we observed larvae that were

wheeling faster than our assistant could run on the beach, which

we calculated separately to be around 3 m/s.

In 2010, larvae wheeled distances of up to 10 m (Fig. 3). In the

stronger winds of 2007, larvae wheeled up to 25 m during our

experimental trials (Fig. 3), and we incidentally recorded much

longer events, one exceeding 60 m. Larvae often did not wheel in

a straight line, but we did not record the frequency, extent, or

direction of this curving; thus, our straight-line measurements

tend to underestimate slightly the actual distance traveled by

larvae.

On average, wheeling larvae moved significantly further from

their starting point (234.326438.06 cm, or 147.956284.16 body

lengths; N = 46) than did leaping-only larvae (13.20610.93 cm, or

8.4066.41 body lengths; N = 99) from their starting point (Fig. 3,

Table 1). The proportion of leaping larvae that wheeled increased

significantly with wind speeds (x2 = 20.79, p,0.001, N = 140;

Fig. 4), as did the distance traveled by wheeling larvae (R2 = 0.47,

p,0.001; Fig. 3; Table 1). However, the distance traveled by

leaping-only larvae was not affected by wind speed (Fig. 3;

interaction effect in Table 1; for leaping-only larvae, R2 = 0.01,

p = 0.42).

Figure 3. Effect of wind speed on distance traveled by leaping and wheeling C. dorsalis media larvae. These trials were done on smooth
beach surfaces, including all data from 2007 and from the ‘‘smooth’’ treatment in 2010.
doi:10.1371/journal.pone.0017746.g003
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Effects of fine-scale substrate topology
In 2010, we tested 118 larvae (61 on smooth substrate, 57 on rough

substrate). Overall, nearly 90% of the larvae leaped within the first

minute; the remainder feigned death for the full minute. The

roughness of the surface did not affect whether or not larvae leaped

(x2 = 0.50, p = 0.48; Fig. 5A). Leaping larvae were significantly more

likely to wheel on smooth sand than on rough sand (60% vs. 16.3%;

x2 = 20.51, p,,0.001; Fig. 5B; Table 2; Video S3); only eight of 49

leaping larvae wheeled on rough surfaces.

Wind speeds were more limited during our experiments in

2010, ranging between 2.4 and 5.8 m/s. Unfortunately, we lost

weather data from the first day of these trials, meaning that we had

wind speed data for only 30 of our 41wheeling larvae (5 of 8 from

rough sand and 25 of our 33 from smooth sand). Three wheeling

events on smooth sand were prematurely terminated when a larva

rolled into an obstacle (e.g., a rough patch of sand or sand ridge;

Fig. 6). These larvae were excluded from distance-related

calculations because they underestimate the distance the larvae

would have travelled had the sand stayed smooth. As in 2007, the

proportion of leaping larvae that wheeled increased with wind

speed (Table 2), with no significant interaction with beach

roughness. When beach roughness and wind speed are analyzed

together in a separate slopes ANCOVA, wheeling larvae traveled

significantly farther on smooth sand than on rough sand (Table 3,

Fig. 6), even excluding the obstacle-terminated wheeling runs,

which serve to illustrate directly the consequences of beach surface

complexity on the wheeling ability of larvae. However, in this

analysis, wind speed does not affect the distance larvae wheel,

which may reflect the smaller sample sizes or more limited range

of wind speeds sampled in 2010 vs. 2007.

Direction wheeled vs. direction of wind
At the study site, the beach ran nearly, but not quite, along a

due north-south axis at our study site, with the slope running

directly uphill (i.e., perpendicular to shore) at 264u. Prevailing

winds blew from ocean onshore; during our tests readings ranged

from 232u to 269u (Fig. 7). All wheeling larvae rolled up-slope, with

compass headings ranging from 195–297u (Fig. 7). There was a

strong positive correlation between the direction larvae rolled and

the direction the wind blew towards during the trial, which was

unaffected by substrate roughness (Fig. 8; R2 = 0.57; Table 4).

Body size
In 2007, head capsule width and body length were significantly

correlated, but the relationship was weaker than expected (R2 = 0.35,

p,0.001, N = 34), primarily because of the difficulty in getting precise

and accurate body length measurements of live, soft-bodied larvae in

the field. Thus, we measured only head capsule width in 2010. When

controlling for substrate effects, body size (as estimated by head capsule

width) affected neither the probability that larvae wheeled (p = 0.57),

the distance (p = 0.83), nor the direction (p = 0.76) that larvae wheeled.

Discussion

Under certain circumstances, larvae of the southeastern beach

tiger beetle Cicindela media dorsalis use a remarkable form of wheel

Figure 4. Effect of wind speed on probability that leaping C. dorsalis media larvae would wheel. These trials were done on smooth beach
surfaces, including all data from 2007 and from the ‘‘smooth’’ treatment in 2010.
doi:10.1371/journal.pone.0017746.g004
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locomotion. Furthermore, this wheeling is preceded, and facilitat-

ed, by a series of catapulting jumps that are quite remarkable in

their own right. Perhaps most surprisingly, we found this

spectacular but previously unnoticed suite of behaviors in ‘‘one

of the best-studied insect species in North America’’ [22]. Our

initial discovery of this behavior was itself serendipitous: one of us

(SZ) was walking through some unusually loose sandy drifts on

Cumberland Island and happened to kick up some C. d. media

larvae, which promptly started wheeling. We have not seen such

drifts on Cumberland Island during subsequent visits. Larval tiger

beetles are normally alert and quickly drop down into their

burrows at the approach of potential predators; on subsequent

visits we have been unable to dislodge larvae by kicking sand drifts,

nor have we seen tiger beetles wheeling except when we provoked

them ourselves. Although the discovery of leaping and wheeling

was fortuitous, and the behaviors themselves apparently rarely

expressed, they nonetheless are easily and consistently elicited and

do not appear to be unnatural artifacts.

Leaping represents serious challenges to soft-bodied, elongate,

short-legged or legless animals [2], and only a few examples have

been reported previously. In each case, the animal bends its body

into a tight loop by bringing its head and tail ends together,

Figure 5. Effect of beach roughness on rapid locomotion in C. dorsalis media larvae. A. Number of larvae that leaped when tested on
smooth vs. rough beach surfaces. B. Number of leaping larvae that wheeled when tested on smooth vs. rough beach surfaces.
doi:10.1371/journal.pone.0017746.g005
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Figure 6. Effect of wind speed and beach roughness on distances wheeled by C. dorsalis media larvae. Open diamonds represent larvae
on smooth substrate whose wheeling bouts were truncated by encounters with isolated obstacles.
doi:10.1371/journal.pone.0017746.g006

Figure 7. Heading of C. dorsalis media larvae and of winds during wheeling events. The dashed line represents the direction of steepest
slope up the beach at the study site. Data shown for larvae tested on smooth surfaces (N = 35).
doi:10.1371/journal.pone.0017746.g007
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holding the ends together with a catch mechanism that, when

suddenly disengaged, releases the energy stored in the tensed body

loop and thus launching the animal. Fungus gnats reach

backwards with their heads to form a ventral-side-out loop [3],

whereas cheese flies, Mediterranean fruit flies, and nematodes

form dorsal-side-out loops [4,5,6]. In contrast, C. d. media larvae

are equally proficient at leaping from either position, starting from

a ventral-side-out position and then typically alternating between

the two in a given leaping-rolling sequence.

In nematodes, the loop is maintained by water tension from the

water film covering the body of the animal, whereas the much larger

fly larvae use various pegs or hooks to secure the ends of the loop. It

was unexpectedly difficult to determine the precise catch mechanism

in C. d. media. There may well not be a single mechanism, given the

numerous potential gripping structures, setae, ridges, and pockets at

both ends of the larvae, and the fact that they leap from both dorsal-

side-out and ventral-side-out positions. It is also possible that they do

not use a pure catch-and-release mechanism, gaining power by

combining elastic release with real-time muscle contraction.

The function of leaping in C. d. media clearly differs from that in

other soft-bodied leapers. Fly larvae leap to minimize predation

risks while changing microhabitats prior to metamorphosis [3,4,5];

nematodes leap onto or towards potential hosts [23]. In C. d. media,

one benefit of leaping is likely to be to gain some immediate

separation from an attacker. In response to attacks by the tiphiid

wasp Methocha, the larvae of several species of tiger beetles have

been observed flipping out their burrow, thrashing about on the

surface, and then crawling away ([24], [25]). This flipping and

thrashing behavior sounds similar to the leaping that precedes

wheeling in C. d. media.

Leaping also initiates the process of wheeling. This is

particularly important for a wind-powered wheeler like C. d.

media; self-powered and gravity-powered wheelers do not leap.

Whereas a larva may be facing any direction as it leaps, wheeling

requires it to be oriented along the axis of the wind. Although the

process of alignment with the wind axis during a leap is apparent

in our videos, the mechanisms appear to be complex and beyond

the scope of this paper. Because wind speeds increase with

increasing height above the surface (i.e., the wind gradient),

leaping larvae get a stronger initial push by the wind than they get

on the surface. Also, initiating a rotating wheel while airborne

presumably encounters less frictional resistance than while on the

ground. This may allow the larvae to more quickly reach

rotational speeds rapid enough to maintain balance while wheeling

along the surface. Certainly some of the rotational energy

generated while airborne gets converted to translational energy

when the larva hits the sand, propelling it forward at least briefly

until the wind takes over.

Although a burrow-dwelling, elongated, soft-bodied animal

might seem an unlikely candidate for either wheeling or leaping,

three of the four previously known examples of wheeling are also

elongate, flexible animals that live in burrows (Nannosquilla) or

equivalent shelters (i.e., rolled leaf tubes in Pleurotya and

Cacoecimorpha). Gould [26] argues that it would not be possible

for animals to evolve wheeled appendages because there is no way

for nutrients and nerve impulses to move between the wheel and

the body of the animal. However, this does not preclude an animal

from temporarily deforming its entire body to form a wheel. Such

deformations would seem to be easiest for an animal whose body is

either already somewhat wheel-shaped (e.g., ‘‘cartwheeling’’

Figure 8. Effects of wind heading and substrate roughness on wheeling direction in C. dorsalis media larvae. Regression coefficients are
for substrate categories analyzed separately; see text and Table 4 for combined analyses.
doi:10.1371/journal.pone.0017746.g008
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spiders) or else elongated and flexible enough to form a head-to-

tail loop.

C. d. media larvae, unlike other wheeling animals, uses the wind

to power its wheeling. This leads to the unique result that they

normally roll uphill, because at coastal locations prevailing winds

typically come from offshore during the daytime. At our study site

on Cumberland Island, prevailing winds blew mostly from due

east, and the beach slope rose nearly due west; as a result, larvae

always wheeled strongly up-slope. This eventually led them into

the rougher lower dune area of the beach, which quickly

terminated wheeling. However, at a location on nearby Jekyll

Island that housed a large population of C. d. media, we observed

that prevailing winds tended to run more parallel to shore, which

would allow the possibility of wheeling distances much greater

than the 60 m maximum we observed at the Cumberland Island

site. Wind-powered wheeling could create potential problems for

larvae when winds are blowing out to sea (e.g., at night), but they

are able to terminate rolling actively. We have not yet determined

whether larvae engage in these behaviors at night.

Not surprisingly, the velocity of wind is important in both

initiating and sustaining wheeling bouts; we did not observe larvae

wheeling in winds below 2.8 m/s, nor did they wheel for more

than a meter in winds less than 4.2 m/s. The roughness of the

substrate also strongly affected the wheeling ability of larvae,

which had significantly greater success at initiating wheeling, and

traveled significantly farther, on smooth sand than on roughened

sand. Similarly, Schurr et al. [27] showed that for seeds of a given

size, dispersal on the ground increases with wind speed and

decreases with obstacle density.

It is instructive to compare the performance of wheeling

Cicindela dorsalis media larvae to the handful of other known

wheeling species (Table 5). The two passive wheelers (C. dorsalis

media and Carparachne aureoflava) can achieve far greater speeds and

distances than can the three self-propelled active wheelers. Of

course, the ability of passive wheelers to realize this potential is

completely dependent on local conditions. Thus, C. d. media is

unable to wheel on rough substrates or when winds drop below

2.8 m/s, whereas C. aureoflava requires slopes greater than 15u
[11]; active wheelers are not so constrained.

We have not yet established the function of wheeling in

Cicindela dorsalis media. Other species wheel primarily to escape

either suboptimal environmental conditions [28] or predators

[11,13], both of which are plausible candidates in C. d. media. In

tiger beetles, wheeling is only an option for larvae that are not in

their burrows, and tiger beetle larvae rarely leave their burrows

voluntarily. Larvae of the coastal C. hirticollis are known to

change burrow locations in response to environmental condi-

tions [29]. C. d. dorsalis is also exceptional in this respect, and

will move if conditions are poor [21]; furthermore, in more

northern populations, the springtime burrows of first instar

larvae tend to be close to the water’s edge, whereas those of later

instars, which appear in the fall, are much further upslope,

presumably to avoid the erosion of the lower beach that results

from strong waves and winds in the winter [30]. As far as is

known, the larvae of these species change positions by crawling

across the substrate (B. Knisley, T. Simmons, pers. comm.), but

presumably could wheel if attacked by a predator during the

process of relocation.

Nonetheless, we suspect that wheeling is primarily an enhanced

response to attack by Methocha, which is considered to be one of the

most important sources of larval mortality in tiger beetles [14,25].

Other species follow Methocha-induced bouts of flipping and

thrashing by attempting to crawl away. Sometimes this behavior

is sufficient to elude the wasp, but sometimes the wasp is able to

follow the larvae on the surface, and either drag them back to the

original burrow or bury them on the spot [24]. Wheeling rapidly

moves larvae much farther away from the burrow entrance than

does leaping alone, and it seems highly unlikely that Methocha would

be able to follow, much less keep pace with, a wheeling larva.

The wide, flat, sandy beaches favored by C. dorsalis are ideally

suited for wheeling, and the nearly continuous sea breezes

represent a reliable power source for wheeling, at least during

the day. However, wheeling in C. d. media is severely compromised

by the beach roughness introduced by levels of pedestrian,

vehicular, and equine traffic that can occur at CINS. Therefore,

if wheeling is a means to escape predators, then trampling will lead

to increased larval mortality due to predation. The severity of this

effect should increase with both predator attack rates and intensity

of traffic. This may provide at least a partial explanation for the

precipitous decline noted for C. d. media on beaches with heavy

pedestrian or vehicular traffic [18].

Supporting Information

Video S1 Typical leaping and wheeling sequence by a C.
dorsalis media larva. Normal speed video taken with a

consumer-grade Sony DCR-TRV22 Digital Handicam.

(MP4)

Video S2 Single leaping somersault event by a C.
dorsalis media larva. 300fps (10X normal speed) taken with

a Casio Exilim EX-F1 digital camera.

(MP4)

Video S3 Sequence of leaping somersaults on rough
sand by a C. dorsalis media larva. 300fps (10X normal

speed) taken with a Casio Exilim EX-F1 digital camera.

(MP4)

Table 5. Wheel locomotion performance across taxa.

Species Power source Distance (m) Rotational rate (Hz) Speed (m/s)

Cicindela dorsalis media wind 0.5–5 (60) 20–30 (37.5) 0.30–0.56 (3.0)

Carparachne aureoflava gravity 1–100 20.668.4 160.30

Nannosquilla decemspinosa self ,1 (2) ? 0.015–0.045 (0.056)

Pleurotya ruralis self ,0.125 16 0.4060.04

Cacoecimorpha pronubana self ? 11.4 0.29

Values are either means (6S.D. if provided) or typical ranges; maximum values in parentheses. Maximum distance and speeds for C. d. media were recorded outside
experimental trials.
doi:10.1371/journal.pone.0017746.t005
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Video S4 Leaping and wheeling sequence by a C.
dorsalis media larva. 300fps (10X normal speed) taken with

a Casio Exilim EX-F1 digital camera. The leaping response of this

larva to probing was somewhat more delayed than is typical. The

video illustrates the various consequences of obstacles during a

wheeling run (i.e., bouncing, deceleration, and termination of the

run). It also shows the larva leaping to extend its run without

further experimental contact, resulting in a considerable change of

direction (though still wheeling up-slope).

(MP4)
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